
A Scalable Bitcoin-based Public Key Certificate Management System

Chloe Tartan1, Craig Wright1, Michaella Pettit2 and Wei Zhang1

1nChain Ltd., London, U.K.
2nChain AG, Zug, Switzerland

Keywords: Bitcoin, Blockchain, Public Key Infrastructure, Certificate Management, Certificate Transparency.

Abstract: The main challenges with traditional public key infrastructures arise from the detection of fraudulent public
key certificates and the timely retrieval of an up-to-date record of revoked certificates. While Certificate
Transparency logs help to detect falsified certificates in circulation, they do not address the prevailing issues
with certificate revocation. Public blockchains such as Bitcoin can be used to create a transparent, tamper-
proof log of events secured by the cryptographic work carried out by nodes in the network. In this paper, we
present a Bitcoin-based certificate management system that exploits the scalability and low-cost features of
its underlying blockchain infrastructure, while preserving user privacy. Based on a feasibility analysis, we
estimate the capability to support 9000 certificate issuances, revocations, or updates per second at a cost of
less than 0.005 USD per event. The immutability and auditability of records stored on the blockchain provides
a universal view of public key certificates. A comparative analysis shows that our solution can significantly
reduce the overhead endured by live certificate status retrievals and offers flexibility in certificate revocation.
The revocation of a public key certificate is as simple as spending a Bitcoin transaction.

1 INTRODUCTION

Public key infrastructure (PKI) underpins the security
of most public key cryptosystems. PKI schemes
typically consist of a certificate authority (CA) that
verifies the identity of a user and signs their public
key certificate. The certificate binds the identity to the
public key. It ensures that the public key used in a
cryptosystem indeed belongs to the expected user.

Traditional PKI models are often centralised with
a hierarchical structure. Certificate logging (Blagov
& Helm, 2020) was introduced to bring more
transparency to the CA process, and has become
mandatory for web PKIs on account of CA
misbehaviour and several security breaches (Van der
Meulen, 2013) (Langley, 2015). Google’s Certificate
Transparency is the most widely deployed public log
of SSL/TLS certificates (Scheitle, et al., 2018). Other
alternatives to PKI include identity-based
cryptography (Boneh & Franklin, 2001) (Boneh,
Lynn, & Shacham, 2001) and certificateless public
key cryptography (Al-Riyami & Paterson, 2003).
Both alternatives require an implementation of a
bilinear map, which is difficult due to its complexity
(Galbraith, Paterson, & Smart, 2008).

One of the most challenging tasks for any PKI
model is certificate revocation, which necessitates the
timely retrieval of up-to-date records of revoked
certificates compounded by the additional effort
required to check any such records. One approach to
handle revocation checks is to consult public
certificate revocation lists (CRLs) (Cooper, et al.,
2008), which are signed by CAs to ensure their
integrity. This creates a significant overhead for
certificate verification while also introducing
potential implementation-related vulnerabilities
(Hoogstraaten, 2012). Some web browsers default to
not checking CRLs in order to gain performance
efficiency (CERT Division, 2001).

Another approach is to use the Online Certificate
Status Protocol (OCSP) (Santesson, et al., 2013) in
which the status of a certificate is maintained on a
dedicated server that facilitates status queries via a
request-response mechanism. OCSP Stapling and
Must-Staple (Wazan, et al., 2020) are extensions that
address network latency and user privacy issues (Zhu,
Amann, & Heidemann, 2016). However, several
major browsers have opted for proprietary revocation
mechanisms e.g., Google’s CRLSets (Langley, 2012)
and Firefox’s CRLite (Larisch, et al., 2017) both of
which crawl CRL servers and certificate logs

548
Tartan, C., Wright, C., Pettit, M. and Zhang, W.
A Scalable Bitcoin-based Public Key Certificate Management System.
DOI: 10.5220/0010556805480559
In Proceedings of the 18th International Conference on Security and Cryptography (SECRYPT 2021), pages 548-559
ISBN: 978-989-758-524-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

periodically to update their list of valid certificates.
While these browsers support traditional OCSP
checks, failure to determine a certificate’s status
within an acceptable timeframe results in a soft-fail
revocation check, where the certificate is accepted by
default when its status is indeterminable. An
adversary can therefore simply suppress the OCSP
response in a denial-of-service (DoS) attack.

In recent years, blockchain technology has offered
a promising future for PKI. The immutability and
transparency of data stored on a blockchain (on-
chain) offers a single source of truth for the PKI
ecosystem, while the consensus mechanism secures
and timestamps the on-chain data. The Certcoin
protocol by Fromknecht, Velicanu, & Yakoubov
(2014) defines a pure blockchain-based PKI that
publicly links identities to public keys in the
Namecoin network, while the work by Axon &
Goldsmith (2017) adapts Certcoin to provide privacy
to its users. However, neither of these methods
propose an adequate solution for the reclamation of
an identity in the case of key compromise (Kubilay,
Kiraz, & Mantar, 2019).

Yakubov, Shbair, Wallbom, Sanda & State (2018)
use Ethereum to design smart contracts that automate
certificate management. While the solution benefits
from the transparency of data stored on a public
blockchain, it is not suitable for large-scale
applications. This is due to the fundamental scaling
limitations arising from Ethereum’s account-based
transactional model, where each user account is
updated sequentially by a generalised state transition
function (Wood, 2014). As a result, large transaction
volumes cause congestion in the network that
translates to higher transaction fees for its users
(Etherscan, 2020). Ethereum-based certificates may
therefore be difficult and expensive to manage.
Applications that require fast processing can instead
be realised with UTXO-based transactional models
(Zhang, Xue, & Liu, 2019) such as Bitcoin, where
parallel processing is supported.

1.1 Our Contributions

In this paper, we propose a Bitcoin-based certificate
management system that can be readily implemented
and addresses ongoing issues with certificate
verification and revocation. We show how a public
key certificate can be published in a Bitcoin
transaction, which allows us to create a link between
a certified public key and a Bitcoin transaction
outpoint. To verify the certificate, a verifier checks
whether the corresponding transaction outpoint is
unspent. To revoke a certificate, one simply spends

the transaction outpoint. The main contributions of
the paper are:

• a low-cost blockchain-based system that can
manage large volumes of certificates,

• a single source of truth for certificates and
their status,

• a transparent and auditable log of
timestamped certificates,

• an immutable record of certificates that is
secure even when keys are compromised,

• a flexible revocation mechanism using
Bitcoin’s Script language that can
accommodate different revocation
requirements and key updates,

• an atomic verification mechanism that
integrates large-value payments and identity
verification into one Bitcoin transaction, and

• an obfuscating technique that preserves user
privacy.

