
The Missing Piece of the ABAC Puzzle:
A Modeling Scheme for Dynamic Analysis

Marius Schlegel a and Peter Amthor b

Technische Universität Ilmenau, Germany

Keywords: Security Engineering, Security Policies, Attribute-based Access Control Models, ABAC, Security Models,
Reachability Property, Dynamic Analysis, Heuristic Safety Analysis, Formal Methods.

Abstract: Attribute-based access control (ABAC) has made its way into the mainstream of engineering secure IT systems.
At the same time, ABAC models are still lagging behind well-understood, yet more basic access control models
in terms of dynamic analyzability. This has led to a plethora of methods, languages, and tools for designing and
integrating ABAC policies, but only few to formally reason about them in the process. We present DABAC, a
modeling scheme to pick up that missing piece and put it right into its place in the security engineering workflow.
Based on an automaton calculus, we demonstrate how DABAC can be leveraged as a holistic formal basis for
engineering ABAC models, analyzing their dynamic properties, and providing a functional specification for
their implementation. This sets the stage for comprehensive tool support in building future ABAC systems.

1 INTRODUCTION

Attribute-based access control (ABAC) has established
as the de-facto paradigm for AC models (Jin et al.,
2012; Hu et al., 2014; Ferraiolo et al., 2016; Fernández
et al., 2019). ABAC solves a number of issues of popu-
lar models regarding expressiveness, granularity, scal-
ability (cf. role explosion in large-scale RBAC mod-
els), and context-awareness. Authorizations depend
on user, object, and environment attributes involved
in access requests; decisions may change if attribute
values change. This makes ABAC suitable for a broad
range of different application scenarios, such as grid
computing (Lang et al., 2009), IoT (Bhatt and Sandhu,
2020), as well as large and distributed information
systems (Mukherjee et al., 2017).

However, this flexibility also imposes challenges:
Modeling, specification, analysis, and implementation
of ABAC policies are not trivial. In order to lower
the hurdles for using ABAC, the AC community con-
tributed many important pieces to this comprehensive
and complex puzzle: Specialized policy engineering
and mining approaches (Narouei et al., 2017; Xu and
Stoller, 2015), the NIST standardization (Hu et al.,
2014), modeling schemes (also called meta-models
in the literature) (Jin et al., 2012; Fernández et al.,

a https://orcid.org/0000-0001-6596-2823
b https://orcid.org/0000-0001-7711-4450

2019; Bertolissi et al., 2020) as well as numerous
application-specific ABAC models form a compre-
hensive framework for modeling ABAC policies. In
addition, XACML and NGAC provide support for the
specification of ABAC policies and security architec-
tures for their enforcement (Ferraiolo et al., 2016).

Since security policies implement an AC system’s
security requirements, their correctness is highly crit-
ical. A modern approach for policy engineering
founded on formal methods is model-based security
policy engineering (MSPE) (Vimercati et al., 2005;
Tripunitara and Li, 2007; Basin et al., 2011). As a
specialization of generic software engineering, MSPE
is divided into three steps: (1.) in model engineer-
ing, a model as a formal policy representation and its
correctness conditions (model properties) are defined;
(2.) during model analysis, formal methods are applied
to verify the former against the latter; (3.) finally, in
model implementation, the model verified so far is
translated into actual code for implementation.
Decades of experience and best practices have yielded
modeling schemes: formal toolboxes of predicates,
set-theoretical expressions, automata theory etc., that
support engineers in choosing model formalisms suit-
able for policy specification and implementation as
well as the analysis of correctness properties, e. g. for
ABAC (Ahmed and Sandhu, 2017; Jha et al., 2019;
Marin et al., 2019). Probably one of the most funda-
mental and challenging properties are dynamic state

234
Schlegel, M. and Amthor, P.
The Missing Piece of the ABAC Puzzle: A Modeling Scheme for Dynamic Analysis.
DOI: 10.5220/0010556202340246
In Proceedings of the 18th International Conference on Security and Cryptography (SECRYPT 2021), pages 234-246
ISBN: 978-989-758-524-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

reachability properties which can be used to forsee
privilege escalation vulnerabilities of a policy (also
known as safety). Generally, those properties require
dynamic analyses which are pestered by computational
complexity (Tripunitara and Li, 2007). Moreover, such
properties need to be (re-)defined for any application-
specific model. Since this is a burdensome and error-
prone task, previous research efforts in the AC commu-
nity have focused on more specialized analysis ques-
tions towards the effect of policy administration, rather
than those of more general day-to-day accesses per-
formed by users (Bertolissi et al., 2020).

We aim at contributing to these efforts with a fo-
cus on two sub-problems of the former: experience
teaches us that (1.) dynamic changes in an AC sys-
tem may arise from both administrative operations and
user operations; (2.) generally, interesting dynamic
properties that should be subject to model analysis
queries tend to be undecidable (cf. safety). The main
contribution of this paper is DABAC – a modeling
scheme, that (1.) models protection state dynamics
in an automaton-based formalism, which enables the
analysis of undecidable model properties and unlocks
ABAC models for a broad range of existing model
analysis approaches which have been developed for the
class of automaton-based AC models; (2.) while pre-
serving the expressiveness of state-of-the-art ABAC
models already pursuing a future formal standard.
The paper is organized as follows: After giving an
overview of related work in § 2, we present our
DABAC modeling scheme and ready-made patterns
for defining privilege escalation (safety) properties in
§ 3. In § 4, we discuss the application of DABAC to an
IoT healthcare scenario following an MSPE workflow
consisting of model engineering and analysis.

2 RELATED WORK

This section reviews related work in modeling schemes
for ABAC policies. We will summarize them in con-
text of the goals of DABAC. For a more technical com-
parison with ABACα and C-ABAC, refer to § 3.2.4.

ABACα (Jin et al., 2012). The original motivation
of ABACα is to demonstrate how a semantically min-
imal ABAC modeling scheme can be used to sub-
sume the traditional AC model paradigms of identity-
based AC, multi-level security, and RBAC. However,
ABACα was also found useful as an ABAC formalism
for practical model engineering and safety analyses
(cf. (Ahmed and Sandhu, 2017)). Due to the deliberate
restriction of model semantics to the necessary mini-
mum, ABACα provides many predefined abstractions

for typical policies from the above-mentioned families,
however without aiming at the full range of highly
diverse ABAC applications and their AC policies.

CBAC (Barker, 2009). Being a widely recognized
calculus to generalize arbitrary AC models, CBAC
takes a different approach than ABACα. The model-
ing scheme is based on a highly abstract, axiomatic
concept of categorized entities and their relationships,
that can be used to represent attributes and attribution
mechanisms of an ABAC policy. Because of its high
degree of abstraction, CBAC imposes a significant se-
mantical gap to both model engineering and model im-
plementation. With a strong focus on the MSPE work-
flow, we choose to represent ABAC policies closer to
their functional semantics instead; however, parts of
our terminology are based on the commonly adopted
terms of CBAC abstractions.

C-ABAC (Fernández et al., 2019). C-ABAC is an
ABAC modeling scheme that results from an appli-
cation of CBAC to ABAC policies. C-ABAC and
DABAC both adopt the idea of environmental informa-
tion as often required by ABAC applications. Even be-
yond, both modeling schemes aim at generality, which
results in a comparable expressive power with one
exception: other than DABAC, C-ABAC explicitly
excludes dynamic protection state changes from the
modeled semantics. Using the same formal abstrac-
tions as CBAC, the latter serves as a solid foundation
to verify static model properties rather than to enable
dynamic analysis and functional policy specification.

