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Abstract: The main challenges with traditional public key infrastructures arise from the detection of fraudulent public 
key certificates and the timely retrieval of an up-to-date record of revoked certificates. While Certificate 
Transparency logs help to detect falsified certificates in circulation, they do not address the prevailing issues 
with certificate revocation. Public blockchains such as Bitcoin can be used to create a transparent, tamper-
proof log of events secured by the cryptographic work carried out by nodes in the network. In this paper, we 
present a Bitcoin-based certificate management system that exploits the scalability and low-cost features of 
its underlying blockchain infrastructure, while preserving user privacy. Based on a feasibility analysis, we 
estimate the capability to support 9000 certificate issuances, revocations, or updates per second at a cost of 
less than 0.005 USD per event. The immutability and auditability of records stored on the blockchain provides 
a universal view of public key certificates. A comparative analysis shows that our solution can significantly 
reduce the overhead endured by live certificate status retrievals and offers flexibility in certificate revocation. 
The revocation of a public key certificate is as simple as spending a Bitcoin transaction. 

1 INTRODUCTION 

Public key infrastructure (PKI) underpins the security 
of most public key cryptosystems. PKI schemes 
typically consist of a certificate authority (CA) that 
verifies the identity of a user and signs their public 
key certificate. The certificate binds the identity to the 
public key. It ensures that the public key used in a 
cryptosystem indeed belongs to the expected user.  

Traditional PKI models are often centralised with 
a hierarchical structure. Certificate logging (Blagov 
& Helm, 2020) was introduced to bring more 
transparency to the CA process, and has become 
mandatory for web PKIs on account of CA 
misbehaviour and several security breaches (Van der 
Meulen, 2013) (Langley, 2015). Google’s Certificate 
Transparency is the most widely deployed public log 
of SSL/TLS certificates (Scheitle, et al., 2018). Other 
alternatives to PKI include identity-based 
cryptography (Boneh & Franklin, 2001) (Boneh, 
Lynn, & Shacham, 2001) and certificateless public 
key cryptography (Al-Riyami & Paterson, 2003). 
Both alternatives require an implementation of a 
bilinear map, which is difficult due to its complexity 
(Galbraith, Paterson, & Smart, 2008). 

One of the most challenging tasks for any PKI 
model is certificate revocation, which necessitates the 
timely retrieval of up-to-date records of revoked 
certificates compounded by the additional effort 
required to check any such records. One approach to 
handle revocation checks is to consult public 
certificate revocation lists (CRLs) (Cooper, et al., 
2008), which are signed by CAs to ensure their 
integrity. This creates a significant overhead for 
certificate verification while also introducing 
potential implementation-related vulnerabilities 
(Hoogstraaten, 2012). Some web browsers default to 
not checking CRLs in order to gain performance 
efficiency (CERT Division, 2001).  

Another approach is to use the Online Certificate 
Status Protocol (OCSP) (Santesson, et al., 2013) in 
which the status of a certificate is maintained on a 
dedicated server that facilitates status queries via a 
request-response mechanism. OCSP Stapling and 
Must-Staple (Wazan, et al., 2020) are extensions that 
address network latency and user privacy issues (Zhu, 
Amann, & Heidemann, 2016). However, several 
major browsers have opted for proprietary revocation 
mechanisms e.g., Google’s CRLSets (Langley, 2012) 
and Firefox’s CRLite (Larisch, et al., 2017) both of 
which crawl CRL servers and certificate logs 
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periodically to update their list of valid certificates. 
While these browsers support traditional OCSP 
checks, failure to determine a certificate’s status 
within an acceptable timeframe results in a soft-fail 
revocation check, where the certificate is accepted by 
default when its status is indeterminable. An 
adversary can therefore simply suppress the OCSP 
response in a denial-of-service (DoS) attack.  

In recent years, blockchain technology has offered 
a promising future for PKI. The immutability and 
transparency of data stored on a blockchain (on-
chain) offers a single source of truth for the PKI 
ecosystem, while the consensus mechanism secures 
and timestamps the on-chain data. The Certcoin 
protocol by Fromknecht, Velicanu, & Yakoubov 
(2014) defines a pure blockchain-based PKI that 
publicly links identities to public keys in the 
Namecoin network, while the work by Axon & 
Goldsmith (2017) adapts Certcoin to provide privacy 
to its users. However, neither of these methods 
propose an adequate solution for the reclamation of 
an identity in the case of key compromise (Kubilay, 
Kiraz, & Mantar, 2019). 

Yakubov, Shbair, Wallbom, Sanda & State (2018) 
use Ethereum to design smart contracts that automate 
certificate management. While the solution benefits 
from the transparency of data stored on a public 
blockchain, it is not suitable for large-scale 
applications. This is due to the fundamental scaling 
limitations arising from Ethereum’s account-based 
transactional model, where each user account is 
updated sequentially by a generalised state transition 
function (Wood, 2014). As a result, large transaction 
volumes cause congestion in the network that 
translates to higher transaction fees for its users 
(Etherscan, 2020). Ethereum-based certificates may 
therefore be difficult and expensive to manage. 
Applications that require fast processing can instead 
be realised with UTXO-based transactional models 
(Zhang, Xue, & Liu, 2019) such as Bitcoin, where 
parallel processing is supported.  

