
A Resizable C++ Container using Virtual Memory

Blaž Rojc a and Matjaž Depolli b

Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia

Keywords: C++, Virtual Memory, Container, Parallel Programming, Efficiency.

Abstract: Thread safety is required for shared data structures in shared-memory parallel approaches, but cannot be done
efficiently for standard C++ containers with continuous memory storage, such as std::vector. Dynamically
resizing such a container may cause pointer and reference invalidation and therefore cannot be done in parallel
environments without exclusive access protection to the container. We present a thread-safe no-copy resizable
C++ container class that can be used to store shared data among threads of a program on a shared-memory
system. The container relies on the virtual memory controller to handle allocation as needed during execu-
tion. A block of memory of almost arbitrary size can be allocated, which is only mapped to physical memory
during the first access, providing hardware-level thread blocking. All synchronization costs are already in-
cluded in the operating system memory management, so using the container in parallel environment incurs
no additional costs. As a bonus, references and pointers to elements of the container work as expected even
after the container is resized. The implementation is not general however, and relies on the specifics of the
operating system and computer architecture. Memory overhead can be high as the allocations are bound to the
granularity of the virtual memory system.

1 INTRODUCTION

When initializing a data structure that is comprised of
many elements of the same type, e.g., a dictionary,
tree, graph, mesh, etc., it is often a case that the a) to-
tal size of the structure is not known in advance, b) the
structure can be built iteratively with the elements be-
ing inserted at the end of the existing data structure’s
memory block. An example of such an initialization
is the generation of scattered nodes for discretization
of a computational domain (Slak and Kosec, 2019).
The number of nodes that will be required to discre-
tise the domain is not known in advance, and the gen-
erating procedure is iteratively adding them to a con-
tainer structure and to a spatial indexing structure.

The generation procedure has good parallel poten-
tial but requires a container that:

• can be resized in a thread-safe manner,

• will not be modifying the elements after they are
put in and

• will only be inserting the elements at the end, that
is, the insertion will not require moving any exist-
ing elements.

a https://orcid.org/0000-0001-6087-5691
b https://orcid.org/0000-0002-0365-5294

Most available resizable data structures with stor-
age over a continuous block of memory offer only
read-only element access in a thread-safe manner.
During the insertion of a new element, the underly-
ing block of memory can be filled up and the whole
structure needs to be moved into a different block of
memory. The move invalidates all references to ex-
isting elements and implementing it in a thread-safe
manner can make it very inefficient. To make resizing
such a container truly tread-safe, locking mechanisms
such as mutexes (Raynal, 2012) must be employed
across large portions of code, even those that do not
deal with resizing directly. This can lead to poor scal-
ing, especially when many insertions can occur at the
same time.

In this paper we propose a container with thread-
safe resizing that exploits virtual memory - a feature
of modern operating systems that abstracts physical
memory away from the programmer both for more
efficient memory use and process isolation (Gorman,
2004; Bhattacharjee et al., 2017). It allows the pro-
grammer to offload the burden of memory alloca-
tions to the operating system, or more specifically to
CPU’s memory management unit (MMU). As a con-
sequence, no locking mechanism is required in the
program code, since thread safety is taken care of by

Rojc, B. and Depolli, M.
A Resizable C++ Container using Virtual Memory.
DOI: 10.5220/0010557104810488
In Proceedings of the 16th International Conference on Software Technologies (ICSOFT 2021), pages 481-488
ISBN: 978-989-758-523-4
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

481



the hardware. The use of virtual memory also repre-
sents the negative aspect of this approach, that is, it
depends on virtual memory support being present in
the operating system.

The rest of the paper is organised as follows. In
section 2 we describe the standard approaches and vir-
tual memory in more detail, together with the MMU.
In section 3 we describe the implementation of the
virtual memory container in C++. In section 4 we
compare the performance of virtual memory con-
tainer to some other possible approaches to the prob-
lem. In section 5 we discuss the portability of our
implementation to other architectures and operating
systems.

2 BACKGROUND

2.1 Standard Approach to Resizable
Containers

Probably the most widely used container in standard
C++ is the std::vector. It is an example of a dy-
namic array with the ability to resize itself automat-
ically when one or more elements are inserted or
deleted. Storage for the elements is being handled
transparently by the container.