Admin-CBAC (Bertolissi et al., 2020). Admin-
CBAC reuses C-ABAC abstractions to model dynam-
ics, based on the use case of AC system administration.
This enables analyses of reachability properties that
allows to reason about safety (amongst others). How-
ever, as the authors note, Admin-CBAC deliberately
restricts model analysis to decidable instances of these
properties (Bertolissi et al., 2020, Abstract). With the
aim to serve as a basis for both simulative and heuristic
methods that address exactly this gap in model anal-
ysis, DABAC departs the axiomatic approach from
CBAC, C-ABAC, and Admin-CBAC in favor of an
automaton-based modeling scheme. Moreover, instead
of separating administrative from non-administrative
models through different modeling schemes, we opted
for integrating any administrative dynamics with such
from regular user operations. As mentioned, this po-
tentially results in more complex (up to undecidable)
dynamic properties to analyze, but allows for a more
holistic view on the modeled policy on the other hand.

The Missing Piece of the ABAC Puzzle: A Modeling Scheme for Dynamic Analysis

235

We have motivated and discussed this paradigm in pre-
vious work on RBAC (Schlegel and Amthor, 2020).

3 MODELING SCHEME

This section presents DABAC, a formal ABAC mod-
eling scheme suitable for simulative model analysis,
and, based on their results, iterative model refinement
as part of the MSPE workflow. We start by analyzing
the requirements (§ 3.1), then address the individual
abstraction levels defined by the modeling scheme
(§ 3.2): its primitive models components (§ 3.2.1), its
definition of model dynamics (§ 3.2.2), and its design
space for defining model safety (§ 3.2.3). Finally, we
discuss the expressive power of DABAC (§ 3.2.4).

3.1 Requirements

ABAC Expressiveness. From an ABAC applica-
tion’s perspective, we require any modeling scheme to
be both sufficiently expressive and usable in a stream-
lined manner to express typical ABAC policies from
real-world scenarios, such as in the application do-
mains of vehicle networks (Gupta et al., 2020), cloud
and edge computing (Bhatt and Sandhu, 2020), or hos-
pital information systems (Ray et al., 2017; Mukher-
jee et al., 2017). More specifically, this means that
a DABAC model should be capable of expressing an
ABAC feature typical for the above-mentioned, usually
distributed, application scenarios: the need to evalu-
ate both an internal state of the AC system as well as
external information for making an access decision.
Typical examples for this, also called environmental
information in the literature (Barker, 2009; Fernández
et al., 2019), are notifications from third-party systems,
sensor values that depend on physical conditions, or
threat information for risk management. These can
be observed from external sources, and thus need to
be modeled as distinct entities, attributes and attribute
values, respectively. While such information might
be used in access decisions, an AC system has no
influence on their possible changes.

Model Engineering. Flexibility of modeling ab-
stractions is a key requirement to support the MSPE
core concept of reiterative model refinement. For mod-
eling ABAC policies, this primarily relates to abstrac-
tions for attribution and attribute evaluation. In this
regard, DABAC should support (1.) indirect attribu-
tion (attributes which are themselves subject to attribu-
tion, i. e. role attributes in parameterized RBAC models
(Stoller et al., 2009)), and (2.) both enumeration-based
and formula-based attribute evaluation (Biswas et al.,

2016). It should be noted that this flexibility is al-
ready required by the MSPE core concept of reitera-
tive model refinement, based on both refined policy
requirements (as part of model engineering) and re-
vised policy rules (as an outcome of model analysis).

Model Analysis. To reason about dynamic proper-
ties of ABAC policies, we settle for a family of heuris-
tic algorithms that simulate dynamic model behavior,
which allow to study undecidable safety-properties
(Amthor et al., 2014). We therefore require an au-
tomaton calculus, which has been successfully used
for this purpose in previous work (Amthor et al.,
2013; Amthor, 2017; Schlegel and Kühnhauser, 2020).
Based on this calculus, DABAC should be able to sup-
port custom, policy-specific safety definitions by using
the model’s abstractions. Similar to how ABAC gen-
eralizes RBAC, this enables reusing previous work on
safety analysis methods for dynamic RBAC models
(Schlegel and Amthor, 2020).

Model Implementation. As a last requirement, sec-
ond to their benefits in model analysis, DABAC mod-
els should be re-usable as a formal specification for
implementing the actual AC system. This means that,
based on model abstractions, a functional specifica-
tion of interface, internal state and possibly external
state of the AC system should be possible. This lowers
semantical hurdles towards planned semi-automatic
implementation of policy decision making and even
runtime monitoring of policy invariants, both parts of
future work (cf. § 5).

3.2 DABAC

As a modeling scheme rather than a specific model in
itself, DABAC defines how a specific ABAC policy
should be formalized. This happens on three semanti-
cal levels of abstraction:
1. Primitive Model Components: provide formal arti-

facts to express a policy’s complete authorization
semantics, which are based on families for
• sets of elementary identifiers to express entities

and attribute values;
• their interrelations, formalized as relations, map-

pings, or boolean expressions, to express attri-
bution as well as authorization rules.

2. Model Dynamics: rely on the idea of a specialized
automaton model 〈Γ,Σ,∆,Perm〉 consisting of
• the state space Γ: a set of protection states;
• the input set Σ: a set of possible inputs that may

trigger state transitions, based on parameterized
operations made available by the AC system;

SECRYPT 2021 - 18th International Conference on Security and Cryptography

236

• the state transition scheme (STS) ∆ ⊆ Σ ×
P (Perm)×Φ: state transition pre- and post-
conditions for any input σ ∈ Σ;1

• the permissions set Perm: set of identifiers for
fine-grained access conditions.

3. The safety property as a formal definition of our
analysis question the model should be checked
against according to our requirements.

It should be noted that during practical model engineer-
ing, these levels of abstractions might be addressed
in sequence, but due to their semantical interrelations
(e. g. a safety property depending on both primitive
model components and state definition), they are inher-
ently subject to iterative model engineering. In favor
of a concise discussion however, we will now address
these three levels in sequence.

3.2.1 Primitive Model Components

To make an authorization decision, any ABAC policy
most generally demands three classes of information:
which entities are involved in an access, which at-
tributes are associated with these entities, and which
access rules should be evaluated to authorize any op-
eration. DABAC covers these information in four
families for each primitive model component. In the
following, we will informally introduce these families,
which are formally defined in Tab. 1.

Entities (EN): a set of identifiers for atomic abstrac-
tions immediately involved in an access, either
actively or passively (such as users, principals, ap-
plications, sessions, devices);

Attribute Values (AV): a set of identifiers that are
evaluated in access rules (such as age of a user,
login time of a session, numerical sensor value);

Attribute Association (AA): a mapping from either
an EN or an AV to either an AV (attribution with
a single value) or its power set (attribution with
multiple values);

Access Rule (AR): a set containing a logical formula
or an attribute enumeration for each permission in
Perm, which decides for a vector of AV elements
as arguments if entities attributed with these values
are authorized for that respective permission.