The paper is organised as follows: Section 2
provides an overview of Bitcoin along with relevant
PKI standards and practices. In Section 3, we outline
certificate issuance, revocation, verification, and key
updates, together with the assignment of revocation
rights. In addition, we describe the immutability of
historical records, user privacy and atomic certificate
verification. Section 4 contains empirical data to
show the scalability and low-cost of our solution.
Section 5 provides comparisons with other PKI
solutions, and Section 6 concludes the paper.

2 PRELIMINARIES

This section describes preliminaries on Bitcoin, along
with relevant PKI standards and practices.

2.1 Bitcoin

The Bitcoin blockchain can be viewed as a distributed
platform service that offers scalability, transparency,
immutability, and the availability of data. Data can be
published on the blockchain and retrieved in the form
of Bitcoin transactions. There are different
blockchain implementations with a shared history
tracing back to the original Bitcoin genesis block,
such as Bitcoin Core (BTC), Bitcoin Cash (BCH) and
Bitcoin SV (BSV). When implemented on Bitcoin
SV, the solution in this paper benefits from
scalability, the lowest cost, and data integrity. The
Bitcoin SV protocol offers high transaction
throughput, with over 2000 transactions per second
(tps) on the main net (Blockchair, 2020) and 9000 tps

A Scalable Bitcoin-based Public Key Certificate Management System

549

on the scaling test net (Southurst, 2021). In what
follows we will present the solution in accordance
with the Bitcoin SV protocol for transactions, but it is
understood that it can be easily adapted to any
UTXO-based blockchain. Table 1 shows a simplified
format of a Bitcoin transaction.

Table 1: Bitcoin Transaction Format.

Transaction ID
Version Locktime

Inputs
Outpoint Unlocking Script Sequence

Number

Outputs
Value Locking Script

We would like to highlight a few fields in the
transaction format.

• Outpoint: a concatenation of a transaction
identifier (TxID) and an index that identifies the
output from the previous transaction.

• Unlocking Script: a script that contains data
only (no operational codes). It is combined with
the corresponding locking script for script
execution, which is part of the transaction
validation process. It usually contains a digital
signature and a public key.

• Locking Script: a script that contains the
conditions to spend the output. It usually
contains a hash value check on a public key and
a verification of a signature, which is known as
Pay-To-Public-Key-Hash (P2PKH) script. The
script can also be more complex to
accommodate for more complicated spending
conditions. In addition to its primary
functionality, a locking script can be used as a
data carrier, where a data payload can be
appended to the opcode OP_RETURN.

A transaction outpoint can be either spent or
unspent. The set of unspent transaction outpoints is
called UTXO set. A static UTXO set can be derived
from the history of the blockchain for a given block
height. A live UTXO set also accounts for the
transactions in the mempool (a set of validated
transactions that are to be published on-chain). As a
result, a live UTXO set can vary from one Bitcoin
node to another.

A block consists of a set of Bitcoin transactions
and a block header, which is of a fixed size of 80 bytes

regardless of the number of transactions in that block.
A Merkle tree (Merkle, 1979) is derived from the set
of transactions in a block where the leaves consist of
the transaction identifiers. The Merkle root is then
included in the block header. It provides an efficient
mechanism to prove transaction inclusion. Given a
transaction and its Merkle proof, one can compute the
Merkle root and compare it with the Merkle root in a
block header. If they match, one can be convinced
that the transaction has been validated and the
transaction data has not been tampered with. This
integrity and inclusion proof is referred to as
simplified payment verification (SPV), a terminology
coined in the original Bitcoin white paper. This
lightweight mechanism makes Bitcoin applications
low cost and scalable, since they can ignore other
transactions and only maintain block headers,
application-specific transactions and their Merkle
proofs. As a result, applications built on the Bitcoin
system can operate without hindrance from the ever-
growing size of the blockchain.

The consensus mechanism in Bitcoin is based on
proof of work. Each block header contains a 4-byte
number that allows iterative hashing of the block
header. The goal is to find a hash value that is less
than a set value derived from the difficulty level
specified in the block header. This allows the proof of
work on a block header to be verified independently.
Each block header also contains the previous block
header hash and forms a chain of block headers. To
change a historical block, one must redo the proof of
work on all the following blocks. The earlier the
block, the more proof of work is required to change
it. This results in the immutable nature of historical
data on-chain.

The Bitcoin network consists of Bitcoin nodes,
also loosely known as miners. Their services include,
but are not limited to, transaction validation and
propagation, block construction and publication, and
responding to queries for Merkle proofs and
transaction status. The majority of Bitcoin nodes are
incorporated businesses and can be identified via
coinbase transactions. An initiative to establish miner
IDs led by the Bitcoin SV community allows miners
to build their reputation over time based on proof of
work (nChain, 2020). This brings more transparency
to the network and therefore leads to more overall
trustworthiness.

2.2 Relevant Standards and Practices

In this section, we describe two standards that share
similarities with our solution, namely OCSP Stapling
(Eastlake, 2011) (Pettersen, 2013) and CT logs

SECRYPT 2021 - 18th International Conference on Security and Cryptography

550

(Laurie, Langley, & Kasper, 2013). The high-level
architecture of these two approaches is the same, as
shown in Figure 1.

Figure 1: High-Level Architecture of OCSP Stapling / CT
Logs.

OCSP Stapling describes a way to append or
‘staple’ the short-term status of a certificate to the
certificate itself. The CA signs the certificate status in
the same way that it signs the certificate, both of
which are cached on the web servers frequently.
During certificate checks, OCSP stapling shifts the
onus from the client (browser) to the web server,
mitigating potential breaches of user privacy and
reducing network latency as a result. OCSP Must-
Staple (Hallam-Baker, 2015) is an advancement that
addresses DoS attacks by ensuring that an OCSP
response must be included with a certificate request
for the public key to be deemed valid. However, its
adoption among browsers remains limited.

Certificate transparency (CT) logs are append-
only Merkle trees that provide a public record of
certificates issued by different CA organisations to
support the detection of falsified certificates. While
Google’s CT is the most widely deployed log in the
web PKI ecosystem, any CA can choose to maintain
their own log. It is recommended that CAs also
publish their certificates to third-party logs (Laurie,
Langley, & Kasper, 2013). A central authority
monitors and audits each CA’s log to ensure that the
information is consistent.