C++ standard (ISO, 2017) for example describes:

A vector is a sequence container that sup-
ports random access iterators. In addition,
it supports (amortized) constant time insert
and erase operations at the end; insert and
erase in the middle take linear time. Storage
management is handled automatically, though
hints can be given to improve efficiency. A
vector satisfies all of the requirements of a
container and of a reversible container, of a
sequence container, including most of the op-
tional sequence container requirements, of an
allocator-aware container, and, for an element
type other than bool, of a contiguous con-
tainer.

Since vector must be continuous, it can be used
to interact with C code which expects continuous ar-
rays of elements, it has minimal memory overhead,
and the speed of its random access iterators is unpar-
alleled among containers. This, along with its abil-
ity to grow automatically or per request, makes it a
workhorse for the data structures in general.

It is, however, limited by its implementation of dy-
namic resizing, which may catch an unprepared pro-
grammer off guard with its linear time performance,

invalidation of iterators, pointers and references to el-
ements, and the resulting lack of thread-safety even
in cases when elements are only added to the vector
and never modified. The usual implementation of the
algorithm to grow vector in size is to allocate a larger
block of memory, copy or move the contents from the
old to the new block, and deallocate the old block of
memory. When done automatically, the growth ra-
tio is usually exponential, e.g. doubling the memory
block size on each growth. Only when done manu-
ally, memory block of an exact required size may be
obtained for holding the vector’s elements.

When vector is grown, all the newly available
elements, that is, the elements with indices i, where
old_size≤ i <new_size are also default initialized.
The creation of vector of fixed size itself includes the
growth operation and the overhead associated with it.

For parallel programming, vector in raw form
is ill suited, since it is not thread-safe in the slight-
est. Full read-only concurrent access is allowed, but
read-only access to one element while another ele-
ment is being modified is only allowed if vector
does not get resized by he modification, i.e. func-
tion push_back should not be used on a vetor when
it is being concurrently accessed by other threads.
When dynamic resizing is required, all element ac-
cess has to be protected, at least with a readers-writer
lock(Raynal, 2012).

2.2 Virtual Memory and MMU

Virtual memory is an abstraction of the physical mem-
ory that hides the arrangement of physical memory
and other resources from the programmer and sepa-
rates different processes’ address spaces (Bhattachar-
jee et al., 2017). The mapping between virtual and
physical memory addresses is carried out by the op-
erating system kernel and the memory management
unit (MMU), a dedicated address translation hard-
ware, built into the CPU (Gorman, 2004).

On 64-bit version of Linux each process can ac-
cess a total of 256 TiB of virtual memory. The upper
128 TiB are reserved for the kernel while the lower
128 TiB can be used by the program, as shown in Fig-
ure 1. A part of this user memory region is reserved
by the stack and executable code, but the vast majority
is freely allocatable. Not only physical memory can
be mapped into virtual memory, but also swap parti-
tion, normal files on disk, I/O devices, etc.

While up to 128 TiB of virtual memory can be al-
located, in practice only as much of it can be used as
there is physical memory in the system. For a fixed
size, densely populated data structures virtual mem-
ory presents no real improvement over direct access

ICSOFT 2021 - 16th International Conference on Software Technologies

482



0x0000 0000 0000 0000

0x0000 7fff ffff ffff

0xffff 8000 0000 0000

0xffff ffff ffff ffff

user memory space

kernel memory space

Figure 1: Structure of the virtual memory address space be-
longing to a process in the 64-bit Linux environment. Not
to scale, a large part of address space not in use is omitted.

in terms of performance. Much of the improvement
is achieved when using either large sparse structures
or structures that must increase in size frequently. We
can allocate a large sequential chunk of virtual mem-
ory and only write to a small portion. The kernel then
maps only the accessed memory locations into physi-
cal memory.

Address mapping is done on the granularity of
a page. Pages are fixed-size blocks of memory.
Their size is determined by the operating system
and the CPU architecture and can range from 1 KiB
to 1 GiB, the most common being 4 KiB (Gorman,
2004). When a page in virtual memory is first writ-
ten to, the kernel uses the MMU to map it to a page in
physical memory.

The MMU contains a complex hardware com-
ponent that translates memory addresses between
process’ virtual address space and physical address
space. The details of its operation surpass the scope
of this work, we can think of it as a black box that
performs address mapping in a thread-safe manner,
regardless of its implementation.