1.1 Our Contributions 

In this paper, we propose a Bitcoin-based certificate 
management system that can be readily implemented 
and addresses ongoing issues with certificate 
verification and revocation. We show how a public 
key certificate can be published in a Bitcoin 
transaction, which allows us to create a link between 
a certified public key and a Bitcoin transaction 
outpoint. To verify the certificate, a verifier checks 
whether the corresponding transaction outpoint is 
unspent. To revoke a certificate, one simply spends 

the transaction outpoint. The main contributions of 
the paper are: 

• a low-cost blockchain-based system that can 
manage large volumes of certificates, 

• a single source of truth for certificates and 
their status,  

• a transparent and auditable log of 
timestamped certificates, 

• an immutable record of certificates that is 
secure even when keys are compromised,  

• a flexible revocation mechanism using 
Bitcoin’s Script language that can 
accommodate different revocation 
requirements and key updates, 

• an atomic verification mechanism that 
integrates large-value payments and identity 
verification into one Bitcoin transaction, and 

• an obfuscating technique that preserves user 
privacy. 

The paper is organised as follows: Section 2 
provides an overview of Bitcoin along with relevant 
PKI standards and practices. In Section 3, we outline 
certificate issuance, revocation, verification, and key 
updates, together with the assignment of revocation 
rights. In addition, we describe the immutability of 
historical records, user privacy and atomic certificate 
verification. Section 4 contains empirical data to 
show the scalability and low-cost of our solution. 
Section 5 provides comparisons with other PKI 
solutions, and Section 6 concludes the paper.  

2 PRELIMINARIES 

This section describes preliminaries on Bitcoin, along 
with relevant PKI standards and practices.  

2.1 Bitcoin 

The Bitcoin blockchain can be viewed as a distributed 
platform service that offers scalability, transparency, 
immutability, and the availability of data. Data can be 
published on the blockchain and retrieved in the form 
of Bitcoin transactions. There are different 
blockchain implementations with a shared history 
tracing back to the original Bitcoin genesis block, 
such as Bitcoin Core (BTC), Bitcoin Cash (BCH) and 
Bitcoin SV (BSV). When implemented on Bitcoin 
SV, the solution in this paper benefits from 
scalability, the lowest cost, and data integrity. The 
Bitcoin SV protocol offers high transaction 
throughput, with over 2000 transactions per second 
(tps) on the main net (Blockchair, 2020) and 9000 tps 
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on the scaling test net (Southurst, 2021). In what 
follows we will present the solution in accordance 
with the Bitcoin SV protocol for transactions, but it is 
understood that it can be easily adapted to any 
UTXO-based blockchain. Table 1 shows a simplified 
format of a Bitcoin transaction. 

Table 1: Bitcoin Transaction Format. 

Transaction ID 
Version  Locktime 

Inputs 
Outpoint Unlocking Script Sequence 

Number
   

Outputs 
Value Locking Script 

  

We would like to highlight a few fields in the 
transaction format. 

• Outpoint: a concatenation of a transaction 
identifier (TxID) and an index that identifies the 
output from the previous transaction. 

• Unlocking Script: a script that contains data 
only (no operational codes). It is combined with 
the corresponding locking script for script 
execution, which is part of the transaction 
validation process. It usually contains a digital 
signature and a public key. 

• Locking Script: a script that contains the 
conditions to spend the output. It usually 
contains a hash value check on a public key and 
a verification of a signature, which is known as 
Pay-To-Public-Key-Hash (P2PKH) script. The 
script can also be more complex to 
accommodate for more complicated spending 
conditions. In addition to its primary 
functionality, a locking script can be used as a 
data carrier, where a data payload can be 
appended to the opcode OP_RETURN. 

A transaction outpoint can be either spent or 
unspent. The set of unspent transaction outpoints is 
called UTXO set. A static UTXO set can be derived 
from the history of the blockchain for a given block 
height. A live UTXO set also accounts for the 
transactions in the mempool (a set of validated 
transactions that are to be published on-chain). As a 
result, a live UTXO set can vary from one Bitcoin 
node to another. 

A block consists of a set of Bitcoin transactions 
and a block header, which is of a fixed size of 80 bytes 

regardless of the number of transactions in that block. 
A Merkle tree (Merkle, 1979) is derived from the set 
of transactions in a block where the leaves consist of 
the transaction identifiers. The Merkle root is then 
included in the block header. It provides an efficient 
mechanism to prove transaction inclusion. Given a 
transaction and its Merkle proof, one can compute the 
Merkle root and compare it with the Merkle root in a 
block header. If they match, one can be convinced 
that the transaction has been validated and the 
transaction data has not been tampered with. This 
integrity and inclusion proof is referred to as 
simplified payment verification (SPV), a terminology 
coined in the original Bitcoin white paper. This 
lightweight mechanism makes Bitcoin applications 
low cost and scalable, since they can ignore other 
transactions and only maintain block headers, 
application-specific transactions and their Merkle 
proofs. As a result, applications built on the Bitcoin 
system can operate without hindrance from the ever-
growing size of the blockchain.  

The consensus mechanism in Bitcoin is based on 
proof of work. Each block header contains a 4-byte 
number that allows iterative hashing of the block 
header. The goal is to find a hash value that is less 
than a set value derived from the difficulty level 
specified in the block header. This allows the proof of 
work on a block header to be verified independently. 
Each block header also contains the previous block 
header hash and forms a chain of block headers. To 
change a historical block, one must redo the proof of 
work on all the following blocks. The earlier the 
block, the more proof of work is required to change 
it. This results in the immutable nature of historical 
data on-chain. 