We assume any sets of identifiers to be countable but
possibly infinite. For unambiguity, we use the follow-
ing conventions for notation: In a formal context, we
denote the sets representing these families by their
italic symbol. When part of prose, we use upright
abbreviations as follows: “an EN” stands for “a com-
ponent from the entities family”, “element of an EN”

1Φ denotes the set of expressions in first-order logic.

stands for “an element in a set which is an EN”, and
so on for the other families.

Formally, we treat these families as indexed sets
of primitive model components, each a formal artifact
required by a concrete policy. The choice of DABAC
families explicitly aims at simple, easy to understand
ABAC policy semantics in order to support a reiterative
model engineering process, which equally involves
experts in MSPE as well as in the application domain.

Note that our definition of AV and AA deliberately
allows for not only direct attribution, but also to use
AV elements as arguments for AA, which satisfies
the requirement of iterative model refinement through
indirect attribution. Based on (Amthor, 2019), we
introduce an indirection degree i for each attribute as-
sociation AV i, which denotes if the respective domain
of these mappings is from EN (direct attribution) iff
i = 0, or from AV i (indirect attribution) iff 0 < i≤ imax
(where imax denotes the maximum indirection degree
in a model). Whenever used without an index, the
respective set symbol denotes any possible indirection
degree, i. e. AV =

⋃
0≤i≤imax AV i and similar for AA.

While the above description of AR already al-
lows for arbitrary representations of attribute evalu-
ation – both enumeration-based and formula-based –
the application-specific requirement of environmental
information leads to another, complementary distinc-
tion of primitive model components.

Another requirement not addressed so far relates
to an explicit distinction between internal and external
domain. For a modeled AC system, the internal do-
main (also called authorization domain) contains any
local information and any authorization rules of the
AC system. The external domain (information domain)
contains observable, external information, which can-
not be controlled by the AC system: it cannot effect,
anticipate, or causally explain any changes in the ex-
ternal domain. Formally, we demand that any primi-
tive model component is exclusively member of either
the internal or the external domain, which results in
a classification orthogonal to the semantical families
introduced so far. We thus refine them as follows:

EN: are internal entities, whose creation, destruction,
and modification solely occurs within the domain
of the AC system;

ENext: are external entities, which are observable at
the AC system’s interface to another domain (con-
trolling their observability);

AV: are internal attribute values assigned through
mechanisms implemented in the AC system;

AVext: are external attribute values, whose assign-
ments are observable by the AC system;

The Missing Piece of the ABAC Puzzle: A Modeling Scheme for Dynamic Analysis

237

Table 1: Summary of DABAC families. Indices n,m ∈ N are independent for each row.

internal external

EN EN = {E1, . . . ,En}, where E1,...,n are policy-specific sets of
internal entities

ENext = {En+1, . . . ,En+m}, where En+1,...,n+m are
policy-specific sets of external entities

AV
AV i = {V1, . . . ,Vn}, where V1,...,n are policy-specific sets of
internal attribute values of indirection degree 0≤ i≤ imax

AVext
i = {Vn+1, . . . ,Vn+m}, where Vn+1,...,n+m are

policy-specific sets of internal attribute values of
indirection degree 0≤ i≤ imax

AA

AA0 = {att : E → V |E ∈ EN ∧ (∃V ′ ∈ AV0 : V = V ′ ∨V =
P (V ′))}, where att are internal direct attribute mappings;
AAi = {att : Vi−1→Vi |Vi−1 ∈ AV i−1∧(∃V ′i ∈ AV i : Vi =V ′i ∨
Vi = P

(
V ′i

)
)}, where att are internal attribute mappings of

indirection degree 0 < i≤ imax

AAext
i are external attribute mappings analogous

to AAi,0≤ i≤ imax

AR

AR = {authp : [v1, . . . ,vnp]→ B, np ∈ N | p ∈ Perm ∧ (∃Vk ∈
AV ∪AVext : vk ∈Vk∨vk ∈ P (Vk) ,1≤ k≤ np)}, where authp
are authorization functions for each permission p, which map
a vector of (internal or external) AV elements to a boolean
decision value

not applicable

AA, AAext: are attribution mappings for internal/exter-
nal attribute associations analogous to AV/AVext;

AR: describe system functionality rather than infor-
mation. To this end, a distinction based on control-
lability vs. observability is not applicable. Still,
however, since authorization is internal function-
ality of the modeled system, we will technically
treat them as part of the internal domain.

3.2.2 Model Dynamics

Being the key-enabler for safety analysis, the deter-
ministic automaton is formalized in the next step.

State Space. As the automaton’s state space de-
scribes model components subject to runtime mutabil-
ity, we refrain from defining it on a modeling scheme
level here. Instead, we generalize state-specific in-
stances of primitive model components from the fami-
lies EN and AA as follows:

Γ =×
k∈K

P (Ek)××
l∈L
{attlγ : X →V |

attl : X ′→V ∧X ⊆ X ′}
where Ek ∈ EN and K ⊆ {1, . . . , |EN|} is an index enu-
meration of dynamic internal entities sets; attl ∈ AA
and L⊆ {1, . . . , |AA|} is an index enumeration of dy-
namic internal attribute mappings. For addressing
model components in a state γ ∈ Γ, we will use γ

as a subscript, i. e. γ = 〈E1γ, . . . ,E|K|γ,att1γ, . . . ,att|L|γ〉.
Similarly we will use the regular expression [γ∗] as
a subscript of dynamics-agnostic model components,
such that Ek[γ∗] = Ekγ in a DABAC model where k ∈K,
but Ek[γ∗] = Ek otherwise.

The rationale for this is twofold. First, for the muta-
ble portion of an ABAC policy, there is no security-
relevant use case for creating or deleting elements of
an AV, since entities are the sole endpoint abstraction
for any access decision. Attribute values, on the other
hand, are relevant for such decision only as far as
they are assigned to entities – which implies that AA
may be mutable in order to model dynamic AC system
reconfiguration. AR, finally, must be immutable to pre-
vent a self-modifying policy (in contrast to our goal,
a dynamically modifyable model state). Moreover,
since authp ∈ AR are defined based on AV elements
(for both enumerated and formula-based ABAC), the
immutable nature of the latter formally requires the
former to be immutable as well.

Second, according to the definition of Γ, model
components from the external domain must never be
part of the automaton’s state space. The reason for
this is a direct consequence from their rationale as a
model abstraction: Since an AC system cannot con-
trol, i. e. create, delete, or modify, such components,
we cannot alter (nor even formalize) their mutability
rules (cf. ∆) to allow for the correction of policy errors
that dynamic analyses might expose. Nevertheless,
since external components might still impact the au-
thorization of policy-specific operations (which we
will formalize as logical pre-conditions in ∆), they
must not be ignored. This results in a deliberate deci-
sion not to model any external state, but instead treat
external model components similar to static, internal
components, just without any guaranteed assumptions
w. r. t. to their dynamics.

Consequently, the dynamic portion of the policy
might be expressed by simply selecting mutable primi-
tive model components from EN and AA.

SECRYPT 2021 - 18th International Conference on Security and Cryptography

238

State Transitions. To formalize (1.) how authoriza-
tion decisions are made and (2.) how mutable model
components change, we discuss next how to define the
automaton’s interface Σ and STS ∆. Σ, representing
parameterized input operations, and ∆, representing
state-change rules, both rely on the definition of AR,
which also yields the set of possible permissions Perm.