3 IMPLEMENTATION

The virtual memory container is implemented us-
ing the provided memory management functions.
POSIX-compliant operating systems such as Linux
expose a memory management header containing
such functions (IEEE, 2018), sys/mman.h. To
implement the container we used functions mmap,
mprotect, and munmap, as shown in Figure 2.

During the construction of the container the re-
quired amount of virtual memory is allocated using
mmap. Initially all memory is flagged as inaccessible,
to prevent an out-of-memory error on systems with
/proc/sys/vm/overcommit_memory set to 0. The
memory is then marked as readable and writable in
1 GiB chunks1 using the mprotect function.

Note that the implementation is deliberately kept
minimal and includes only the constructors, destruc-
tor, element accessor functions (operator[]) and
size function. This is a consequence of our cur-
rent requirements for the container; the implementa-
tion could be extended into random-access container
such as vector. Comparison to containers of the C++
standard library is therefore limited. We do believe,
though, that the presented approach could be ex-
tended into a standard library compatible allocator
class, similar to mmap_allocator2, to facilitate the
use of virtual memory by the containers of the stan-
dard library.

Indexing into the container is done directly as
indexing into an array pointer. If the page of vir-
tual memory inside which the target element is lo-
cated is not yet mapped into the physical memory, the
MMU creates this mapping on the first access. During
the mapping, several virtual memory pages may be
remapped, moved to or from swap and a target physi-
cal memory page is allocated and cleared. Therefore,
mapping is a complex procedure that can potentially
take a long time to complete. During this time, all the
threads that wish to access the new page are blocked
in their memory access instruction.

During the destruction of the container, the allo-
cated virtual memory is deallocated using munmap.
Care must be taken to unmap all allocated memory.
For this reason the size of the container is recorded
during construction. Deletion of all mappings from
virtual to physical memory is taken care of by the ker-
nel by the system function call.

1This can be avoided if overcommit_memory is set to 1
within the operating system.

2https://github.com/johannesthoma/mmap allocator

A Resizable C++ Container using Virtual Memory

483



#include <sys/mman.h>
#include <errno.h>
#include <string >
#include <stdexcept >
#include <iostream >

template <typename ElementType >
class VirtualMemoryContainer {
private:

size_t num_elements;
ElementType* container;

public:
VirtualMemoryContainer(size_t max_elements) {

num_elements = max_elements;
container = (ElementType*) mmap(nullptr , sizeof(ElementType) * max_elements , PROT_NONE ,
MAP_PRIVATE | MAP_ANONYMOUS , -1, 0);
if (container == (ElementType*) -1) throw vmc_error(errno);

const int64_t block_size = 1048576;
int64_t remaining = sizeof(ElementType) * max_elements;
uint8_t* head = (uint8_t *) container;

while (remaining > 0) {
int ret = mprotect(head , std::min(block_size , remaining), PROT_READ | PROT_WRITE);
if (ret != 0) throw vmc_error(errno);
head += block_size;
remaining -= block_size;

}
}

VirtualMemoryContainer(VirtualMemoryContainer& other) = delete;

VirtualMemoryContainer(VirtualMemoryContainer&& other) {
num_elements = other.num_elements;
other.num_elements = 0;
container = other.container;
other.container = nullptr;

}

˜VirtualMemoryContainer() {
if (container != nullptr) {

int ret = munmap(container , sizeof(ElementType) * num_elements);
if (ret != 0) throw vmc_error(errno);

}
}

inline ElementType& operator[](size_t idx) {
return container[idx];

}

inline const ElementType& operator[](size_t idx) const {
return container[idx];

}

inline size_t size() const {
return num_elements;

}
};

Figure 2: The implementation of the virtual memory container. Note that supporting classes such as vmc_error are not listed
since their implementation is not relevant.

ICSOFT 2021 - 16th International Conference on Software Technologies

484



4 PERFORMANCE
COMPARISON

In this section we demonstrate the performance ad-
vantage of the proposed container over a standard
implementation of vector. Our use case for which
we developed the container is holding the elements
of dynamically built k-d tree, which performs spatial
indexing for numerical domain discretization (Slak
and Kosec, 2019). This use case makes it difficult
to quantitatively compare the container implementa-
tions, since it involves complex computing that masks
the performance gains of the container itself.

