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Machine learning models’ goal is to make correct predictions for specific tasks by learning important proper-

ties and patterns from data. By doing so, there is a chance that the model learns properties that are unrelated
to its primary task. Property Inference Attacks exploit this and aim to infer from a given model (i.e., the target
model) properties about the training dataset seemingly unrelated to the model’s primary goal. If the training
data is sensitive, such an attack could lead to privacy leakage.

In this paper, we investigate the influence of the target model’s complexity on the accuracy of this type of
attack, focusing on convolutional neural network classifiers. We perform attacks on models that are trained on
facial images to predict whether someone’s mouth is open. Our attacks’ goal is to infer whether the training
dataset is balanced gender-wise. Our findings reveal that the risk of a privacy breach is present independently
of the target model’s complexity: for all studied architectures, the attack’s accuracy is clearly over the baseline.

1 INTRODUCTION

Machine Learning (ML) applications received much
attention over the last decade, mostly due to their vast
application range. It is generally accepted that data
plays a vital role in ML models’ performance, and
that more elaborate models can solve difficult tasks
more accurately as they can learn complex patterns
from data. Notwithstanding, besides improving the
performance, such ML models introduce privacy is-
sues for the underlying datasets (He et al. (2019)).
Training ML models typically requires significant
amounts of data, potentially private and sensitive data,
and the risk of privacy leakage is not negligible. Sup-
pose a classification model that, once trained, can
recognize the appropriate class of a data instance
by learning mapping patterns between the training
dataset and its original set of classes. This mapping is
contained within the model parameters, for instance,
in a neural network it is encoded in each neuron’s
weights. An attacker knowing the trained model pa-
rameters could also gain some information about the
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data it was trained on. This is the rationale of Property
Inference Attacks (PIAs) (Ganju et al. (2018); Melis
et al. (2019)), which aim at uncovering properties of
the dataset in which a given model was trained by an-
alyzing the parameters of the model only.

Given the current popularity and the increase in
performance of ML applications, it is reasonable to
question to which extent the training dataset is vul-
nerable to privacy attacks. In particular if improving
a model’s performance is realized by increasing the
complexity of the model. As more complex mod-
els have more parameters and can retain more in-
formation about the training dataset, intuitively one
may think that due to this information retention, more
complex models could be more sensitive to PIAs as
well. In this paper, we study this phenomenon, which
— if the model is trained on a dataset containing per-
sonal data — could lead to potential privacy leakage.

Contribution. In this work, we test the influence
of a model’s complexity on its vulnerability to PIAs.
Our setting is processing facial images; thus, we fo-
cus on Convolutional Neural Networks (CNNs), the
most common model of choice for computer vision
tasks. Given that we measure complexity in terms of
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the number of layers and weights of the model’s archi-
tecture, we hypothesize that more complex models are
also more sensitive to PIAs. To uncover whether and
how the risk of privacy leaks is influenced by the ar-
chitecture’s complexity of the model, we experiment
on nine different CNN architectures. For each, we
conduct 30 attacks based on 1500 shadow models.

Organization. In Section 2 we present works re-
lated to ours, then we describe the methodology we
follow to compose our attack (Section 3). In Section
4 we describe the implementation of our experimen-
tal setup, present the results of our attack and discuss
their meaning. Finally, in Section 5, we present final
remarks and the future directions for our work.

2 RELATED WORKS

Several security threats are studied regarding machine
learning focusing information security. For instance
(Shumailov et al. (2020)) present an ML attack target-
ing the model’s availability. According to (He et al.
(2019)) the main attack categories for integrity are
adversarial and poisoning attacks, while for confiden-
tiality, these are model extraction and inversion.

Adversarial attacks (Szegedy et al. (2013)) aim
to take advantage of the weaknesses of the target
model’s classification boundary to craft data instances
that are wrongly classified. Poisoning attacks (Mei
and Zhu (2015)) is similar to adversarial attacks as
their goal is to influence the prediction of the target
model. They do that by polluting the training set with
malicious samples. While those are realistic threats
to ML models’ integrity, they do not pose immedi-
ate risk to data privacy. Instead, our work focuses on
confidentiality attacks.

Concerning confidentiality (and privacy), the re-
cent survey (Rigaki and Garcia (2020)) gives a com-
prehensive overview of the subject. Here we only
briefly comment on the most relevant works for our
purposes, we refer the reader to that work for more de-
tails. Model extraction (Papernot et al. (2017); Wang
and Gong (2018)) attacks aim at inferring the behav-
ior of the target model to create a substitute model.
Model inversion attacks (Fredrikson et al. (2015);
Mehnaz et al. (2020)) aim at inferring information
about the training data, for example, by reconstruct-
ing a representative of a particular class of the training
set. In such a case (Mehnaz et al. (2020)) showed that
some subgroups are more vulnerable to this type of
attack than others.