Formally, we define Perm as a set of atomic identi-
fiers and Σ as follows:

Σ = {
〈
op, [a1, . . . ,anop]

〉
|op ∈ OP∧

(∃Ak ∈ EN∪ENext∪AV ∪AVext :
ak ∈ Ak,1≤ k ≤ nop)}

where OP is a set of atomic identifiers for operations
made available by the AC system and [ak] is a vector
of operation-specific argument values from either EN
or AV, both internal or external. This way, the automa-
ton’s interface is policy-agnostic w. r. t. the semantics
of possible access operations.

To finally address the two modeling tasks
stated above, we express both pre-conditions (and
thus authorization decisions) and post-conditions
(changes of mutable components) through a set of
tuples ∆ ⊆ Σ × P (Perm) × Φ, where each 〈σ =〈
op, [ak]

nop
k=1

〉
,Permop,φop〉 is written as:

I op(a1, . . . ,anop) ::=
VAR: v1 = φ1, . . . , vmop = φmop

PRE:
∧

p∈Permop authp([vpk]
np
k=1)

POST: φop

This notation lists a CNF of AR as the pre-condition
(abbreviated op.PRE) and a boolean expression φop as
the post-condition (abbreviated op.POST) of any state
transition to be authorized via operation op. On an au-
tomaton level, this means that op.PRE restricts which
states γ to legally transition from, while op.POST de-
fines any differences between γ and the state γ ′ reach-
able by any input word σ. Finally, φop consists of redef-
initions of one or more mutable primitive model com-
ponents, or just of “true” in case of not state-modifying
operations (i. e. γ = γ ′). Note that, while not required
for the same expressive power, the additional section
VAR supports model engineers as well as model read-
ers by explicitly naming (individual or sets of) attribute
values v1,...,mop extracted from γ through definitions
φ1,...,mop ∈Φ which are then used in op.PRE (such that
indices pk are from {1, . . . ,mop} if vpk is not a con-
stant) or in op.POST. See Fig. 2 for some examples.

One may observe that we do not define an output
function. The reason for this is that any safety property
always aims at changes in potentially reachable pro-
tection states – which only state-modifying operations
might produce. However, for actually implementing a

DABAC model in the last MSPE step, one may easily
derive its access control function (ACF), even with-
out an explicitly formalized output function, based on
AR. For this purpose, we explicitly allow the model
engineer to include not state-modifying operations in
the STS (in contrast to e. g. classical HRU models for
safety analysis (Harrison et al., 1976)).

3.2.3 Model Safety

We conclude the discussion of DABAC formalisms
with the actual goal of dynamic analysis. As already
introduced, the modeling scheme aims at a generaliza-
tion of the reachability property for protection states
that impact the ACF of the model, which might lead
to any form of privilege escalation in a model’s terms.

Similar to how an access matrix containing access
rights formalizes an ACF, we defined AR containing
permission authorization functions to formalize the
same for a DABAC model. To this end we propose a
most general DABAC safety definition based on the
term of permission leaks.

Definition 1 (Permission Leak). For two states γ

and γ ′ of a DABAC model, γ ′ leaks a permission
p ∈ Perm w. r. t. γ iff there is either (1.) an X ∈ EN
and an att ∈ AA0 (direct leakage) or (2.) an X ∈ AV
and an att ∈ AAi, i > 0 (indirect leakage), such that

∃{x1, . . . ,xnp} ⊆ X[γ]∗ ∩X[γ ′]∗ :

authp([att[γ]∗(xh)]
np
h=1) = false

∧ authp([att[γ ′]∗(xh)]
np
h=1) = true.

Some observations towards this definition should be
discussed first. (1.) Potentially, both static and dy-
namic model components could be subject of a privi-
lege escalation, since even a static entity set might be
subject to changing attribution. The only exception is
a model in which an attribute mapping in AA0 is static,
which formally requires its domain set E to be static
as well. Consequently, we use the dynamics-agnostic
notation [γ∗] as introduced before. (2.) Likewise, both
direct and indirect attribute mappings must be taken
into account, since authp definitions are not restricted
to require only direct attribute values. (3.) Since priv-
ilege escalation is only relevant (and fixable) for the
internal domain of our modeled system, safety defi-
nitions only include internal model components for
the violating state γ ′. External components could still
contribute to a path in the model’s state space for γ ′

to be reachable, though. (4.) We deliberately ask for
leaks effected by such model component values xh that
are already present in γ. The reason for this is practi-
cal rather than technical: We agree with (Tripunitara
and Li, 2013) that a meaningful safety analysis result

The Missing Piece of the ABAC Puzzle: A Modeling Scheme for Dynamic Analysis

239

should expose entities or indirect attribute values that
a model analyst can identify in γ and therefore relate
to some actual vulnerability in terms of her policy.

Def. 1 leads to our model-independent definition
of DABAC safety.

Definition 2 (〈p〉-Safety). For a state γ of a DABAC
model and a permission p ∈ Perm, is there an input
sequence σ1, . . . ,σn ∈ Σ∗ that leads from γ to γ ′ via ∆

such that γ ′ leaks p w. r. t. γ?
If no such sequence exists, γ is called 〈p〉-safe.

In natural prose, we ask “Is it possible that some entity
without a specific permission gains this permission
in the future?” Note that this subsumes the question
“Is it possible that an operation op, which evaluates
to op.PRE = false for some arguments, evaluates to
op.PRE = true for the same arguments in the future?”,
which might be asked from a practitioner’s view. For
any concrete DABAC model, the final step of model
engineering is to adapt Defs. 1 and 2 to model-specific
EN and AA, which paves the way for a subsequent,
tool-based analysis.

As with classical safety, both definitions might be
further refined (cf. (Tripunitara and Li, 2013)). The
idea here is to add, additionally to p, model-specific
parameters that confine our analysis cases to relevant
model component values (analysis targets) xh. These
could be security-critical objects, untrusted users and
the like; again, we support iterative MSPE by allowing
for a step-by-step increase of granularity here – starting
from Def. 2, which only relates to a state γ and a
permission p (in the notation “〈parameter(s)〉-safe”).

Wrapping up, a parameterized analysis query
amends the model-specific safety definition as follows.

Definition 3 (Safety Analysis Query). A DABAC
safety analysis query is a tuple 〈γ0, p, [τ1, . . . ,τn]〉,
where γ0 ∈ Γ is a model state to analyze, p is the target
permission to analyze, and [τk]

n
k=1,τk ∈ EN ∪AV is a

vector of additional analysis targets.

Composed Safety. For practical policy analysis, we
expect an even more specialized safety question re-
lating to future conditions for authorizing a complete
operation instead of granting a particular permission.
Again, such questions might be expressed through an-
other refinement step, which results in a composed
safety definition for a corresponding, specialized anal-
ysis query. Composed safety can be regarded as a
conjoining macro over multiple, operation-specific in-
stances of 〈p〉-safety for a specific policy.

We hence conclude this discussion with a definition
of such a macro to query composed safety for a fully
parameterized input operation.

Definition 4 (〈op〉-Safety Analysis Query). An
〈op〉-safety analysis query is a tuple 〈γ0,op, [x1, . . . ,
xnop]〉, where γ0 ∈ Γ is a model state to analyze, op is
the target operation to analyze, and x1,...,nop are actual
arguments of op.