A signed certificate timestamp (SCT) is generated
by a CT log when the certificate is submitted for
publication at the point of issuance. The SCT acts as
proof of a certificate’s existence in a log. It is possible
to fetch an SCT using an OCSP request (DigiCert,
2021). While there is no minimum number of proofs
required, Google currently recommends including at
least three such proofs with a certificate to account for
any misinformation arising from compromised or
misbehaving logs (Google, 2013).

The general operation of a CT log is complex and
requires a high degree of availability to fulfil client
requirements. As logs grow, they become more
expensive and difficult to operate (Matsumoto,
Szalachowski, & Perrig, 2015). Temporal sharding
can be used to address these scaling issues by limiting

the date range of CT logs. This results in multiple logs
per CA, each of which is typically limited to one-year
segments (Lynch, 2018). However, increasing the
number of CT logs increases the cost of monitoring
for domains and auditors (Google, 2013).

3 CERTIFICATE MANAGEMENT
ON-CHAIN

The proposed solution aims to address the issues of
certificate revocation in PKI and offers an all-in-one
set of features including transparency, privacy,
auditability, and immutability of historical records.
The high-level architecture of the solution is shown
in Figure 2.

Figure 2: High-Level Architecture of a Bitcoin-Based
Certificate Management System.

Our solution does not require a new blockchain.
It adapts the existing PKI practices and utilises the
Bitcoin network infrastructure. A certificate authority,
say Charlie, connects to the Bitcoin network by
connecting to a Bitcoin node or a group of nodes, say
Natalie. A user, say Alice, submits a certificate
request to Charlie and is issued a certificate in the
form of a Bitcoin transaction. A certificate verifier,
say Bob, queries the Bitcoin network for the status of
the outpoint in the certificate transaction. If it is
unspent, then the certificate is valid. Otherwise, it is
invalid. All certificates and their change of status are
recorded in Bitcoin transactions and published on the
blockchain for transparency and auditability. The
verification of certificates requires interactions with
the Bitcoin network.

The detail of the process is described in the next
section, followed by other features and extensions
such as flexibility in revocation, immutability of
historical records, privacy enhancements, and atomic
certificate verification.

3.1 Certificate Life Cycle

In this section, we describe how to issue, revoke,
update and verify certificates using Bitcoin
transactions. The mechanisms can be applied to any
certificate type that links an identity to a public key.

A Scalable Bitcoin-based Public Key Certificate Management System

551

3.1.1 Issuance

Alice submits a certificate request to the CA, Charlie.
After verifying Alice’s identity, Charlie creates a
Bitcoin transaction that can be viewed as a certificate
for Alice’s public key.

Table 2 shows an example of a certificate issuance
transaction. Charlie assigns 𝑥 satoshis to himself
(𝑃𝐾஼) from the outpoint 𝑇𝑥𝐼𝐷଴||0 and embeds an
issuance message for 𝑃𝐾஺ as an OP_RETURN data
payload. This OP_RETURN does not invalidate the
script in accordance with the Bitcoin SV
implementation (Bitcoin SV, 2021).

Table 3 shows an example of the issuance
message format. Note that the data payload can be an
X.509 V3 certificate in its entirety, which would
provide great interoperability. It also can be of any
other format, e.g., OpenPGP (Callas, Donnerhacke,
Finney, Shaw, & Thayer, 2007). In the extension
field, Charlie adds some identification evidence,
which can be the hash digest of documents that Alice
has provided to verify her identity. This would be
used to prove that Charlie has conducted the
identification due diligently.

Table 2: Certificate Issuance Transaction. 𝑇𝑥𝐼𝐷ଵ
Version 1 Locktime 0

Inputs
Outpoint Unlocking Script Sequence

Number𝑇𝑥𝐼𝐷଴||0 <𝑆𝐼𝐺஼> <𝑃𝐾஼> 0xFFFFFFFF
Outputs

Value Locking Script 𝑥 OP_DUP OP_HASH160
<𝐻(𝑃𝐾஼)> OP_EQUALVERIFY
OP_CHECKSIG OP_RETURN
<Issuance Message 𝑃𝐾஺>
Table 3: Issuance Message.

Message Type Issuance
Issuer Name Charlie
Subject Name Alice
Subject Public Key 𝑃𝐾஺
Subject Public Key Algorithm ECDSA
Extensions (optional) Identification

Evidence

The digital signature (𝑆𝐼𝐺஼, 𝑃𝐾஼) from Charlie in
the unlocking script not only signs the transaction but
also attests to the issuance message for 𝑃𝐾஺ as it is

part of the signed message. This implies that there is
no need to include an explicit signature in the
issuance message.

Charlie then sends the transaction to the Bitcoin
node Natalie for publication to the blockchain.
Charlie can wait for the next block to be published
before passing on the transaction to Alice as her
public key certificate. This often takes around ten
minutes, occasionally more. However, Bitcoin nodes
can implement an API (nChain, 2021) that allows
users to request for instant confirmation of the
acceptance of their transactions. Nodes with this
capability are the ideal candidates to connect to.

The transaction 𝑇𝑥𝐼𝐷ଵ effectively binds the
validity of the certificate of public key 𝑃𝐾஺ to the
Bitcoin outpoint 𝑇𝑥𝐼𝐷ଵ||0 . If 𝑇𝑥𝐼𝐷ଵ||0 is unspent,
then 𝑃𝐾஺ is a valid public key that belongs to Alice.

As Bitcoin transactions allow a large number of
outputs, Charlie can combine multiple issuances into
one issuance transaction. Each certificate can be
independently identified by the transaction outpoint.
The “Locktime” and “Sequence Number” can be used
to schedule the issuance of certificates (Bitcoin SV,
2021). Both batching and scheduling mechanisms are
also applicable to both revocation and key updates.

3.1.2 Revocation

In the case that the certificate corresponding to
Alice’s public key 𝑃𝐾஺ needs to be revoked, Charlie
can spend 𝑇𝑥𝐼𝐷ଵ||0 to invalidate the certificate.
Charlie creates a Bitcoin transaction as shown in
Table 4. Charlie assigns 𝑥ᇱ satoshis to himself (𝑃𝐾஼)
from the outpoint 𝑇𝑥𝐼𝐷ଵ||0 whose spending status is
tied to the validity of the certificate on 𝑃𝐾஺. Charlie
also embeds a revocation message in the output as the
OP_RETURN data payload. The revocation message
may take the format in the example shown in Table 5.