Depending on the goal of the attacker, we can clas-
sify three more attacks under the category of model
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inversion: membership inference, reconstruction at-
tack, and property inference attack (PIA). Mem-
bership inference attacks (Truex et al. (2018); Mu-
rakonda et al. (2019)) aim at determining whether a
particular data instance was used for training. This
raises privacy concerns when the instance directly
maps to an identifiable individual, for instance, a
medical records dataset. In contrast, as its name sug-
gests, reconstruction attacks (Zhu and Han (2020); Li
et al. (2019)) take this one step further and aim at re-
covering both the training inputs and the correspond-
ing labels. The last category is the one of PIAs, the
subject of this study. It aims at inferring hidden prop-
erties of the dataset that are independent of any class
characteristics, and are therefore not necessarily re-
lated to the main classification task. Such properties
can be general statistics about the dataset or can re-
flect biases in the training data.

2.1 Property Inference Attacks

According to (He et al. (2019)), only four papers were
published on model inversion attacks, and researchers
have not yet entirely determined the vulnerability of
neural network architectures to privacy attacks such
as PIA. The works we discuss next perform PIAs in a
federated learning setting, which allows multiple par-
ticipants (also called clients by some works) to train a
standard model without the need to share data. After
each round of training, only the weights and the gra-
dients are exchanged, while data remains protected on
the participants’ premises.

The work presented in (Melis et al. (2019)) man-
ages to infer properties that hold for a subset of the
training data and that are independent of the property
the target model aims to predict. Since the attack is
performed during the training phase, it requires the
model updates that are exchanged between partici-
pants. In contrast, the attack we focus on does not
require the gradient values after each training round.
We also target properties that are true for the whole
dataset and not only for a subset.

In (Wang et al. (2019a)) three kinds of PIAs
are proposed: class sniffing, quantity inference, and
whole determination. Class sniffing detects whether
a training label is present within a training round.
Quantity inference determines how many clients have
a given training label in their dataset. The whole de-
termination infers the global proportion of a specific
label. Those attacks extract properties related to clas-
sification labels, and therefore to the main classifica-
tion task. We focus on properties that are, in theory,
unrelated to the task of the target model.

Attempts to explore user-level privacy leakage
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in a federated learning scenario is also subject of
recent works (Wang et al. (2019b); Pej6é (2020)).
They define client-dependent properties to precisely
characterize the clients and distinguish them from
each other, e.g., (Pejé (2020)) assume an honest-
but-curious setting and recover the participants’ qual-
ity information via a differential attack without extra
computational needs or access to the individual gradi-
ent updates.

2.2 Attacks Concerning Model
Complexity

A model inversion attack is presented in (Zhang et al.
(2020)). The authors study and theoretically prove
the attack’s relation with the model predictive power:
more complex models, which should have greater pre-
dictive power, should also be more sensitive to model
inversion attacks. However, the result of (Zhang et al.
(2020)) was not proven for PIAs, our focus.

Model inversion attacks are also studied in recent
works (Geiping et al. (2020)). This work analyzes the
effects of the target model’s architecture on the diffi-
culty of reconstructing input images. The authors in-
vestigate attacks on networks with various widths and
depths and found that the width has the most signif-
icant influence on the reconstruction’s quality. Con-
trary to ours, their study does not consider PIAs and is
restricted to federated learning as their attack utilizes
the gradient values.

In (Ateniese et al. (2015)) the first PIA attack us-
ing meta-classifiers is described, this is the methodol-
ogy of the attack we use in our paper. However, their
research does not focus on the privacy leakage caused
by such an attack (our goal), but instead on the im-
pact of the training set properties on the model per-
formance. They also attack models implemented via
Support Vector Machines and Hidden Markov Mod-
els using a binary tree meta-classifier, while we ex-
periment with deep neural network models.

Finally, an extension of the previous work is pre-
sented by (Ganju et al. (2018)). The authors focus on
neural networks and notice that a limitation of PIA
performance is due to a property of fully connected
networks called invariance. They propose two suc-
cessful strategies to reduce this and used a pre-trained
network to generate an embedding, which they feed
as input to their target neural network. However, they
do not study the influence of the type of layers and
the model’s architecture on the attack performance,
which is the goal of our work.

Table 1: Notations used in the rest of the paper.

Notation Meaning
M, Target model (CNN)
Dy Training dataset of the target model
P Property to be inferred
M;,,...,M;,  Shadow models, mimicking M;
Ws,,...,Ws,  Weights of the shadow models
Dy,,...,Ds,  Training dataset of the shadow models
D The dataset from which Dy, is created
M, Attack model to predict P about Dy
D, Training dataset of the attack model

composed by Wy, ..., W,

3 METHODOLOGY

Threat Model. Our target model is a CNN classifier.
We assume a training dataset for the classifier, which
contains sensitive data, e.g., data revealing racial or
ethnic origin, religious beliefs, or biometric data. We
assume an attacker whose goal is to infer general in-
formation about the training dataset, such as the pro-
portion of the training data having a property P. This
property is unrelated to the main classification task
of the model. We assume the attacker can fabricate
datasets similar to the original training dataset, e.g.,
(s)he knows from which distribution the original data
was created. Moreover, the attacker can manipulate
these datasets so that they either contain or not prop-
erty P. We also assume the attacker has access to the
target model and can train a large number of neural
networks.