Definition 5 (〈op〉-Safety). Given an 〈op〉-safety
analysis query q = 〈γ0,op, [x1, . . . ,xnop]〉 against a
DABAC model such that 〈〈op, [ak]

nop
k=1〉,Permop,

φop〉 ∈ ∆. Is there an input sequence σ1, . . . ,σn ∈ Σ∗

that leads from γ0 to γ ′ via ∆ such that both of the
following is true:

• φop = true for the input
〈
op, [xk]

nop
k=1

〉
in state γ ′ and

• ∃p ∈ Permop : 〈p〉-safety for the query 〈γ0, p,
[xk]

nop
k=1〉 is false?

If no such sequence exists, 〈op〉-safety for q is true.

After having defined model components and model
dynamics for an application scenario, we end up with
a model-specific safety property and analysis query.
These pieces will be put together be an exemplary
MSPE workflow illustrated in § 4.

3.2.4 Expressive Power of DABAC

To discuss the expressive power of DABAC, we com-
pare it with two recent ABAC modeling schemes
whose goals overlap with our modeling scheme:
(1.) versatility to express diverse ABAC policies and
(2.) dynamic analysis capabilities. More specifically,
we have selected ABACα (Jin et al., 2012) and C-
ABAC (Fernández et al., 2019) (see § 2). The goal
is to demonstrate that DABAC can be used to formal-
ize instances of both modeling scheme. Due to space
limitations, we will present an informal argumentation
based on the most relevant formalisms; a more com-
prehensive study of both DABAC expressiveness and
expressive power is subject to ongoing work.

ABACα. Other than DABAC, ABACα does not gen-
eralize ABAC semantics, but instead aims at be-
ing as specific as possible. This results in model-
independently predefined EN for subjects S, users U ,
and objects O. While ABACα do not explicitly define
AV, they are implicitly part of attribution functions,
which again reflect the three entity sets. To enable
model-specific user attributes for example, there is
UA = {ua |ua : U → Vua}, where Vua is either an AV
or a power set of an AV; subject- and object-attributes
are defined analogously. So instead of defining AA0
based on AV0, as we did in Tab. 1, ABACα models
would require the opposite step order (still resulting
in the same semantics). Only direct attribution is sup-
ported. Because of its deliberate choice of semantic

SECRYPT 2021 - 18th International Conference on Security and Cryptography

240

frugality, ABACα does not make a distinction between
internal and external domains.

While the ACF of ABACα models can be
flexibly defined in first-order logic, the function
Authorizationp : S×O→ B defined for this purpose
differs from authp functions in DABAC in that it re-
quires to specify how attribute values for the entities
passed as parameters (instead of AV elements) are de-
rived. For DABAC, we deliberately deny this opportu-
nity by the formal definition of AR in order to prevent
possible conceptional errors introduced by specifying
this part of the policy. The mindset here is that, for
clean ABAC semantics, permissions have to be granted
exclusively based on attribution, but never on iden-
tity – which is possible in ABACα, again deliberately
to support IBAC policies as well. Having that said,
this difference relates to intended usage rather than
expressive power, since any attribute values passed to
an authp can be derived in the VAR section of STS
definitions in DABAC.

Although not in automaton notation, ABACα mod-
els are dynamic. Any model-specific STS however
is fixed to a set of eight state-modifying operations,
each with their predefined PRE and POST expressions,
which might be rewritten in DABAC notation in a
straight-forward way. This is a main reason for strong
analytical features such as decidable safety (Ahmed
and Sandhu, 2017), but also restricts ABACα expres-
sive power to dynamics less general than in DABAC.

C-ABAC. C-ABAC takes a different approach than
ABACα, which shares more similarities with DABAC
in terms of model engineering. This mainly originates
from the generalized semantics of ABAC abstractions
inspired from CBAC in both cases; it however results
in different formalisms due to our requirements of
automaton-based analysis and functional policy spec-
ification. Still, because of their generality, basic C-
ABAC semantics can be transformed into DABAC in
a straight-forward way.

From what C-ABAC calls entities, both its fami-
lies P (principals) and R (resources) precisely map
to EN for the internal domain. Since Env represents
environment entities (such as networks, channels etc.
(Fernández et al., 2019)), this set equals ENext. An-
other, abstract set of entities is based on CBAC cate-
gories: the set C in C-ABAC is an additional level of
indirection between EN and AV, which can be used to
express attribute classification and parameterization.
In DABAC, this exact use case is covered by indirect
attribution, so C is part of AV1 here.

Two C-ABAC families At and V are used for
model-specific definitions of attributes and AV, respec-
tively: while the former defines an abstract, model-

specific set of attribute identifiers, the latter represents
appropriate (model-specific) AV. The actual attribution,
expressed by att functions in DABAC, is then formal-
ized through four relations: PAtA for AA0 functions
on EN in P , RAtA for AA0 functions on EN in R ,
and EAtA for AA0 functions on ENext, and CAtA for
AA1 functions. Each of these represents attribution by
association with multiple tuples from At ×V .

The most distinct feature of C-ABAC in contrast
to DABAC is how it handles operational semantics:
While the DABAC requirement of functional specifi-
cation and analysis resulted in an automaton model, C-
ABAC follows CBAC in a purely axiomatic approach.
This has two important consequences: (1.) The ACF
of C-ABAC models has a more structured formaliza-
tion that in DABAC. Instead of operation-specific con-
junctions of authp definitions, which a model engi-
neer might mix and match without further restriction,
C-ABAC defines a model-independent authorization
axiom. While perfectly rewritable in the PRE sec-
tions of a DABAC STS, this normalization supports
static analyses of C-ABAC models by stronger assump-
tions on authorization conditions. (2.) With respect to
state-modification, the POST notation of DABAC goes
beyond C-ABAC since it explicitly specifies model dy-
namics. As already discussed in § 2, DABAC does not
separate administrative from non-administrative oper-
ations, for which the authors of C-ABAC presented
Admin-CBAC as a parallel modeling scheme instead.
Finally, it should be highlighted that in terms of ex-
pressiveness rather than expressive power, all three
modeling schemes discussed here are tailored to their
respective use cases – since mere simulation of com-
mon ABAC semantics does not necessarily mean that
model formalisms are suitable for their intended pur-
poses, such as analyzing static or dynamic properties
or enabling tool-supported implementation. With an
MSPE workflow and dynamic properties to analyze
as a goal, we have tailored DABAC to support this
specific use case without sacrificing the opportunity
to switch to another modeling scheme as soon as such
becomes more appropriate for practical reasons.

4 PRACTICAL APPLICATION

The key motivation for DABAC is to support MSPE by
enabling comprehensive analyses of ABAC policies
regarding dynamic model properties. In this section,
we demonstrate the practical application of DABAC
to an exemplary policy based on a scenario in the
health care domain. Balancing security and usability
in this scenario is practically challenging. On the one
hand, confidentiality and integrity of health care data

The Missing Piece of the ABAC Puzzle: A Modeling Scheme for Dynamic Analysis

241

as well as preventing unauthorized access to sensors
and actuators is a critical requirement, on the other
hand, patient-oriented treatment workflows must be
possible at any time. In the following, we will guide
through the steps of engineering a DABAC model for
this policy (§ 4.1) and refining it based on a model
analysis (§ 4.2) in a simplified MSPE process.