Table 4: Certificate Revocation Transaction. 𝑇𝑥𝐼𝐷ଶ
Version 1 Locktime 0

Inputs
Outpoint Unlocking Script Sequence

Number𝑇𝑥𝐼𝐷ଵ||0 <𝑆𝐼𝐺஼ᇱ> <𝑃𝐾஼> 0xFFFFFFFF
Outputs

Value Locking Script 𝑥ᇱ OP_DUP OP_HASH160
<𝐻(𝑃𝐾஼)> OP_EQUALVERIFY
OP_CHECKSIG OP_RETURN
<Revocation Message>

SECRYPT 2021 - 18th International Conference on Security and Cryptography

552

Table 5: Revocation Message Example.

Revocation Message
Issuer Name Charlie
Reason for Revocation Key Compromised
Extension (optional)

Note that it is not critical to include 𝑃𝐾஺ in 𝑇𝑥𝐼𝐷ଶ , since the revocation transaction is not for
users to check. The purpose of this transaction is to
ensure that any check on the certificate transaction
fails, as the validity of the certificate is bonded to the
spending status of the certificate transaction outpoint.
However, the data payload may be an X.509 V2
revocation message to provide interoperability. While
it is more informative and auditable to include a
revocation message, the absence of one also works.

Charlie signs the revocation transaction and sends
it to the Bitcoin node Natalie. When Charlie obtains a
confirmation from Natalie, it can be viewed as a
confirmation that the revocation is successful. As for
certificate issuance, this can take around 10 minutes
and occasionally more, while it would take a matter
of seconds or less if Natalie has implemented an API
that offers instant confirmations.

3.1.3 Update

It is good practice to update cryptographic keys
regularly and is a necessity if they are compromised
or lost. An ideal key update mechanism would be low
cost and take effect in a short time. In our solution,
key updates are done by combining revocation and
issuance into a single Bitcoin transaction. Suppose
Alice needs to update her public key 𝑃𝐾஺ to 𝑃𝐾஺ᇱ ,
Charlie spends the certificate transaction outpoint for 𝑃𝐾஺ to create a certificate transaction for 𝑃𝐾஺ᇱ as
shown in Table 6.

Table 6: Certificate Update Transaction. 𝑇𝑥𝐼𝐷ଷ
Version 1 Locktime 0

Inputs
Outpoint Unlocking Script Sequence

Number𝑇𝑥𝐼𝐷ଵ||0 <𝑆𝐼𝐺஼ᇱ> <𝑃𝐾஼> 0xFFFFFFFF
Outputs

Value Locking Script 𝑥ᇱ OP_DUP OP_HASH160
<𝐻(𝑃𝐾஼)> OP_EQUALVERIFY
OP_CHECKSIG OP_RETURN
<Update Message 𝑃𝐾஺ᇱ>

The update message in the output can take the format
shown in Table 7, and for interoperability, an X.509
V3 certificate can be used as an alternative.

Table 7: Updated Public Key Data Payload.

Certificate for 𝑃𝐾஺
Issuer Name Charlie
Subject Name Alice
Subject Public Key 𝑃𝐾஺ᇱ
Subject Public Key Algorithm ECDSA
Extension (optional) 𝑃𝐾஺ updated

Note that we do not need to have an explicit output
to represent revocation. It is the action of spending 𝑇𝑥𝐼𝐷ଵ||0 that invalidates the certificate. On the other
hand, spending 𝑇𝑥𝐼𝐷ଵ||0 requires Charlie’s signature,
which implies that it can be used as an input to issue
a new certificate as described in Section 3.1.1. In this
case, the output can be utilised to represent the
issuance of the certificate for 𝑃𝐾஺ᇱ .

Charlie signs the transaction and sends it to the
Bitcoin node Natalie. After receiving confirmation
from Natalie, Charlie passes on 𝑇𝑥𝐼𝐷ଷ to Alice as the
new certificate reference for her public key 𝑃𝐾஺ᇱ . If
Natalie offers instant confirmation service, then the
key update can take effect immediately.

3.1.4 Verification

To verify the certificate of Alice’s public key, Bob
needs to conduct three checks:

1. the integrity of the transaction data,
2. the relevant information embedded in the

transaction data, and
3. the status of the transaction outpoint.

Bob can either obtain the transaction data and its
Merkle proof from Alice or retrieve both from the
Bitcoin network by referencing the transaction ID 𝑇𝑥𝐼𝐷ଵ . Bob must have an up-to-date copy of the
block headers to verify the Merkle proof and ensure
the integrity of the transaction data. Any attempt to
modify the data will invalidate the Merkle proof.

After being convinced that the transaction data
has not been tampered with, Bob parses the data to
read the locking script and the unlocking script. The
locking script should contain a data payload
indicating that the public key 𝑃𝐾஺ belongs to Alice
and is certified by Charlie.

The unlocking script should contain Charlie’s
public key 𝑃𝐾஼. We assume that 𝑃𝐾஼ is certified in
the same way as 𝑃𝐾஺. If Charlie is a root CA or a
subordinate CA, Bob may conduct regular checks on
the certificate of 𝑃𝐾஼ instead of every time it appears

A Scalable Bitcoin-based Public Key Certificate Management System

553

in an unlocking script. In this case, we assume that
Bob has a list of trusted certified public keys to look
up 𝑃𝐾஼ . Otherwise, Bob must conduct the same
verification on the certificate of 𝑃𝐾஼ and follow the
chain of certificates until he reaches a certified public
key that is on his list. One criterion for a certificate to
be maintained in the trusted list can be its expected
lifetime, for example, at least 10 years (IdenTrust
Services, 2021).

The last step is for Bob to query the Bitcoin
network on whether the certificate transaction
outpoint is unspent. In this step, we assume that
Bitcoin nodes are trusted. More precisely, we assume
that their response to the query is genuine and
authenticated. The assumption is particularly
important when the response is unspent. Verifying
whether a transaction outpoint is spent involves
pinpointing the spending transaction and verifying its
validity, which is relatively easy. Verifying that a
transaction is unspent would require verifying all
transactions that come after it, which is far more
computationally costly for users. Nevertheless,
knowing that there is a way to check their response, it
is reasonable to assume that Bitcoin nodes are honest
and trusted.

Bob can either make a static query or a live query.
A static query is to ask for the status of the outpoint
at a time in the past, either using block height or date
and time. As the response is based on the published
blocks, a static query can be made to any Bitcoin
node. A live query reflects the status in a timely
manner. In addition to published transactions, it takes
the transactions that are validated and have not yet
published into account. It is available if Bob connects
to one of the Bitcoin nodes to which Charlie connects.