The Bitcoin network consists of Bitcoin nodes, 
also loosely known as miners. Their services include, 
but are not limited to, transaction validation and 
propagation, block construction and publication, and 
responding to queries for Merkle proofs and 
transaction status. The majority of Bitcoin nodes are 
incorporated businesses and can be identified via 
coinbase transactions. An initiative to establish miner 
IDs led by the Bitcoin SV community allows miners 
to build their reputation over time based on proof of 
work (nChain, 2020). This brings more transparency 
to the network and therefore leads to more overall 
trustworthiness. 

2.2 Relevant Standards and Practices  

In this section, we describe two standards that share 
similarities with our solution, namely OCSP Stapling 
(Eastlake, 2011) (Pettersen, 2013) and CT logs 
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(Laurie, Langley, & Kasper, 2013). The high-level 
architecture of these two approaches is the same, as 
shown in Figure 1.  

 
Figure 1: High-Level Architecture of OCSP Stapling / CT 
Logs. 

OCSP Stapling describes a way to append or 
‘staple’ the short-term status of a certificate to the 
certificate itself. The CA signs the certificate status in 
the same way that it signs the certificate, both of 
which are cached on the web servers frequently. 
During certificate checks, OCSP stapling shifts the 
onus from the client (browser) to the web server, 
mitigating potential breaches of user privacy and 
reducing network latency as a result. OCSP Must-
Staple (Hallam-Baker, 2015) is an advancement that 
addresses DoS attacks by ensuring that an OCSP 
response must be included with a certificate request 
for the public key to be deemed valid. However, its 
adoption among browsers remains limited.  

Certificate transparency (CT) logs are append-
only Merkle trees that provide a public record of 
certificates issued by different CA organisations to 
support the detection of falsified certificates. While 
Google’s CT is the most widely deployed log in the 
web PKI ecosystem, any CA can choose to maintain 
their own log. It is recommended that CAs also 
publish their certificates to third-party logs (Laurie, 
Langley, & Kasper, 2013). A central authority 
monitors and audits each CA’s log to ensure that the 
information is consistent. 

A signed certificate timestamp (SCT) is generated 
by a CT log when the certificate is submitted for 
publication at the point of issuance. The SCT acts as 
proof of a certificate’s existence in a log. It is possible 
to fetch an SCT using an OCSP request (DigiCert, 
2021). While there is no minimum number of proofs 
required, Google currently recommends including at 
least three such proofs with a certificate to account for 
any misinformation arising from compromised or 
misbehaving logs (Google, 2013). 

The general operation of a CT log is complex and 
requires a high degree of availability to fulfil client 
requirements. As logs grow, they become more 
expensive and difficult to operate (Matsumoto, 
Szalachowski, & Perrig, 2015). Temporal sharding 
can be used to address these scaling issues by limiting 

the date range of CT logs. This results in multiple logs 
per CA, each of which is typically limited to one-year 
segments (Lynch, 2018). However, increasing the 
number of CT logs increases the cost of monitoring 
for domains and auditors (Google, 2013). 

3 CERTIFICATE MANAGEMENT 
ON-CHAIN 

The proposed solution aims to address the issues of 
certificate revocation in PKI and offers an all-in-one 
set of features including transparency, privacy, 
auditability, and immutability of historical records. 
The high-level architecture of the solution is shown 
in Figure 2.  

 
Figure 2: High-Level Architecture of a Bitcoin-Based 
Certificate Management System. 

Our solution does not require a new blockchain. 
It adapts the existing PKI practices and utilises the 
Bitcoin network infrastructure. A certificate authority, 
say Charlie, connects to the Bitcoin network by 
connecting to a Bitcoin node or a group of nodes, say 
Natalie. A user, say Alice, submits a certificate 
request to Charlie and is issued a certificate in the 
form of a Bitcoin transaction. A certificate verifier, 
say Bob, queries the Bitcoin network for the status of 
the outpoint in the certificate transaction. If it is 
unspent, then the certificate is valid. Otherwise, it is 
invalid. All certificates and their change of status are 
recorded in Bitcoin transactions and published on the 
blockchain for transparency and auditability. The 
verification of certificates requires interactions with 
the Bitcoin network.  

The detail of the process is described in the next 
section, followed by other features and extensions 
such as flexibility in revocation, immutability of 
historical records, privacy enhancements, and atomic 
certificate verification.    

3.1 Certificate Life Cycle 

In this section, we describe how to issue, revoke, 
update and verify certificates using Bitcoin 
transactions. The mechanisms can be applied to any 
certificate type that links an identity to a public key.  
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3.1.1 Issuance 

Alice submits a certificate request to the CA, Charlie. 
After verifying Alice’s identity, Charlie creates a 
Bitcoin transaction that can be viewed as a certificate 
for Alice’s public key.  

Table 2 shows an example of a certificate issuance 
transaction. Charlie assigns 𝑥  satoshis to himself 
(𝑃𝐾஼ ) from the outpoint 𝑇𝑥𝐼𝐷଴||0  and embeds an 
issuance message for 𝑃𝐾஺  as an OP_RETURN data 
payload. This OP_RETURN does not invalidate the 
script in accordance with the Bitcoin SV 
implementation (Bitcoin SV, 2021).  