Furthermore, there seem to be no standard bench-
mark for perfomance measurement of thread-safe
containers, as other approaches present their own
benchmark problems (Dechev et al., 2006). To make
the demonstration simple, we consider a solver for
Collatz conjecture (Lagarias, 1985) on a predefined
range of numbers, which involves only light comput-
ing and is memory bound.

4.1 Collatz Conjecture

Consider the following function on positive integers:

f (n) =

{
n
2 , if n is even
3n+1, if n is odd

(1)

Now repeatedly apply this function to some positive
integer a0, so that an+1 = f (an). Does the sequence
a0,a1,a2, . . . eventually reach 1? The Collatz conjec-
ture states that it will, no matter which positive integer
is chosen as a0.

The conjecture has not been proven or disproven,
although numerical tests have shown that it holds for
all starting values up to 1020 (Bařina, 2021). Un-
predictable behaviour of a generated sequence means
that although the starting integer may be small, the
processing can involve very large numbers before the
sequence reaches 1. One integer that exhibits such be-
haviour is 27: it peaks at 9232, after 77 successive ap-
plications of f , a number more than 300 times larger
than the starting number.

4.2 Problem Statement

To estimate how fast the sequence converges to 1 for
some starting positive integer k, we want to determine
the number of applications of f before the sequence
reaches 1. Let us name this number the orbit length
ok of k. We want to generate a list of orbit lengths
for all integers between 1 and n, where n is given in
advance.

To speed up the computation we make the follow-
ing observation: If a number k has an orbit length
of ok, then its successor f (n) has an orbit length of
ok − 1. Therefore we can compute orbit lengths re-
cursively, stopping at k = 1. Since numbers larger
than n might appear more than once in the gener-
ated sequences, we want to store their orbit lengths
as well. We, however do not know the largest num-
ber for which orbit length will have to be stored and
cannot preallocate the required memory to store all
the numbers. The largest encountered number will be
known only after the algorithm completes.

For efficiency, we do not want to preallocate all of
the available system memory and would like to grow
the container for orbit lengths as necessary. Growing
as necessary is the main strength of the proposed con-
tainer, since it can be done with minimal overhead.
For standard library containers, though, this is not the
case. We opt to use vector as comparison reference,
since it is a random access container with minimal
memory overhead and can be resized at will. The
standard vector is different however in the way re-
sizing is implemented (large computational overhead)
and in its initialization of all the new elements upon
each size change. Note that deque from standard li-
brary could be used instead, since its implementation
usually uses a different trade-off approach to slightly
slower random element access for a faster resize op-
eration.

The proposed container does not perform element
initialization and relies on the fact that the system
clears all the allocated pages with zeros when map-
ping them. Initialization with zeros is sufficient both
in the presented case and in our use-case, thus no ad-
ditional compliance with the standard containers is at-
tempted. Additional initialization would require the
concept of size to be implemented in addition to the
concept of allocated space, which is not necessary in
our use case. Nevertheless, it is important to notice
that the comparison is not entirely fair since the pro-
posed container has one less function to perform in all
experiments.

4.3 Implementation

To measure the performance of virtual memory con-
tainer against the vector we implemented the de-
scribed problem as a computational experiment in
C++. We want to gain insight into which parts of com-
putation take the longest, so we measured setup time,
calculation time and resize time separately, where cal-
culation time includes time spent reading and writing
to the container.

We compare the virtual memory container with

A Resizable C++ Container using Virtual Memory

485



103 104 105 106 107 108

100

101

102

103

104

n

To
ta

le
xe

cu
tio

n
tim

e
[m

s]

Virtual memory container
vector
vector (target size)
vector (maximum size)

Figure 3: Total execution times of the described problem for
the virtual memory container and different configurations of
the vector on one CPU thread.

the vector in three configurations: Where vector
is completely empty and must be resized, where we
construct the vector with of size n, which we shall
refer to as target size, and where we construct the
vector with the maximum allowed number of ele-
ments, which we shall refer to as maximum size.

We decided to impose an upper limit to the size of
containers so we don’t run into problems with a lack
of physical memory. For each value of n we repeated
the experiment many times and then averaged mea-
sured times to minimize any potential random vari-
ance from external factors, such as the varying CPU
clock and process scheduler.

A single execution of the experiment proceeds as
following:

• For each integer i between 1 and n noninclusive
the orbit length is calculated recursively in as-
cending order.