For Bob, a live query would generally be
preferred as it provides the real-time status of the
certificate. There are scenarios, such as auditing
historical usage of certificates, where static queries
may be more appropriate.

For Natalie, responding to a live query is more
costly since it requires a snapshot of the dynamic
UTXO set that is continuously updated by incoming
transactions, while responding to a static query only
requires a look up on a static data set.

For Charlie, connecting to multiple Bitcoin nodes
in different geolocations and sending the transactions
to each of them simultaneously would reduce the
latency of transaction propagation in the Bitcoin
network. This would allow Bob to have a wider
choice of Bitcoin nodes to connect to, which would
be especially useful if Bob has limited access to
Bitcoin nodes. Charlie may choose to shift the extra
cost to Alice as an optional feature. However, any

business model for Alice, Charlie or Natalie is beyond
the scope of this paper.

3.2 Rights to Revoke

As described in Section 3.1.2, revoking a certificate
for a public key is achieved by spending a transaction
outpoint. The right to spend the transaction outpoint
gives the right to revoke the certificate. The locking
script in a Bitcoin transaction can accommodate
different spending conditions and therefore different
revoking requirements.

As of now, we assume that the CA Charlie can
revoke certificates. This reflects the current setup in a
general PKI model. However, the locking script can
be adapted to allow any designated entity to revoke
the certificate. For example, by replacing the hash
value 𝐻(𝑃𝐾஼) with 𝐻(𝑃𝐾஺) in the output of the
certificate issuance transaction shown in Table 2,
Charlie effectively assigns Alice the right to revoke
her own certificate. This is advantageous when Alice
needs to revoke the certificate of her public key
because her private key has been compromised. She
does not have to communicate with Charlie and wait
for his response to her revocation request. She can
spend the certificate transaction outpoint immediately
to revoke her public key certificate.

On the other hand, Charlie may want to revoke
Alice’s public key on account of misbehaviour. To
accommodate both requirements, a 1-out-of-2 multi-
signature can be used, in which case either Alice’s
signature or Charlie’s signature will be able to spend
the outpoint. An example locking script can be
constructed as:

OP_DUP OP_HASH160 OP_DUP
<H(PK_A)> OP_EQUAL
OP_IF
 OP_DROP
OP_ELSE
 <H(PK_C)> OP_EQUALVERIFY
OP_ENDIF
OP_CHECKSIG
OP_RETURN
<Issuance Certificate PK_A>.

This can be generalised further to 𝑚 -out-of-𝑛

scenarios for any integer 𝑚 ≥ 1 and 𝑛 ≥ 2. If 𝑚 ≥ 2,
ECDSA threshold signature schemes (Gennaro &
Goldfeder, 2018) can be used, in which case the
locking script would have the same format as in Table
2 with a single public key hash. Multi-party
revocation is useful in increasing the robustness of the
revocation mechanism. For example, a regulatory
body can be introduced as part of a 2-out-of-3

SECRYPT 2021 - 18th International Conference on Security and Cryptography

554

revocation scheme. In this case, Charlie cannot
unilaterally decide on Alice’s misuse of her public
key. He requires approval from the regulatory body in
order to revoke Alice’s public key.

3.3 Mitigating Compromised CAs

When a CA is compromised, it may require revoking
all the certificates issued by that entity. This can be
done by spending all the certificate transactions
originating from the CA. In Section 4, we show how
the Bitcoin network has the capability to handle this
scale of large volume transactions in a relatively short
timeframe. On the other hand, if the verification of
the certificate of the compromised CA can be
triggered remotely, then spending the corresponding
certificate transaction outpoint would serve the
purpose of revoking all certificates issued by the CA.

Another feature offered by our solution is the
integrity of the historical records even after the
private key of a CA is compromised. In traditional
PKI, when the private key of a CA is compromised,
actions can be taken to prevent any new certificate
from being issued. However, it is possible for the
attacker to use the private key to create a certificate
that would be deemed valid in the past. Because of
this possibility, the entire history of certificates from
that CA becomes non-trustworthy. The damage done
to the historical record becomes irreversible. This
problem does not exist with our solution. As all the
certificates and their status are recorded on the
blockchain, any changes made to the history would
require redoing all the proof of work, which is
economically inviable and computationally infeasible.

3.4 User Privacy

The privacy issue with OCSP stems from the fact that
a user’s browsing history is exposed by their
certificate status queries, since all the queries are
directed at the OCSP server instead of each individual
web server. OCSP Staple solves the problem by
shifting the burden of status queries to the CA and
back to the web servers. Our solution can adopt the
same approach to protect user privacy. In our case,
the Bitcoin network replaces the OCSP server. Only
the CA interacts with the Bitcoin network, and the
transaction statuses are signed and passed on to the
web servers with a limited lifetime. While this
approach offers great interoperability, it does not
utilise the benefits of our revocation mechanism.

An alternative approach is to hide the link
between a certificate and the corresponding
transaction outpoint by using a cryptographic hash

function. Charlie can replace the issuance message in
the certificate transaction with a hash value derived
from the message. Both Alice and Charlie can keep a
copy of the issuance message. When Bob makes a
query to the Bitcoin node Natalie, Natalie would not
be able to identify which certificate the query is about.

By obtaining the issuance message from Alice,
Bob can verify its integrity by checking whether the
message leads to the same hash value in the certificate
transaction. To enhance user privacy, the certificate
can be updated frequently, preventing any traffic
analysis that attempts to establish the hidden link.
When updating the certificate, the CA could combine
the revocation of a certificate of one entity with the
issuance of a certificate of another as well as
combining several updates into one transaction. This
would further obfuscate the link between a certificate
and its transaction outpoint. Note that recording hash
values on-chain represents a series of certificate
events that cannot be altered, and the transparency of
these commitment-like records ensures that our
solution facilitates trustworthy auditing.

3.5 Atomic Certificate Verification

In Section 3.1.4, we assume that Bitcoin nodes are
trusted in the sense that their response to a query on
whether a transaction is unspent is genuine and
authenticated. This assumption can in fact be omitted
by designing each certificate to be single use whereby
we attempt to “spend the certificate” instead of
querying the Bitcoin nodes for a spending status.

A transaction outpoint can be spent only if it is
unspent. If the accepted validity of a certificate leads
to an action, for example, accepting a payment, then
that action will be executed at the same time as the
verification of the certificate, thereby making the
exchange atomic. This verification mechanism
implies that the certificate can only be verified once,
but multiple certificates for the same identity can be
issued and combined into the same transaction.