Table 3 shows an example of the issuance 
message format. Note that the data payload can be an 
X.509 V3 certificate in its entirety, which would 
provide great interoperability. It also can be of any 
other format, e.g., OpenPGP (Callas, Donnerhacke, 
Finney, Shaw, & Thayer, 2007). In the extension 
field, Charlie adds some identification evidence, 
which can be the hash digest of documents that Alice 
has provided to verify her identity. This would be 
used to prove that Charlie has conducted the 
identification due diligently.  

Table 2: Certificate Issuance Transaction. 𝑇𝑥𝐼𝐷ଵ 
Version 1 Locktime 0 

Inputs 
Outpoint Unlocking Script Sequence 

Number𝑇𝑥𝐼𝐷଴||0 <𝑆𝐼𝐺஼> <𝑃𝐾஼> 0xFFFFFFFF 
Outputs 

Value Locking Script 𝑥 OP_DUP OP_HASH160 
<𝐻(𝑃𝐾஼)> OP_EQUALVERIFY 
OP_CHECKSIG OP_RETURN 
<Issuance Message 𝑃𝐾஺> 
Table 3: Issuance Message. 

Message Type Issuance
Issuer Name Charlie 
Subject Name Alice 
Subject Public Key 𝑃𝐾஺  
Subject Public Key Algorithm ECDSA
Extensions (optional) Identification 

Evidence

The digital signature (𝑆𝐼𝐺஼, 𝑃𝐾஼) from Charlie in 
the unlocking script not only signs the transaction but 
also attests to the issuance message for 𝑃𝐾஺ as it is 

part of the signed message. This implies that there is 
no need to include an explicit signature in the 
issuance message.  

Charlie then sends the transaction to the Bitcoin 
node Natalie for publication to the blockchain. 
Charlie can wait for the next block to be published 
before passing on the transaction to Alice as her 
public key certificate. This often takes around ten 
minutes, occasionally more. However, Bitcoin nodes 
can implement an API (nChain, 2021) that allows 
users to request for instant confirmation of the 
acceptance of their transactions. Nodes with this 
capability are the ideal candidates to connect to.  

The transaction 𝑇𝑥𝐼𝐷ଵ  effectively binds the 
validity of the certificate of public key 𝑃𝐾஺  to the 
Bitcoin outpoint 𝑇𝑥𝐼𝐷ଵ||0 . If 𝑇𝑥𝐼𝐷ଵ||0  is unspent, 
then 𝑃𝐾஺ is a valid public key that belongs to Alice. 

As Bitcoin transactions allow a large number of 
outputs, Charlie can combine multiple issuances into 
one issuance transaction. Each certificate can be 
independently identified by the transaction outpoint. 
The “Locktime” and “Sequence Number” can be used 
to schedule the issuance of certificates (Bitcoin SV, 
2021). Both batching and scheduling mechanisms are 
also applicable to both revocation and key updates.  

3.1.2 Revocation 

In the case that the certificate corresponding to 
Alice’s public key 𝑃𝐾஺ needs to be revoked, Charlie 
can spend 𝑇𝑥𝐼𝐷ଵ||0  to invalidate the certificate. 
Charlie creates a Bitcoin transaction as shown in 
Table 4. Charlie assigns 𝑥ᇱ satoshis to himself (𝑃𝐾஼) 
from the outpoint 𝑇𝑥𝐼𝐷ଵ||0 whose spending status is 
tied to the validity of the certificate on 𝑃𝐾஺. Charlie 
also embeds a revocation message in the output as the 
OP_RETURN data payload. The revocation message 
may take the format in the example shown in Table 5. 

Table 4: Certificate Revocation Transaction. 𝑇𝑥𝐼𝐷ଶ 
Version 1 Locktime 0 

Inputs 
Outpoint Unlocking Script Sequence 

Number𝑇𝑥𝐼𝐷ଵ||0 <𝑆𝐼𝐺஼ᇱ> <𝑃𝐾஼> 0xFFFFFFFF 
Outputs 

Value Locking Script 𝑥ᇱ OP_DUP OP_HASH160 
<𝐻(𝑃𝐾஼)> OP_EQUALVERIFY 
OP_CHECKSIG OP_RETURN 
<Revocation Message> 
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Table 5: Revocation Message Example. 

Revocation Message 
Issuer Name Charlie 
Reason for Revocation Key Compromised
Extension (optional)  

Note that it is not critical to include 𝑃𝐾஺  in 𝑇𝑥𝐼𝐷ଶ , since the revocation transaction is not for 
users to check. The purpose of this transaction is to 
ensure that any check on the certificate transaction 
fails, as the validity of the certificate is bonded to the 
spending status of the certificate transaction outpoint. 
However, the data payload may be an X.509 V2 
revocation message to provide interoperability. While 
it is more informative and auditable to include a 
revocation message, the absence of one also works. 

Charlie signs the revocation transaction and sends 
it to the Bitcoin node Natalie. When Charlie obtains a 
confirmation from Natalie, it can be viewed as a 
confirmation that the revocation is successful. As for 
certificate issuance, this can take around 10 minutes 
and occasionally more, while it would take a matter 
of seconds or less if Natalie has implemented an API 
that offers instant confirmations.  

3.1.3 Update 

It is good practice to update cryptographic keys 
regularly and is a necessity if they are compromised 
or lost. An ideal key update mechanism would be low 
cost and take effect in a short time. In our solution, 
key updates are done by combining revocation and 
issuance into a single Bitcoin transaction. Suppose 
Alice needs to update her public key 𝑃𝐾஺  to 𝑃𝐾஺ᇱ , 
Charlie spends the certificate transaction outpoint for 𝑃𝐾஺  to create a certificate transaction for 𝑃𝐾஺ᇱ  as 
shown in Table 6.  