4.1 Model Engineering

The exemplary security policy and its DABAC model
are settled in the context of a smart health care scenario
comprising a hospital information system (HIS) for
medical data management with remote patient monitor-
ing capabilities based on external medical IoT sensors
and actuators, such as can be found in (Ray et al., 2017;
Mukherjee et al., 2017).

Primitive Model Components. Acting system enti-
ties are users, which are either human users or their
personal (smart) devices. The following entities are
subject to accesses by users:

• objects, representing data objects, such as patient-
specific electronic health records (EHRs);

• sensors, representing interfaces to health monitor-
ing sensors connected to patients, such as clinical
thermometers;

• actuators, representing interfaces to medical actu-
ators connected to patients, such as insulin pumps.

In model terms, user entities (set U) and object entities
(set O) are internal entities. In contrast, both sensor
entities (set Sen) and actuator entities (set Act) are
logically and physically separate from the AC system,
hence external entities. For illustration purposes, O
represents EHRs, Sen represents thermometers, and
Act represents insulin pumps. The individual elements
of these sets are patient-specific, i. e. for each a one-to-
one mapping to patients is assumed.

The considered policy is modeled based on at-
tributes which reflect the hospital’s organizational
structure and workflows. Each user is assigned a role,
such as physician, nurse, or patient, that enables ac-
cessing (passive) entities for the accomplishment of
tasks. Orthogonally, each user is assigned to a hospital
ward, such as internal, ICU, or surgery. Consequently,
user entities are attributed by two functions attUR and
attUW with role and ward attribute values (from R re-
spectively W). For sake of simplicity, we allow one
role and one ward per user.

Rather than a patient being purely assigned to a
ward for the treatment of a disease and, thus, all users
assigned to that ward having access to her EHR, the
policy is specified more fine-grained: By introducing

. authread(ru ∈ R)⇔ ru 6= rPatient

. authshareCases(Iu ⊆ I, Io ⊆ I)⇔ Iu∩ Io 6= /0

. authassign(ru ∈ R)⇔ ru = rManager∨ ru = rPhysician

. authisAssignee(ru ∈ R,ru′ ∈ R)⇔
((ru = rManager∧ ru′ = rPhysician) ∨ ru′ = rNurse)

. authdelegate(ru ∈ R)⇔ ru = rPhysician

. authisDelegate(ru ∈ R)⇔ ru = rPhysician

Figure 1: Exemplary definitions of authorization functions
for permissions in the DABAC HIS model.

treatment cases, only exactly those physicians and
nurses assigned to care in a case will have access to
an EHR. Additionally, assigned treatment personnel
may belong to different wards. In our model, this is
realized by the attribute value set I containing medical
case identifiers (represented by indexing) as well as the
attributions attUI and attOI , which attribute (1.) users
related to that case (assigned physicians or nurses,
patients treated) and (2.) EHR objects that represent
the information about that case.

The external entities, thermometer sensors and in-
sulin pump actuators, are attributed as follows: each
temperature sensor is attributed with a temperature
value from the set Temp by attST and each insulin
pump actuator is attributed with a dose value from the
set Dose by attAD.

Following the components from EN, AV, and AA
families, we now conclude by defining the AR fami-
lies. Generally, AR contains a set of attribute-checking
permissions (modeled as authorization functions). As
an example, we have presented a selection of defini-
tions in Fig. 1, which, subsequently, are also used in
the STS operations. Their semantics are as follows:

authread: The permission read is granted any role other
than rPatient.

authshareCases: The permission shareCases is granted
iff given case attribute value sets Iu and Io have a
non-empty intersection.

authassign: The permission assign is granted for the
roles rManager or rPhysician.

authisAssignee: The permission isAssignee is granted
iff either a physician or a nurse is assignee, where
only managers can assign cases to physicians.

authdelegate: The permission delegate is granted for the
delegator role rPhysician.

authisDelegate: The permission isDelegate is granted
for the delegate role rPhysician.

Note that authdelegate and authisDelegate have different
semantics here, their identical definition is merely due
to the simplifications of the example scenario.

SECRYPT 2021 - 18th International Conference on Security and Cryptography

242

Table 2: Overview of DABAC HIS primitive model components and their instantiation (functions written in relational style).

Symbol Description HIS Instantiation

EN
U set of user identifiers {drCox, drKelso, drJD, nurseCarla, nurseLaverne,

mrsFriendly, mrBruise, msPregnant, ...}
O set of (data) object identifiers {ehrMrsFriendly, ehrMrBruise, ehrMsPregnant, ...}

ENext Sen set of sensor identifiers {sThermometerMsPregnant, ...}
Act set of actuator identifiers {actPumpMrsFriendly, ...}

AV0

R set of role attribute values {rPhysician, rPatient, rNurse, rParamedic, rMan-
ager, rClerk}

W set of ward attribute values {wInternal, wICU, wSurgery, wCardiology,
wMaternity}

I set of numerical case identifiers I ⊆ N

AVext
0

Temp set of temperature attribute values Temp⊆ N
Dose set of drug dose attribute values Dose⊆ R

AA0

attUR : U → R user-role-attribution {〈nurseCarla, rNurse〉 ,〈drCox, rPhysician〉 ,
〈drKelso, rPhysician〉 , ...}

attUW : U →W user-ward-attribution {〈nurseCarla,wInternal〉 ,〈drCox,wInternal〉 ,
〈drKelso,wMaternity〉 , ...}

attUI : U → P (I) user-cases-attribution {〈drKelso,{42}〉 , ...}
attOI : O→ P (I) EHR-cases-attribution {〈ehrMsPregnant,{42}〉 , ...}

AAext
0

attST : Sen→ Temp sensor-temperature-attribution not applicable
attAD : Act→ Dose actuator-dose-attribution not applicable

AR AR set of permission authorization
functions

{authread,authshareCases,authassign,authisAssignee,
authdelegate,authisDelegate, ...}

All described primitive components and their instanti-
ations (cf. automaton’s initial state) for our model are
summarized in Tab. 2.

Model Dynamics. In DABAC, model dynamics are
defined based on a specialized deterministic automa-
ton. The model dynamics are defined as described in
§ 3.2.2 and tailored model-specifically as follows:

• Γ= P (U)×P (O)×{attURγ
: Uγ→ R |Uγ ⊆U}×

{attUWγ
: Uγ → W |Uγ ⊆ U} × {attUIγ

: Uγ →
P (I) |Uγ ⊆U}×{attOIγ

: Oγ → P (I) |Oγ ⊆ O},
where γ =

〈
Uγ,Oγ,attURγ

,attUWγ
,attUIγ

,attOIγ

〉
∈

Γ is a single protection state;

• OP = {readEHR, appendToEHR, createEHR, de-
leteEHR, fetchTemp, pushDose, addUser, remove-
User, assignCase, delegateCase, revokeCase};

• ∆ is defined by a set of operations according to the
identifiers from OP. Generally, users may read
or write objects, read but not write sensors, and
write but not read actuators.2 Fig. 2 illustrates three

2In practice, there might be devices such as ICU bedside
monitors which both allow to monitor (“fetch”) real-time
patient data, as well as to store (“push”) history records
from newly arrived patients. These could be modeled by a
common identifier, both in Sen and in Act. However, for the
sake of simplicity, we assume Sen∩Act = /0 in this example.