• First f (i), the successor of i, is calculated.

• If f (i) is larger than or equal to the maximum size,
then f is applied to it iteratively until the calcu-
lated value is smaller than the maximum size. The
total number of iterations is recorded.

• If iteration was not necessary the number of itera-
tions is set to 1.

• The size of the container is checked. If the size
is smaller that the successor, the container is re-
sized so that it contains the successor. (This only
happens when vector is used).

• If the successor is 1, then the orbit length is also
set to 1.

• If the successor’s orbit length was not yet calcu-
lated then the program recursively calculates it.

104 105 106 107 108

100

101

102

103

104

105

n

To
ta

le
xe

cu
tio

n
tim

e
[m

s]

Virtual memory container
vector
vector (target size)
vector (maximum size)

Figure 4: Total execution times of the described problem for
the virtual memory container and different configurations of
the vector on eight CPU threads.

The final orbit lenght is the orbit length of the suc-
cessor plus the number of iterations.

4.4 Performance

We executed the benchmark problem on an 8-core,
16-thread computer (2x Intel Xeon E5520) with
12 GB of RAM. In the experiments we limited the
maximum allowed size of the containers and we per-
formed several experiments with various limits. We
present the results only for the limit being exactly
1 GiB of physical memory in Figures 3 and 4. We
further performed the experiments also on the limits
of 1 GiB, 2 GiB, 4 GiB, and 8 GiB, but discovered that
they follow the same pattern.

Within the experiment with 8 GiB limit though,
we were reminded of one often neglected negative
aspect of vector. In order to resize a vector,
temporarily the amount of physical memory needed
equals the new size plus the old size, which in limit
goes up to twice the requested size. This happens be-
cause during the resize process, first new memory of
at least the requested size is allocated, then elements
are copied and only then the old memory is freed. Our
experimental machine had enough physical memory
to host an 8 GiB structure, but not enough to support
the resize, causing it to use swap file on each resize af-
ter the container reached about 6 GiB in size. The per-
formance of vector was severly degraded and thus
the results were nonrepresentative.

The execution times for 1 CPU thread are shown
on the figure 3. The fact that vector copies all val-
ues during the resizes causes it to fall far behind the
virtual memory container. The trend continues up to
about n = 105, where the diference in compute times

ICSOFT 2021 - 16th International Conference on Software Technologies

486



103 104 105 106 107 108
0

50

100

n

E
xe

cu
tio

n
tim

e
pe

rc
en

ta
ge

Virtual memory container

container resizing
calculation of values
container setup

103 104 105 106 107 108
0

50

100

n

E
xe

cu
tio

n
tim

e
pe

rc
en

ta
ge

vector

103 104 105 106 107 108
0

50

100

n

E
xe

cu
tio

n
tim

e
pe

rc
en

ta
ge

vector (target size)

103 104 105 106 107 108
0

50

100

n

E
xe

cu
tio

n
tim

e
pe

rc
en

ta
ge

vector (maximum size)

Figure 5: Execution time percentages of the described prob-
lem for the virtual memory container and different configu-
rations of the vector. Blue: container setup, orange: cal-
culation of values, green: container resizing.

starts to shrink. At this point the percentage of filled
elements in the container starts becoming significant,
so the virtual memory container must allocate a lot
more pages. Regardless, the virtual memory container
remains the fastest, challenged only by the maximum
size vector for n above 108.

The execution times for 8 CPU threads are shown
on the figure 4. The difference between the virtual
memory container and vectors widens even further,
with execution over different configurations of the
vector being slowed down significantly. The fea-
ture of the virtual memory container, which allows
it to be resized without any locking mechanisms al-
lows it to be used without changes, while vector has
to be protected using a readers-writer lock (using
the standard C++ shared_lock and unique_lock on
shared_mutex). While vector configurations were
slower on the order of a magnitude because of the use
of mutexes and full locks during resizes, the virtual
memory only slowed down for some n while gaining
speed for other.

5 PORTABILITY

The presented implementation of the virtual memory
container may not be used on all operating systems
nor on all the hardware. As was discussed in section
2, for virtual memory mapping to work, a MMU is re-
quired. Such hardware is not present in all computer
architectures, such as those in embedded and IOT en-
vironments for example.