This solution integrates with the Bitcoin system at
its protocol level by utilising the double spending
prevention mechanism for certificate verification.
The trust on the Bitcoin system can be inherited by
the certificates. As a result, an atomic solution may
not be practical for certificates with high verification
demands, i.e., domain certificates, but could be of use
for secure user identification in online payments.

Consider as an example that Bob would like to
make an online payment to Alice for purchasing an
item that is of large value. To comply with AML5
(Council of EU, 2018), Alice must verify Bob’s
identity. Alice can require that the payment

A Scalable Bitcoin-based Public Key Certificate Management System

555

transaction includes a transaction outpoint
corresponding to Bob’s public key certificate that
represents his identity. If the transaction is accepted
by the Bitcoin network, then Alice knows that Bob’s
certificate is valid at the time of payment.

Let us assume that Bob has a certificate outpoint 𝑇𝑥𝐼𝐷஻||0 that can be spent by either Bob or the issuer
Charlie (Section 3.2). He also has an unspent outpoint
containing the funds for payment in 𝑇𝑥𝐼𝐷௙௨௡ௗ||0 .
Bob creates a transaction that spends one of the
outpoints in his certificate transaction. He also
includes an input that enables payment to be given to
Alice. He sends the transaction shown in Table 8 to
Alice together with 𝑇𝑥𝐼𝐷஻.

Table 8: Atomic Verification Transaction. 𝑇𝑥𝐼𝐷஺஻
Version 1 Locktime 0

Inputs
Outpoint Unlocking Script Sequence

Number𝑇𝑥𝐼𝐷௙௨௡ௗ||0 <𝑆𝐼𝐺஻> <𝑃𝐾஻> 0xFFFFFFFF 𝑇𝑥𝐼𝐷஻||0 <𝑆𝐼𝐺஻> <𝑃𝐾஻> 0xFFFFFFFF
Outputs

Value Locking Script 𝑥 OP_DUP OP_HASH160
<𝐻(𝑃𝐾஺)> OP_EQUALVERIFY
OP_CHECKSIG

Upon receiving 𝑇𝑥𝐼𝐷஺஻ and 𝑇𝑥𝐼𝐷஻ from Bob,
Alice checks that 𝑇𝑥𝐼𝐷஻ indeed contains Charlie’s
signature and Bob’s public key. She then sends 𝑇𝑥𝐼𝐷஺஻ to the Bitcoin node Natalie. After receiving
confirmation from Natalie, Alice is convinced that
Bob’s certificate is valid, and she has been paid. The
compliance of the regulation and the acceptance of
payment are integrated into one action, which is the
validation of the transaction by the Bitcoin nodes.
This offers Alice a significant computational saving.

4 FEASIBILITY ANALYSIS

In general, one of the main issues with blockchain-
based solutions relates to high transaction fees. A
justification for choosing Bitcoin SV arises from its
extremely low transaction cost. As shown in Figure 3
(Blockchair, 2021), the average fee per Bitcoin SV
transaction has been much lower than 0.005 USD
since October 2019. According to the Bitcoin SV
(2021) node implementation, nodes can configure the

minimal acceptance and relay fee rates themselves,
which is currently set to 0.5 satoshi per byte and 0.25
satoshi per byte, respectively. Assuming a certificate
transaction 1000 bytes in size and a price of 200 USD
for 1 BSV, the transaction fee to issue a certificate is
roughly 0.001 USD. Note that 1 BSV is 10଼ satoshis.
The cost goes up linearly with the price of BSV, but
even at a price of 10,000 USD for 1 BSV, the cost of
issuing a certificate is under 0.05 USD. Note that the
price for an SSL/TLS certificate can range from
around 10 USD to over 300 USD per year.

Figure 3: Average Transaction Fee in USD for Bitcoin SV.

In addition to low transaction fees, the blockchain
also offers high transaction throughput via bigger
block sizes. The estimated capability is 2GB per
block (Southurst, 2021) at the time of writing, which
equates to 9,000 transactions per second. It would
take only one week to issue 4 billion certificates on
the blockchain, which is the number of certificates
currently included in Google (2021) CT logs.

Bitcoin as a blockchain is subject to
reorganisation, which is triggered when more than
one Bitcoin node finds a valid block around the same
time. Our solution does not rely on any consensus to
be reached on the most up-to-date chain tip or block
headers, but on the perspective of the Bitcoin nodes
that both the CA and certificate verifier are connected
to. Provided those Bitcoin nodes as a group remain
honest and share the same view of the status of
certificate transactions among themselves, then
reorganisation will have no impact on our solution.

Taking advantage of the scalability and low cost
offered by Bitcoin SV means that our certificate
management system can be readily implemented.

5 COMPARATIVE ANALYSIS

In this section, we analyse two different PKI solutions
to frame the comparative advantages and
disadvantages of our system. We confine each

SECRYPT 2021 - 18th International Conference on Security and Cryptography

556

discussion to the features of our solution with
reference to a given benchmark solution.

In our first analysis, we choose the scheme
proposed by Yakubov, Shbair, Wallbom, Sanda, &
State (2018) as our benchmark blockchain-based PKI
since it explicitly supports certificate revocation. The
authors propose a PKI management framework that
uses Ethereum smart contracts for the registration,
verification, and revocation of on-chain X.509 (v3)
certificates. As with our solution, the framework
takes advantage of an existing network infrastructure
that makes it readily implementable and uses a
permissionless ledger that is secured by large-scale
networks of nodes. However, the Ethereum
blockchain upon which Yakubov et al.’s framework
is implemented cannot support the level of scalability
needed for a large volume of certificate transactions
as demonstrated by our chosen Bitcoin
implementation. The transaction fees are also higher
in the Ethereum network. The authors quote a 70
USD fee to publish a CA-issued certificate on-chain,
which is significantly more expensive than our
estimated cost of under 0.005 USD per certificate.

An in-depth analysis by Kubilay, Kiraz, & Mantar
(2020) reveals several privacy and security issues in
Yakubov et al.’s proposal, highlighting a critical
security flaw with their revocation scheme in the case
that a CA is compromised or corrupted. The
flexibility of our solution means that revocation is not
constrained by CAs, since our users can be bestowed
with the rights to revoke their own certificates.