Table 6: Certificate Update Transaction. 𝑇𝑥𝐼𝐷ଷ 
Version 1 Locktime 0 

Inputs 
Outpoint Unlocking Script Sequence 

Number𝑇𝑥𝐼𝐷ଵ||0 <𝑆𝐼𝐺஼ᇱ> <𝑃𝐾஼> 0xFFFFFFFF 
Outputs 

Value Locking Script 𝑥ᇱ OP_DUP OP_HASH160 
<𝐻(𝑃𝐾஼)> OP_EQUALVERIFY 
OP_CHECKSIG OP_RETURN 
<Update Message 𝑃𝐾஺ᇱ> 

The update message in the output can take the format 
shown in Table 7, and for interoperability, an X.509 
V3 certificate can be used as an alternative. 

Table 7: Updated Public Key Data Payload. 

Certificate for 𝑃𝐾஺ 
Issuer Name Charlie 
Subject Name Alice 
Subject Public Key 𝑃𝐾஺ᇱ   
Subject Public Key Algorithm ECDSA 
Extension (optional) 𝑃𝐾஺ updated 

Note that we do not need to have an explicit output 
to represent revocation. It is the action of spending 𝑇𝑥𝐼𝐷ଵ||0 that invalidates the certificate. On the other 
hand, spending 𝑇𝑥𝐼𝐷ଵ||0 requires Charlie’s signature, 
which implies that it can be used as an input to issue 
a new certificate as described in Section 3.1.1. In this 
case, the output can be utilised to represent the 
issuance of the certificate for 𝑃𝐾஺ᇱ . 

Charlie signs the transaction and sends it to the 
Bitcoin node Natalie. After receiving confirmation 
from Natalie, Charlie passes on 𝑇𝑥𝐼𝐷ଷ to Alice as the 
new certificate reference for her public key 𝑃𝐾஺ᇱ . If 
Natalie offers instant confirmation service, then the 
key update can take effect immediately.  

3.1.4 Verification 

To verify the certificate of Alice’s public key, Bob 
needs to conduct three checks: 

1. the integrity of the transaction data, 
2. the relevant information embedded in the 

transaction data, and 
3. the status of the transaction outpoint. 

Bob can either obtain the transaction data and its 
Merkle proof from Alice or retrieve both from the 
Bitcoin network by referencing the transaction ID 𝑇𝑥𝐼𝐷ଵ . Bob must have an up-to-date copy of the 
block headers to verify the Merkle proof and ensure 
the integrity of the transaction data. Any attempt to 
modify the data will invalidate the Merkle proof.  

After being convinced that the transaction data 
has not been tampered with, Bob parses the data to 
read the locking script and the unlocking script. The 
locking script should contain a data payload 
indicating that the public key 𝑃𝐾஺ belongs to Alice 
and is certified by Charlie. 

The unlocking script should contain Charlie’s 
public key 𝑃𝐾஼. We assume that 𝑃𝐾஼ is certified in 
the same way as 𝑃𝐾஺. If Charlie is a root CA or a 
subordinate CA, Bob may conduct regular checks on 
the certificate of 𝑃𝐾஼ instead of every time it appears 
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in an unlocking script. In this case, we assume that 
Bob has a list of trusted certified public keys to look 
up 𝑃𝐾஼ . Otherwise, Bob must conduct the same 
verification on the certificate of 𝑃𝐾஼ and follow the 
chain of certificates until he reaches a certified public 
key that is on his list. One criterion for a certificate to 
be maintained in the trusted list can be its expected 
lifetime, for example, at least 10 years (IdenTrust 
Services, 2021).  

The last step is for Bob to query the Bitcoin 
network on whether the certificate transaction 
outpoint is unspent. In this step, we assume that 
Bitcoin nodes are trusted. More precisely, we assume 
that their response to the query is genuine and 
authenticated. The assumption is particularly 
important when the response is unspent. Verifying 
whether a transaction outpoint is spent involves 
pinpointing the spending transaction and verifying its 
validity, which is relatively easy. Verifying that a 
transaction is unspent would require verifying all 
transactions that come after it, which is far more 
computationally costly for users. Nevertheless, 
knowing that there is a way to check their response, it 
is reasonable to assume that Bitcoin nodes are honest 
and trusted. 

Bob can either make a static query or a live query. 
A static query is to ask for the status of the outpoint 
at a time in the past, either using block height or date 
and time. As the response is based on the published 
blocks, a static query can be made to any Bitcoin 
node. A live query reflects the status in a timely 
manner. In addition to published transactions, it takes 
the transactions that are validated and have not yet 
published into account. It is available if Bob connects 
to one of the Bitcoin nodes to which Charlie connects. 

For Bob, a live query would generally be 
preferred as it provides the real-time status of the 
certificate. There are scenarios, such as auditing 
historical usage of certificates, where static queries 
may be more appropriate.  

For Natalie, responding to a live query is more 
costly since it requires a snapshot of the dynamic 
UTXO set that is continuously updated by incoming 
transactions, while responding to a static query only 
requires a look up on a static data set.  