I readEHR(u ∈Uγ,o ∈ Oγ) ::=
VAR: ru = attURγ

(u), Iu = attUIγ
(u), Io = attOIγ

(o)
wu = attUWγ

(u),
I′ =

⋃
u′∈Uγ\{u},attUWγ (u′)=wu

attUIγ
(u′)

PRE: authread(ru) ∧ authshareCases(Iu, Io) ∧
authshareCases(I′, Io)

POST: true

I assignCase(u ∈Uγ,u′ ∈Uγ, i ∈ I) ::=
VAR: ru = attURγ

(u), ru′ = attURγ
(u′), Iu = attUIγ

(u)
PRE: authassign(ru) ∧ authisAssignee(ru,ru′) ∧

authshareCases(Iu,{i})
POST: attUIγ ′ (u

′)← attUIγ
(u′)∪{i}

I delegateCase(u ∈Uγ,u′ ∈Uγ, i ∈ I) ::=
VAR: ru = attURγ

(u), ru′ = attURγ
(u′), Iu = attUIγ

(u)
PRE: authdelegate(ru) ∧ authisDelegate(r′u) ∧

authshareCases(Iu,{i})
POST: attUIγ ′ (u

′)← attUIγ
(u′)∪{i}

Figure 2: Exemplary definitions of STS operations for the
DABAC HIS model.

representative examples readEHR, assignCase, and
delegateCase. Their semantics are as follows:

readEHR represents an operation to read an EHR. A
user u ∈Uγ is allowed to read o ∈ Oγ iff (1.) u is
attributed a role ru ∈ R other than rPatient, i. e. no
patient may read3 (authread), (2.) u shares cases

3With respect to the scenario’s background, one might

The Missing Piece of the ABAC Puzzle: A Modeling Scheme for Dynamic Analysis

243

Table 3: Overview of additions to DABAC HIS primitive model components and their instantiation.

Symbol Description HIS Instantiation

AV0, AV1 T set of team attribute values T ⊆ N

AA0

attUT : {u ∈U |attUR(u) ∈ {rPhysician,
rNurse, rParamedic, rManager}}→ T

user-team-attribution {〈drKelso,4242〉 ,〈drCox,4242〉 ,
〈nurseCarla,4242〉 , ...}

AA1 attTI : T → P (I) team-case-attribution {〈4242,{42}〉 , ...}

with o (authshareCases), and (3.) there is at least one
user, who shares cases with o and who is from
the reader’s own ward (last statement in VAR and
authshareCases). Given all permission checks evalu-
ate to true, POST does not have any effect on the
model state and, thus, evaluates to true.

assignCase represents the assignment of treatment ca-
pabilities. A user u∈Uγ is allowed to assign a case
i ∈ I to user u′ ∈Uγ iff (1.) u is attributed with role
rPhysician or rManager, i. e. the assigner is either a
physician or manager (authassign), (2.) the assignee
u′ is attributed with rNurse or, if u is a manager,
rPhysician (authisAssignee), and (3.) u is attributed
with case i (authshareCases). Given all permissions
are successfully evaluated to true, POST renders a
new state by additionally attributing u′.

delegateCase covers medical referrals and treatment
delegations in the sense of “a physician assigns
another physician responsibility for some case”.
Thus, a user u ∈Uγ is allowed to delegate a case
i ∈ I to user u′ ∈Uγ iff (1.) u is attributed with role
rPhysician (authdelegate), (2.) the delegate u′ is at-
tributed with role rPhysician as well (authisDelegate),
and (3.) u is attributed with case i (authshareCases).
Given all checks evaluate to true, POST renders a
subsequent state by attributing u′ with i.

4.2 Model Analysis

Once a model has been designed, the model engineer is
interested in whether it meets the required correctness
guarantees. Such questions are asked and answered in
the model analysis step.

Analysis. We exemplarily consider the following
practical analysis question in the given scenario: Is
nurseCarla ever able to read ehrMsPregnant? This
precisely reflects a query regarding the 〈op〉-safety
(Def. 5), where op equals readEHR. Based on the

argue that a patient should be allowed to read her own EHR
at any time. This could be easily achieved by just remov-
ing the authread authorization clause in PRE. Note that this
relaxation cannot be made for appendToEHR.

given initial state γ0, this query would be expressed by
〈γ0, readEHR, [nurseCarla,ehrMsPregnant]〉.

In general, safety properties are undecidable. Nev-
ertheless to be able to perform safety analyses, a pos-
sibility is to restrict a model w. r. t. its dynamics and,
thus, its expressive power (cf. ABACα and Admin-
CBAC). Since our goal is to maintain a model’s expres-
sive power, we instead exploit the semi-decidability
of safety: Given a model state γ and another state γ ′

reachable from γ, it is efficiently decidable whether in
γ ′ the considered safety property is violated.

In order to find such states efficiently – espe-
cially in practical complex and extensive model in-
stances – heuristic approaches have been developed.
Sophisticated heuristics, such as DepSearch (Amthor
et al., 2013) and WSDepSearch (Schlegel and Kühn-
hauser, 2020), are based on the dependency search
approach exploiting inter-dependencies of STS opera-
tions, where the necessary pre-condition of an opera-
tion are established by the post-condition of another
operation. Thus, in order to show the unsafety of a
given model state, a privilege escalation is explicitly
induced by executing a sequence of STS operations
and a clever choice of operation parameters.

By leveraging a heuristic algorithm as outlined, a
possible sequence of operations and inputs leading to
a safety-violating state can be also identified in the
given model instance and rendered as follows:

1. delegateCase(drKelso, drCox, 42);

2. assignCase(drCox, nurseCarla, 42);

3. readEHR(nurseCarla, ehrMsPregnant).

Interpretation. To enable nurseCarla to execute
readEHR on ehrMsPregnant, the following pre-clauses
must be met: (1.) she must be authorized to read – this
is true since she is a nurse, not a patient; (2.) she must
be assigned to at least one case that ehrMsPregnant
is also assigned to; (3.) at least one user of the same
ward must be assigned that case.

The latter two pre-clauses must have been explic-
itly established beforehand due to the assignments
in the initial state (cf. Tab. 1). Being assigned to
case 42 by drCox via assignCase satisfies the second
pre-clauses for nurseCarla. For assignCase to be exe-

SECRYPT 2021 - 18th International Conference on Security and Cryptography

244

cutable (1.) drCox as assigner must be either physician
or manager – this is true; (2.) drCox as assigner and
physician must be attributed with this case; (3.) nurse-
Carla must be a nurse – this is also true.

Both, the second pre-clauses of assignCase and
third pre-clauses of readEHR, become satisfiable by
the delegation of case 42 to drCox by drKelso via
delegateCase: (1.) drKelso as delegator and drCox as
delegate are both physicians; (2.) drKelso is assigned
to this case. have se Consequently, a potential privi-
lege escalation is possible on a ward-by-ward base, i. e.
if at least one member (any one) of ward x is capable
of accessing cases originally treated in ward y, this
also holds for any other member of x. If, then again,
a different member of x is capable of accessing cases
from ward z, this may spread transitively.

Consequences. The model originally formalizes a
policy which is based on the organizational structure
of a hospital. Now, the analysis results produced a
more substantial understanding of possible privilege
escalation vulnerabilities that are anchored in this de-
sign. To address these design flaws, a reiteration step
in the model engineering phase of MSPE is necessary
to improve the model design.