Our second analysis uses log-based PKIs
(Matsumoto, Szalachowski, & Perrig, 2015) as a
benchmark for certificate transparency. There are
several notable similarities between our solution and
CT logs. Both architectures are inherently distributed.
Both solutions bring transparency to the CA process
by creating a publicly verifiable store of issued
certificates. Both solutions use cryptographically
secure hash functions to create an append-only,
tamper-proof record of certificates.

The necessity to provide multiple proofs (i.e.,
SCTs) highlights that a CT log alone does not
represent a single source of truth. Using our system,
certificates are timestamped and stored on a unified
distributed data set that acts as a single source of truth
since it is securely backed by proof of work. Our
solution addresses the longstanding issue of
certificate revocation, while log-based PKIs do not
handle revocation themselves (Google, 2013).

Although the transparency of both solutions
disincentives misbehaving or compromised CAs, it
does not prevent the production of fraudulent
certificates. Thus, auditing and monitoring is

necessary for both solutions. However, this cost
could be minimised using our system by publishing
certificates on a unified blockchain database instead
of in multiple logs. CAs could reduce the burden of
running their own CT logs by exploiting the existing
and reliable network of densely connected Bitcoin
nodes. Our low-cost solution also meets the scaling
requirements of unbounded certificate logs without
any added complexity and the creation of data silos
i.e., via temporal sharding (Lynch, 2018).

The comparison table below summarises our
findings for each analysis. For brevity, ‘Y’ refers to
Yakubov et al.’s scheme; ‘L’ refers to log-based
PKIs; and ‘B’ represents our Bitcoin-based certificate
management solution.

Table 9: A Comparative Analysis of our System.

PKI Solution Y L B
Public/Permissionless   
Economies of Scale   
User Privacy   
Certificate Transparency   
Single Source of Truth   
Immutability of History   
Revocation Mechanism   
Flexible Revocation Rights   
Key Update Mechanism   
Atomic Certificate Verification   

6 CONCLUSIONS

In this paper, we have proposed a Bitcoin-based
certificate management system that addresses
ongoing issues with certificate revocation in PKI and
preserves the features of existing solutions that
support transparency and user privacy. Our solution
can be readily implemented on Bitcoin SV, a scalable
and low-cost implementation of the Bitcoin protocol,
while maintaining a high degree of compatibility with
established PKI models. It offers a single source of
truth with transparency of public key certificates,
their status, and their event logs. The distributed
nature of the blockchain offers availability of the
data; the proof of work consensus mechanism secures
the immutability of the data; and the data structure of
the blockchain supports third-party audits of the
certificate logs. Our solution can achieve instant
revocation under the assumption that both the
certifying entity and the certificate verifying entity
connect to the same Bitcoin node or group of nodes.
While the assumption that Bitcoin nodes are trusted
offers a general certificate verification mechanism, an

A Scalable Bitcoin-based Public Key Certificate Management System

557

atomic verification mechanism integrated with the
Bitcoin system at the protocol level inherits the trust
from the system. The limitation that a certificate can
only be verified once is mitigated by having multiple
outpoints representing the same certificate.

The commonalities between a certificate
management system and the Bitcoin system allow us
to delegate a significant amount of work to the
Bitcoin system and achieve great savings for the
certificate management system. The extra gain is the
security that is induced by the proof of work, which
prevents the history from being malleated even when
CA’s private key is compromised.

ACKNOWLEDGEMENTS

The authors would like to thank K. Molloy, M. S.
Kiraz and O. Vaughan for their invaluable
contributions to the paper. In addition, the authors
gratefully acknowledge the reviewers of the
SECRYPT conference for their insightful feedback.
C. Tartan would like to thank T. Tartan and E. Parry
for the fruitful discussions. W. Zhang would like to
thank J. Zhang and A. Zhu for their sweet support.

REFERENCES

Al-Riyami, S. S., & Paterson, K. G. (2003). Certificateless
Public Key Cryptography. International Conference on
the Theory and Application of Cryptology and
Information Security (pp. 452-473). Springer.

Axon, L., & Goldsmith, M. (2017). PB-PKI: A Privacy-
Aware Blockchain-Based PKI. Proceedings of the 14th
International Joint Conference on e-Business and
Telecommunications (pp. 311-318). SECRYPT.

Bitcoin SV. (2021). Bitcoin SV node software. Retrieved
from Github: https://github.com/bitcoin-sv/bitcoin-sv

Blagov, N., & Helm, M. (2020). State of the Certificate
Transparency Ecosystem. Network Architectures and
Services, 43-48.

Blockchair. (2020). Bitcoin SV block with over 1.3 millions
transactions. Retrieved from Blockchair:
https://blockchair.com/bitcoin-sv/block/635141

Blockchair. (2021). Bitcoin SV Average Transaction Fee.
Retrieved from Blockchair: https://blockchair.com/
bitcoin-sv/charts/average-transaction-fee-usd

Boneh, D., & Franklin, M. (2001). Identity-Based
Encryption from the Weil Pairing. Annual International
Cryptology Conference (pp. 213-229). Springer.

Boneh, D., Lynn, B., & Shacham, H. (2001). Short
Signatures from the Weil Pairing. International
Conference on the Theory and Application of
Cryptology and Information Security (pp. 514-532).
Springer.

Callas, J., Donnerhacke, L., Finney, H., Shaw, D., &
Thayer, R. (2007, November). RFC 4880: OpenPGP
Message Format. Retrieved from Request for
Comments. IETF.: https://tools.ietf.org/html/rfc4880

CERT Division. (2001). 2001 CERT Advisories. Software
Engineering Institute, Carnegie Mellon University.
Retrieved from https://resources.sei.cmu.edu/
asset_files/WhitePaper/2001_019_001_496192.pdf

Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley,
R., & Polk, W. T. (2008, May). RFC 5280: Internet
X.509 Public Key Infrastructure Certificate and
Certificate Revocation List (CRL) Profile. Retrieved
from Request for Comments. IETF.:
https://tools.ietf.org/html/rfc5280

Council of EU. (2018). Factsheet - 5th Anti Money
Laundering Directive . Retrieved from Official Website
of European Union: https://ec.europa.eu/info/files/
factsheet-main-changes-5th-anti-money-laundering-
directive_en

DigiCert. (2021). SCT Delivery. Retrieved from Certificate
Transparency: https://www.digicert.com/faq/
certificate-transparency/enabling-ct.htm

Eastlake, D. 3. (2011, January). RFC 6066: Transport
Layer Security (TLS) Extensions: Extension
Definitions. Retrieved from Request for Comments.
IETF.: https://tools.ietf.org/html/rfc6066

Etherscan. (2020). Ethereum Average Gas Price Chart.
Retrieved from Etherscan: https://etherscan.io/
chart/gasprice

Fromknecht, C., Velicanu, D., & Yakoubov, S. (2014,
May). CertCoin: A NameCoin Based Decentralized
Authentication System. Retrieved from Technical
Report MIT: https://courses.csail.mit.edu/6.857/
2014/files/19-fromknecht-velicann-yakoubov-
certcoin.pdf

Galbraith, S., Paterson, K., & Smart, N. (2008). Pairings for
Cryptographers. Discrete Appl. Math. 156 (16), 3113-
3121.