Furthermore, one of the requirements of the con-
tainer is the availability of memory management func-
tions. While such functions may be available, they
might not behave in the same way as those defined by
the POSIX standard. One such case is the Microsoft
Windows operating system. While it contains the re-
quired facilities needed to implement the container, a
different set of functions or a translation layer such as
mman-win323 must be used.

6 CONCLUSION

In this paper we presented an often neglected ap-
proach to containers in C++, the virtual memory
based container. The container relies on the virtual
memory controller to handle allocation when its size
increases beyond the current value. All synchroniza-
tion is included already in the operating system mem-
ory management, so there is no additional cost to us-

3https://github.com/klauspost/mman-win32

A Resizable C++ Container using Virtual Memory

487



ing the container in parallel environment. As a bonus,
references and pointers to elements of the container
are allowed and work as expected even when the con-
tainer is resized. There are negative aspects though,
for example, not all hardware architectures allow for
the implementation and currently only Linux imple-
mentation is provided. The amount of the allocated
memory can also not be as fine grained as with the
classic C++ containers, and there is some memory
overhead attached.

Although we present a very basic, array-like (or
std::vector-like) container, the approach could be
extended into an allocator, to support the alloca-
tions for containers of the standard library. Our main
motivation for developing this container lies in its in-
herent thread safety for a special scenario, which is
often found in real life. That scenario is one in which
the elements are continuously appended to the con-
tainer, and the total number of elements is not known
beforehand. While the existing elements of the con-
tainer are also frequently read from, they are never
modified. If this scenario is required in a parallel en-
vironment, where either the elements are read in par-
allel or appended in parallel, or both, then the existing
containers require extensive protection of shared data
structures and thus offer very low performance. In
addition, we found that the container also has several
positive aspects, compared to for example vector,
even when used in completely sequential code, which
then makes it an even more compelling option to con-
sider in everyday development.

Use cases where the presented container presents
the largest performance gain are those which are me-
mory bound, where data processing cannot be local-
ized and requires many memory accesses. Further-
more the standard approach with container locking
during the resize operation scales poorly when many
CPU threads are used compared to the presented lock-
free design. Through experiments on an artificial ex-
ample - a solver for orbit lengths for the Collatz con-
jecture - we demonstrate where the presented con-
tainer shines the most, compared to the containers of-
fered by the standard library. We make a short scan of
the input parameters to show the performance both on
sequential and parallel access to the container. In the
sequential program, we find that the performance of
the presented container is only matched by vector
with constant size equal to the maximum allowed
size. Since thread safety is required for the shared
data structures in shared-memory parallel approaches,
but cannot be done efficiently for C++ containers with
continuous memory storage and dynamic size, such as
std::vector, we find that in parallel programs, the
presented container perfomance is unmatched.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the financial
support of the Slovenian Research Agency (ARRS)
research core funding No. P2-0095.

REFERENCES

Bařina, D. (2021). Convergence verification of the collatz
problem. The Journal of Supercomputing.

Bhattacharjee, A., Lustig, D., and Martonosi, M. (2017).
Architectural and Operating System Support for Vir-
tual Memory. Synthesis Lectures on Computer Archi-
tecture. Morgan & Claypool Publishers.

Dechev, D., Pirkelbauer, P., and Stroustrup, B. (2006).
Lock-free dynamically resizable arrays. volume 4305,
pages 142–156.

Gorman, M. (2004). Understanding the Linux Virtual Mem-
ory Manager. Bruce Perens’ Open Source series.
Prentice Hall.

IEEE (2018). IEEE Standard for Information Technology–
Portable Operating System Interface (POSIX(TM))
Base Specifications, Issue 7. IEEE Std 1003.1-2017
(Revision of IEEE Std 1003.1-2008), pages 1–3951.

ISO (2017). ISO/IEC 14882:2017 Information technology
— Programming languages — C++. pub-ISO, pub-
ISO:adr, fifth edition.

Lagarias, J. C. (1985). The 3x + 1 problem and its gen-
eralizations. The American Mathematical Monthly,
92(1):3–23.

Raynal, M. (2012). Concurrent programming: algorithms,
principles, and foundations. Springer Science & Busi-
ness Media.

Slak, J. and Kosec, G. (2019). On generation of node distri-
butions for meshless PDE discretizations. SIAM Jour-
nal on Scientific Computing, 41(5):A3202–A3229.

ICSOFT 2021 - 16th International Conference on Software Technologies

488