One possible approach to fix the above-discussed
privilege escalation phenomenon is summarized in
Tab. 3. In order to cover the semantics of ward-
crossing treatment workflows, the attribute team, the
user-team-attribution attUT , and the indirect team-case-
attribution attTI are introduced. A team consists of
users, possibly from different wards, such that any
team could commonly treat cases independent from
their “original” wards.

5 CONCLUSIONS

This paper presents DABAC, a modeling scheme for
ABAC policies that enables automaton-based analysis
and specification of ABAC policies. By classifying
formal abstractions in the semantical levels of primi-
tive model components, model dynamics, and safety
properties, we support a mix-and-match approach that
streamlines the integration of DABAC models in the
MSPE workflow. Based on a common ABAC use-
case, we have highlighted how this approach could
pave the way to a more standardized, tool-supported
engineering of ABAC systems.

This is also reflected in our ongoing work: sup-
porting DABAC-based MSPE by tools in two areas
of application. These are (1.) semi-automated model
implementation, based on our previous work on model
specification languages (Amthor and Schlegel, 2020);

(2.) real-time monitoring of model invariants which
cannot be proven during model analysis, such as is
the case with a heuristically analyzed but formally
undecidable safety definition. For a real-world appli-
cation integration, our future work aims at leveraging
DABAC to implement correct and reliable risk-based
ABAC policies based on real-time threat information
from external sources.

REFERENCES

Ahmed, T. and Sandhu, R. (2017). Safety of ABACα Is
Decidable. In NSS ’17, pages 257–272.

Amthor, P. (2017). Efficient Heuristic Safety Analysis of
Core-based Security Policies. In SECRYPT ’17, pages
384–392.

Amthor, P. (2019). Aspect-oriented Security Engineering.
ISBN 978-3-7369-9980-0.

Amthor, P., Kühnhauser, W. E., and Pölck, A. (2013). Heuris-
tic Safety Analysis of Access Control Models. In SAC-
MAT ’13, pages 137–148.

Amthor, P., Kühnhauser, W. E., and Pölck, A. (2014).
WorSE: A Workbench for Model-based Security Engi-
neering. Comp. & Secur., 42(0):40–55.

Amthor, P. and Schlegel, M. (2020). Towards Language
Support for Model-based Security Policy Engineering.
In SECRYPT ’20, pages 513–521.

Barker, S. (2009). The Next 700 Access Control Models
or a Unifying Meta-Model? In SACMAT ’09, pages
187–196.

Basin, D., Clavel, M., and Egea, M. (2011). A Decade of
Model-Driven Security. In SACMAT ’11, pages 1–10.

Bertolissi, C., Fernández, M., and Thuraisingham, B. (2020).
Admin-CBAC: An Administration Model for Category-
Based Access Control. In CODASPY ’20, pages 73–84.

Bhatt, S. and Sandhu, R. (2020). ABAC-CC: Attribute-
Based Access Control and Communication Control for
Internet of Things. In SACMAT ’20, pages 203–212.

Biswas, P., Sandhu, R., and Krishnan, R. (2016). Label-
Based Access Control: An ABAC Model with Enu-
merated Authorization Policy. In ABAC ’16, pages
1–12.

Fernández, M., Mackie, I., and Thuraisingham, B. (2019).
Specification and Analysis of ABAC Policies via the
Category-Based Metamodel. In CODASPY ’19, pages
173–184.

Ferraiolo, D., Chandramouli, R., Kuhn, R., and Hu, V.
(2016). Extensible Access Control Markup Lan-
guage (XACML) and Next Generation Access Control
(NGAC). In ABAC ’16, pages 13–24.

Gupta, M., M. Awaysheh, F., Benson, J., Alazab, M., Patwa,
F., and Sandhu, R. (2020). An Attribute-Based Access
Control for Cloud-Enabled Industrial Smart Vehicles.
TII, 17(6):4288–4297.

Harrison, M. A., Ruzzo, W. L., and Ullman, J. D. (1976).
Protection in Operating Systems. Comm. of the ACM,
19(8):461–471.

The Missing Piece of the ABAC Puzzle: A Modeling Scheme for Dynamic Analysis

245

Hu, V. C., Ferraiolo, D., Kuhn, R., Schnitzer, A., Sandlin,
K., and Scarfon, K. (2014). Guide to Attribute Based
Access Control (ABAC) Definition and Considerations.
NIST Special Publication 800-162.

Jha, S., Sural, S., Atluri, V., and Vaidya, J. (2019). Security
Analysis of ABAC under an Administrative Model.
IET Inf. Secur., 13(2):96–103.

Jin, X., Krishnan, R., and Sandhu, R. (2012). A Unified
Attribute-Based Access Control Model Covering DAC,
MAC and RBAC. In DBSec ’12, volume 7371, pages
41–55.

Lang, B., Foster, I. T., Siebenlist, F., Ananthakrishnan, R.,
and Freeman, T. (2009). A Flexible Attribute Based
Access Control Method for Grid Computing. J. Grid
Comput., 7(2):169–180.

Marin, M., Kutsia, T., and Dundua, B. (2019). A Rule-based
Approach to the Decidability of Safety of ABACα. In
SACMAT ’19, pages 173–178.

Mukherjee, S., Ray, I., Ray, I., Shirazi, H., Ong, T., and
Kahn, M. G. (2017). Attribute Based Access Control
for Healthcare Resources. In ABAC ’17, pages 29–40.

Narouei, M., Khanpour, H., Takabi, H., Parde, N., and
Nielsen, R. (2017). Towards a Top-down Policy Engi-
neering Framework for Attribute-based Access Control.
In SACMAT ’17, pages 103–114.

Ray, I., Alangot, B., Nair, S., and Achuthan, K. (2017). Us-
ing Attribute-Based Access Control for Remote Health-
care Monitoring. In SDS ’17, pages 137–142.

Schlegel, M. and Amthor, P. (2020). Beyond Administration:
A Modeling Scheme Supporting the Dynamic Analysis
of Role-based Access Control Policies. In SECRYPT

’20, pages 431–442.
Schlegel, M. and Kühnhauser, W. (2020). Exploiting Hot

Spots in Heuristic Safety Analysis of Dynamic Access
Control Models. In SECRYPT ’20, pages 522–532.

Stoller, S. D., Yang, P., Gofman, M., and Ramakrishnan,
C. R. (2009). Symbolic Reachability Analysis for
Parameterized Administrative Role Based Access Con-
trol. In SACMAT ’09, pages 165–174.

Tripunitara, M. V. and Li, N. (2007). A Theory for Compar-
ing the Expressive Power of Access Control Models. J.
Comput. Secur., 15(2):231–272.

Tripunitara, M. V. and Li, N. (2013). The Foundational
Work of Harrison-Ruzzo-Ullman Revisited. TDSC,
10(1):28–39.

Vimercati, S. D. C. d., Samarati, P., and Jajodia, S. (2005).
Policies, Models, and Languages for Access Control.
In DNIS ’05, volume 3433/2005 of LNCS, pages 225–
237.

Xu, Z. and Stoller, S. D. (2015). Mining Attribute-Based
Access Control Policies. TDSC, 12(5):533–545.

SECRYPT 2021 - 18th International Conference on Security and Cryptography

246