Gennaro, R., & Goldfeder, S. (2018). Fast Multiparty
Threshold ECDSA with Fast Trustless Setup.
Conference on Computer and Communications
Security (pp. 1179-1194). ACM SIGSAC.

Google. (2013). Retrieved from Certificate Transparency:
https://sites.google.com/site/certificatetransparency/

Google. (2021). Working together to detect maliciously or
mistakenly issued certificates. Retrieved from
Certificate Transparency: https://certificate.
transparency.dev/

Hallam-Baker, P. (2015, October). RFC 7633: X.509v3
Transport Layer Security (TLS) Feature Extension.
Retrieved from Request for Comments. IETF.:
https://tools.ietf.org/html/rfc7633

Hoogstraaten, H. (2012). Black Tulip Report of the
investigation into the DigiNotar Certificate . Technical
Report. Fox-IT BV.

IdenTrust Services. (2021, March). IdenTrust Global
Common Certificate Policy. Page 91. Retrieved from
https://www.identrust.com/sites/default/files/resources
/IGC-CP-v1.5.3_03012021.pdf

Kubilay, M. Y., Kiraz, M. S., & Mantar, H. A. (2019).

SECRYPT 2021 - 18th International Conference on Security and Cryptography

558

CertLedger: A New PKI model with Certificate
Transparency Based on Blockchain. Computers and
Security, 85, 333–352.

Kubilay, M. Y., Kiraz, M. S., & Mantar, H. A. (2020).
KORGAN: An Efficient PKI Architecture Based on
PBFT Through Dynamic Threshold Signatures. The
Computer Journal, 1-23.

Langley, A. (2012, January). CRL Set Tools. Retrieved
from GitHub: https://github.com/agl/crlset-tools

Langley, A. (2015, March). Maintaining digital certificate
security. Retrieved from Google Security Blog:
https://security.googleblog.com/2015/03/maintaining-
digital-certificate-security.html

Larisch, J., Choffnes, D., Levin, D., Maggs, B. M., Mislove,
A., & Wilson, C. (2017). CRLite: A Scalable System
for Pushing All TLS Revocations to All Browsers. 2017
IEEE Symposium on Security and Privacy (SP) (pp.
539-556). IEEE.

Laurie, B., Langley, A., & Kasper, E. (2013, June). RFC
6962: Certificate Transparency. Retrieved from
Request for Comments. IETF.: https://tools.ietf.org/
html/rfc6962

Lynch, V. (2018, April). Scaling CT Logs: Temporal
Sharding. Retrieved from DigiCert: https://www.
digicert.com/dc/blog/scaling-certificate-transparency-
logs-temporal-sharding/

Matsumoto, S., Szalachowski, P., & Perrig, A. (2015).
Deployment Challenges in Log-Based PKI
Enhancements. Proceedings of the Eighth European
Workshop on System Security (pp. 1-7). ACM.

Merkle, R. C. (1979). US Patent No. US4309569A.
nChain. (2020). BRFC-Miner ID. Retrieved from Bitcoin

SV Specs: https://github.com/bitcoin-sv-specs/brfc-
minerid

nChain. (2021). BRFC-mAPI. Retrieved from Bitcoin SV
Specs: https://github.com/bitcoin-sv-specs/brfc-
merchantapi

Pettersen, Y. (2013, June). RFC 6961: The Transport Layer
Security (TLS) Multiple Certificate Status Request
Extension. Retrieved from Request for Comments.
IETF.: https://tools.ietf.org/html/rfc6961

Santesson, S., Myers, M., Ankney, R., Malpani, A.,
Galperin, S., & Adams, C. (2013, June). X.509 Internet
Public Key Infrastructure Online Certificate Status
Protocol - OCSP. Retrieved from Request for
Comments. IETF.: https://tools.ietf.org/html/rfc6960

Scheitle, Q., Gasser, O., Nolte, T., Amann, J., Brent, L.,
Carle, G., Wählisch, M. (2018). The Rise of Certificate
Transparency and Its Implications on the Internet
Ecosystem. Internet Measurement Conference (pp.
343-349). Boston: ACM SIGCOMM.

Southurst, J. (2021, January). Interview with Brad
Kristensen. Retrieved from CoinGeek:
https://coingeek.com/its-over-9000-tps-bitcoin-sv-hits-
new-transactions-per-second-record/

Van der Meulen, N. (2013). DigiNotar: Dissecting the First
Dutch Digital Disaster. Journal of Strategic Security,
6(2), 46-58.

Wazan, A. S., Laborde, R., Chadwick, D., Venant, R.,
Benzekri, A., Billoir, E., & Alfandi, O. (2020). On the

Validation of Web X. 509 Certificates by TLS
Interception Products. IEEE Transactions on
Dependable and Secure Computing, 1-1.

Wilson, D., & Ateniese, G. (2015). From Pretty Good to
Great: Enhancing PGP using Bitcoin and the
Blockchain. International Conference on Network and
System Security (pp. 368–375). Springer.

Wood, G. (2014). Ethereum: A Secure Decentralised
Generalised Transaction Ledger Petersburg. Retrieved
from https://ethereum.github.io/yellowpaper/paper.pdf

Yakubov, A., Shbair, W. M., Wallbom, A., Sanda, D., &
State, R. (2018). A Blockchain-Based PKI
Management Framework. The First IEEE/IFIP
International Workshop on Managing and Managed by
Blockchain (Man2Block) colocated with IEEE/IFIP
NOMS (pp. 1-6). IEEE.

Zhang, R., Xue, R., & Liu, L. (2019). Security and Privacy
on Blockchain. ACM Computing Surveys, 52(3), 1-34.

Zhu, L., Amann, J., & Heidemann, J. (2016). Measuring the
Latency and Pervasiveness of TLS Certificate
Revocation. International Conference on Passive and
Active Network Measurement (pp. 16-29). Springer.

A Scalable Bitcoin-based Public Key Certificate Management System

559