For Charlie, connecting to multiple Bitcoin nodes 
in different geolocations and sending the transactions 
to each of them simultaneously would reduce the 
latency of transaction propagation in the Bitcoin 
network. This would allow Bob to have a wider 
choice of Bitcoin nodes to connect to, which would 
be especially useful if Bob has limited access to 
Bitcoin nodes. Charlie may choose to shift the extra 
cost to Alice as an optional feature. However, any 

business model for Alice, Charlie or Natalie is beyond 
the scope of this paper. 

3.2 Rights to Revoke 

As described in Section 3.1.2, revoking a certificate 
for a public key is achieved by spending a transaction 
outpoint. The right to spend the transaction outpoint 
gives the right to revoke the certificate. The locking 
script in a Bitcoin transaction can accommodate 
different spending conditions and therefore different 
revoking requirements.  

As of now, we assume that the CA Charlie can 
revoke certificates. This reflects the current setup in a 
general PKI model. However, the locking script can 
be adapted to allow any designated entity to revoke 
the certificate. For example, by replacing the hash 
value 𝐻(𝑃𝐾஼)  with 𝐻(𝑃𝐾஺)  in the output of the 
certificate issuance transaction shown in Table 2, 
Charlie effectively assigns Alice the right to revoke 
her own certificate. This is advantageous when Alice 
needs to revoke the certificate of her public key 
because her private key has been compromised. She 
does not have to communicate with Charlie and wait 
for his response to her revocation request. She can 
spend the certificate transaction outpoint immediately 
to revoke her public key certificate.  

On the other hand, Charlie may want to revoke 
Alice’s public key on account of misbehaviour. To 
accommodate both requirements, a 1-out-of-2 multi-
signature can be used, in which case either Alice’s 
signature or Charlie’s signature will be able to spend 
the outpoint. An example locking script can be 
constructed as: 

  
OP_DUP OP_HASH160 OP_DUP 
<H(PK_A)> OP_EQUAL 
OP_IF 
 OP_DROP 
OP_ELSE 
 <H(PK_C)> OP_EQUALVERIFY 
OP_ENDIF 
OP_CHECKSIG 
OP_RETURN 
<Issuance Certificate PK_A>. 
 
This can be generalised further to 𝑚 -out-of-𝑛 

scenarios for any integer 𝑚 ≥ 1 and 𝑛 ≥ 2. If 𝑚 ≥ 2, 
ECDSA threshold signature schemes (Gennaro & 
Goldfeder, 2018) can be used, in which case the 
locking script would have the same format as in Table 
2 with a single public key hash.  Multi-party 
revocation is useful in increasing the robustness of the 
revocation mechanism. For example, a regulatory 
body can be introduced as part of a 2-out-of-3 
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revocation scheme. In this case, Charlie cannot 
unilaterally decide on Alice’s misuse of her public 
key. He requires approval from the regulatory body in 
order to revoke Alice’s public key. 

3.3 Mitigating Compromised CAs 

When a CA is compromised, it may require revoking 
all the certificates issued by that entity. This can be 
done by spending all the certificate transactions 
originating from the CA. In Section 4, we show how 
the Bitcoin network has the capability to handle this 
scale of large volume transactions in a relatively short 
timeframe. On the other hand, if the verification of 
the certificate of the compromised CA can be 
triggered remotely, then spending the corresponding 
certificate transaction outpoint would serve the 
purpose of revoking all certificates issued by the CA. 

Another feature offered by our solution is the 
integrity of the historical records even after the 
private key of a CA is compromised. In traditional 
PKI, when the private key of a CA is compromised, 
actions can be taken to prevent any new certificate 
from being issued. However, it is possible for the 
attacker to use the private key to create a certificate 
that would be deemed valid in the past. Because of 
this possibility, the entire history of certificates from 
that CA becomes non-trustworthy. The damage done 
to the historical record becomes irreversible. This 
problem does not exist with our solution. As all the 
certificates and their status are recorded on the 
blockchain, any changes made to the history would 
require redoing all the proof of work, which is 
economically inviable and computationally infeasible.  

3.4 User Privacy 

The privacy issue with OCSP stems from the fact that 
a user’s browsing history is exposed by their 
certificate status queries, since all the queries are 
directed at the OCSP server instead of each individual 
web server. OCSP Staple solves the problem by 
shifting the burden of status queries to the CA and 
back to the web servers. Our solution can adopt the 
same approach to protect user privacy. In our case, 
the Bitcoin network replaces the OCSP server. Only 
the CA interacts with the Bitcoin network, and the 
transaction statuses are signed and passed on to the 
web servers with a limited lifetime. While this 
approach offers great interoperability, it does not 
utilise the benefits of our revocation mechanism. 

An alternative approach is to hide the link 
between a certificate and the corresponding 
transaction outpoint by using a cryptographic hash 

function. Charlie can replace the issuance message in 
the certificate transaction with a hash value derived 
from the message. Both Alice and Charlie can keep a 
copy of the issuance message. When Bob makes a 
query to the Bitcoin node Natalie, Natalie would not 
be able to identify which certificate the query is about.  

By obtaining the issuance message from Alice, 
Bob can verify its integrity by checking whether the 
message leads to the same hash value in the certificate 
transaction. To enhance user privacy, the certificate 
can be updated frequently, preventing any traffic 
analysis that attempts to establish the hidden link. 
When updating the certificate, the CA could combine 
the revocation of a certificate of one entity with the 
issuance of a certificate of another as well as 
combining several updates into one transaction. This 
would further obfuscate the link between a certificate 
and its transaction outpoint. Note that recording hash 
values on-chain represents a series of certificate 
events that cannot be altered, and the transparency of 
these commitment-like records ensures that our 
solution facilitates trustworthy auditing. 

3.5 Atomic Certificate Verification 

In Section 3.1.4, we assume that Bitcoin nodes are 
trusted in the sense that their response to a query on 
whether a transaction is unspent is genuine and 
authenticated. This assumption can in fact be omitted 
by designing each certificate to be single use whereby 
we attempt to “spend the certificate” instead of 
querying the Bitcoin nodes for a spending status.  

A transaction outpoint can be spent only if it is 
unspent. If the accepted validity of a certificate leads 
to an action, for example, accepting a payment, then 
that action will be executed at the same time as the 
verification of the certificate, thereby making the 
exchange atomic. This verification mechanism 
implies that the certificate can only be verified once, 
but multiple certificates for the same identity can be 
issued and combined into the same transaction.   

This solution integrates with the Bitcoin system at 
its protocol level by utilising the double spending 
prevention mechanism for certificate verification. 
The trust on the Bitcoin system can be inherited by 
the certificates. As a result, an atomic solution may 
not be practical for certificates with high verification 
demands, i.e., domain certificates, but could be of use 
for secure user identification in online payments.  

Consider as an example that Bob would like to 
make an online payment to Alice for purchasing an 
item that is of large value. To comply with AML5 
(Council of EU, 2018), Alice must verify Bob’s 
identity. Alice can require that the payment 
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transaction includes a transaction outpoint 
corresponding to Bob’s public key certificate that 
represents his identity. If the transaction is accepted 
by the Bitcoin network, then Alice knows that Bob’s 
certificate is valid at the time of payment.    

Let us assume that Bob has a certificate outpoint 𝑇𝑥𝐼𝐷஻||0 that can be spent by either Bob or the issuer 
Charlie (Section 3.2). He also has an unspent outpoint 
containing the funds for payment in 𝑇𝑥𝐼𝐷௙௨௡ௗ||0 . 
Bob creates a transaction that spends one of the 
outpoints in his certificate transaction. He also 
includes an input that enables payment to be given to 
Alice. He sends the transaction shown in Table 8 to 
Alice together with 𝑇𝑥𝐼𝐷஻. 

Table 8: Atomic Verification Transaction. 𝑇𝑥𝐼𝐷஺஻ 
Version 1 Locktime 0 

Inputs 
Outpoint Unlocking Script Sequence 

Number𝑇𝑥𝐼𝐷௙௨௡ௗ||0 <𝑆𝐼𝐺஻> <𝑃𝐾஻> 0xFFFFFFFF 𝑇𝑥𝐼𝐷஻||0 <𝑆𝐼𝐺஻> <𝑃𝐾஻> 0xFFFFFFFF 
Outputs 

Value Locking Script 𝑥 OP_DUP OP_HASH160 
<𝐻(𝑃𝐾஺)> OP_EQUALVERIFY 
OP_CHECKSIG 

Upon receiving 𝑇𝑥𝐼𝐷஺஻ and 𝑇𝑥𝐼𝐷஻  from Bob, 
Alice checks that 𝑇𝑥𝐼𝐷஻  indeed contains Charlie’s 
signature and Bob’s public key. She then sends 𝑇𝑥𝐼𝐷஺஻ to the Bitcoin node Natalie. After receiving 
confirmation from Natalie, Alice is convinced that 
Bob’s certificate is valid, and she has been paid. The 
compliance of the regulation and the acceptance of 
payment are integrated into one action, which is the 
validation of the transaction by the Bitcoin nodes. 
This offers Alice a significant computational saving.   

4 FEASIBILITY ANALYSIS 

In general, one of the main issues with blockchain-
based solutions relates to high transaction fees. A 
justification for choosing Bitcoin SV arises from its 
extremely low transaction cost. As shown in Figure 3  
(Blockchair, 2021), the average fee per Bitcoin SV 
transaction has been much lower than 0.005 USD 
since October 2019. According to the Bitcoin SV 
(2021) node implementation, nodes can configure the 

minimal acceptance and relay fee rates themselves, 
which is currently set to 0.5 satoshi per byte and 0.25 
satoshi per byte, respectively. Assuming a certificate 
transaction 1000 bytes in size and a price of 200 USD 
for 1 BSV, the transaction fee to issue a certificate is 
roughly 0.001 USD. Note that 1 BSV is 10଼ satoshis. 
The cost goes up linearly with the price of BSV, but 
even at a price of 10,000 USD for 1 BSV, the cost of 
issuing a certificate is under 0.05 USD.  Note that the 
price for an SSL/TLS certificate can range from 
around 10 USD to over 300 USD per year.  

 
Figure 3: Average Transaction Fee in USD for Bitcoin SV. 

In addition to low transaction fees, the blockchain 
also offers high transaction throughput via bigger 
block sizes. The estimated capability is 2GB per 
block  (Southurst, 2021) at the time of writing, which 
equates to 9,000 transactions per second. It would 
take only one week to issue 4 billion certificates on 
the blockchain, which is the number of certificates 
currently included in Google (2021) CT logs. 

Bitcoin as a blockchain is subject to 
reorganisation, which is triggered when more than 
one Bitcoin node finds a valid block around the same 
time. Our solution does not rely on any consensus to 
be reached on the most up-to-date chain tip or block 
headers, but on the perspective of the Bitcoin nodes 
that both the CA and certificate verifier are connected 
to. Provided those Bitcoin nodes as a group remain 
honest and share the same view of the status of 
certificate transactions among themselves, then 
reorganisation will have no impact on our solution.  

Taking advantage of the scalability and low cost 
offered by Bitcoin SV means that our certificate 
management system can be readily implemented. 

5 COMPARATIVE ANALYSIS 

In this section, we analyse two different PKI solutions 
to frame the comparative advantages and 
disadvantages of our system. We confine each 
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discussion to the features of our solution with 
reference to a given benchmark solution.  

In our first analysis, we choose the scheme 
proposed by Yakubov, Shbair, Wallbom, Sanda, & 
State (2018) as our benchmark blockchain-based PKI 
since it explicitly supports certificate revocation. The 
authors propose a PKI management framework that 
uses Ethereum smart contracts for the registration, 
verification, and revocation of on-chain X.509 (v3) 
certificates. As with our solution, the framework 
takes advantage of an existing network infrastructure 
that makes it readily implementable and uses a 
permissionless ledger that is secured by large-scale 
networks of nodes. However, the Ethereum 
blockchain upon which Yakubov et al.’s framework 
is implemented cannot support the level of scalability 
needed for a large volume of certificate transactions 
as demonstrated by our chosen Bitcoin 
implementation. The transaction fees are also higher 
in the Ethereum network. The authors quote a 70 
USD fee to publish a CA-issued certificate on-chain, 
which is significantly more expensive than our 
estimated cost of under 0.005 USD per certificate.  

An in-depth analysis by Kubilay, Kiraz, & Mantar 
(2020) reveals several privacy and security issues in 
Yakubov et al.’s proposal, highlighting a critical 
security flaw with their revocation scheme in the case 
that a CA is compromised or corrupted. The 
flexibility of our solution means that revocation is not 
constrained by CAs, since our users can be bestowed 
with the rights to revoke their own certificates.  

Our second analysis uses log-based PKIs 
(Matsumoto, Szalachowski, & Perrig, 2015) as a 
benchmark for certificate transparency. There are 
several notable similarities between our solution and 
CT logs. Both architectures are inherently distributed. 
Both solutions bring transparency to the CA process 
by creating a publicly verifiable store of issued 
certificates. Both solutions use cryptographically 
secure hash functions to create an append-only, 
tamper-proof record of certificates.  

The necessity to provide multiple proofs (i.e., 
SCTs) highlights that a CT log alone does not 
represent a single source of truth. Using our system, 
certificates are timestamped and stored on a unified 
distributed data set that acts as a single source of truth 
since it is securely backed by proof of work. Our 
solution addresses the longstanding issue of 
certificate revocation, while log-based PKIs do not 
handle revocation themselves (Google, 2013). 

Although the transparency of both solutions 
disincentives misbehaving or compromised CAs, it 
does not prevent the production of fraudulent 
certificates. Thus, auditing and monitoring is 

necessary for both solutions.  However, this cost 
could be minimised using our system by publishing 
certificates on a unified blockchain database instead 
of in multiple logs. CAs could reduce the burden of 
running their own CT logs by exploiting the existing 
and reliable network of densely connected Bitcoin 
nodes. Our low-cost solution also meets the scaling 
requirements of unbounded certificate logs without 
any added complexity and the creation of data silos 
i.e., via temporal sharding (Lynch, 2018). 

The comparison table below summarises our 
findings for each analysis. For brevity, ‘Y’ refers to 
Yakubov et al.’s scheme; ‘L’ refers to log-based 
PKIs; and ‘B’ represents our Bitcoin-based certificate 
management solution. 

Table 9: A Comparative Analysis of our System. 

PKI Solution Y L B
Public/Permissionless    
Economies of Scale    
User Privacy    
Certificate Transparency    
Single Source of Truth    
Immutability of History    
Revocation Mechanism    
Flexible Revocation Rights    
Key Update Mechanism    
Atomic Certificate Verification    

6 CONCLUSIONS 

In this paper, we have proposed a Bitcoin-based 
certificate management system that addresses 
ongoing issues with certificate revocation in PKI and 
preserves the features of existing solutions that 
support transparency and user privacy. Our solution 
can be readily implemented on Bitcoin SV, a scalable 
and low-cost implementation of the Bitcoin protocol, 
while maintaining a high degree of compatibility with 
established PKI models. It offers a single source of 
truth with transparency of public key certificates, 
their status, and their event logs. The distributed 
nature of the blockchain offers availability of the 
data; the proof of work consensus mechanism secures 
the immutability of the data; and the data structure of 
the blockchain supports third-party audits of the 
certificate logs. Our solution can achieve instant 
revocation under the assumption that both the 
certifying entity and the certificate verifying entity 
connect to the same Bitcoin node or group of nodes. 
While the assumption that Bitcoin nodes are trusted 
offers a general certificate verification mechanism, an 
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atomic verification mechanism integrated with the 
Bitcoin system at the protocol level inherits the trust 
from the system. The limitation that a certificate can 
only be verified once is mitigated by having multiple 
outpoints representing the same certificate.  

The commonalities between a certificate 
management system and the Bitcoin system allow us 
to delegate a significant amount of work to the 
Bitcoin system and achieve great savings for the 
certificate management system. The extra gain is the 
security that is induced by the proof of work, which 
prevents the history from being malleated even when 
CA’s private key is compromised.  
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