We focus on the white-box setting, where the at-
tacker has access to the target model’s full architec-
ture and parameter values. Such information could
be obtained in many ways: for instance, it could be
shared explicitly as in Federated Learning. Alterna-
tively, when this information is not shared for neural
networks, it could still be obtained by creating a sub-
stitute model with a similar decision boundary as the
target model using a model extraction attack (Paper-
not et al. (2016)).

To improve readability of the next paragraphs, we
summarize the paper’s notations in Table 1.

Attack. We focus on PIAs whose goal is to extract
information about the target model’s training dataset.
This information is named property P, which can be
true or false. For instance, if the used dataset contains
images of faces, P can be defined as more than 20%
of the images within the dataset depict non-white peo-
ple. In this sense, PIA is transformed into a classifi-
cation problem: to determine whether a given model
was trained on a dataset with property P. This at-
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Dy with or without P
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Figure 1: Property Inference Attack using a meta-classifier
M, and datasets of shadow models {My,,...,Mj, }.

tack model can be understood as a meta-classifier as
the dataset on which it is trained composed of shadow
models, which are themselves classifiers.

The attack consists of training k£ shadow models
(Mg, ,...,M,) on k datasets (Dy, , ..., Dy, ) specifically
crafted to contain or not the target property P. The
training set (D,) for the attack model (M,) is com-
posed by the weights (Ws,,...,Ws,) of shadow mod-
els (Mg, ,...,Mj,) fabricated with the same architec-
ture as the target model M, .

The general overview of our attack is described in
Figure 1: we train an attack model that takes as input
the weights of the target model and outputs the proba-
bility the dataset used for training the target model has
property P or not. This is based on the baseline PIA
presented in (Ganju et al. (2018)), which serves our
purpose as we do not focus on the PIA itself but rather
on the PIA’s behavior performed on models with dif-
ferent complexities.

4 EXPERIMENTAL SETUP

The experiments were performed on a laptop with
an Intel 17-8750H (2.20GHz), 8GB RAM, an Nvidia
Quadro P600 GPU, and operating system Ubuntu
20.04. The shadow models’ training and the attack
models were both done using Pytorch and are avail-
able on a public repository!.

Datasets. To train the shadow models for our ex-
periments, we have selected CelebFaces Attributes
(CelebA) (Liu et al. (2015)) dataset, which contains
personal and sensitive information. This is a face at-
tributes dataset containing more than 200.000 face-
centered images of 64 by 64 pixels of more than
10.000 celebrities. The images are labeled using 40
physical attributes such as hair color, smiling, and
wearing a hat. Our shadow models and the target

Uhttps://github.com/MatPrst/PIA-on-CNN
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model are trained to detect whether the person ap-
pears with their mouth open in a given photo.

Although this might seem like an irrelevant clas-
sification task, at the time of execution of this work,
the world is undergoing a pandemic, and mouth cov-
ering masks is one of humanity’s currently available
weapons against the SARS-CoV-2 virus (Eikenberry
et al. (2020)). This task can be related to automated
mask detection?, especially since, in many places,
their use is compulsory.

Shadow Models. The shadow models
{My,,...,My, } are trained to mimic the target
model M,, i.e., to differentiate between images of
persons with and without their mouth open. However,
the attacker’s goal is to infer whether the training
set of a given model is composed of a seriously
unbalanced number of images of males. We would
like to detect disproportions above 40% which is
double of the rarely occurring 20% unbalance in the
real world (Hesketh and Min (2012)): P is true when
the model’s training set is composed of 70% or more
images containing males. It is important to note that
P is not related to the model’s classification task and
that the target model does not use, at any time during
training, the gender attribute.

The shadow models {My, ..., My, } have the same
architecture as the targeted model and are trained to
a reasonable level of accuracy to mimic the target
model’s behavior: the shadow models are at least 85%
accurate (on the mouth open classification task) when
the underlying distribution of the dataset is 51.7%.

Many shadow models are trained, as the attack
model’s inputs are the weights of the shadow mod-
els. For a specific target model architecture, we train
1800 shadow models. Since the computational cost
of training many shadow models is significant, we de-
cide not to use all images of CelebA. Rather, for each
shadow dataset {Dj,,..., Dy, }, we use only 2000 ran-
domly selected images. For half of the shadow mod-
els (i.e., 900 times) these 2000 images were selected
to have property P, while the remaining does not. The
exact proportion of males for each dataset was ran-
domly taken from a uniform distribution either above
or below 70%, respectively. It is important to note that
while each shadow model is trained using only 2000
images, they perform with at least 85% accuracy on
the whole test set of CelebA; therefore, they do not
overfit to their smaller training set.

We experimented on target model’s (and conse-
quently the shadow models’) architectures composed
of up to 9 layers, each of three kinds: convolution

Zhttp://tinyurl.com/2a8ewzvl
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layers, pooling layers, and fully connected layers.
We trained 9 architectures (Ay,...,Aq) which are pre-
sented in Table 2, while the description of each layer
is presented in Table 3. The models take as input
64 x 64 RGB face images and output each picture’s
probability of representing a person with mouth open.
Every architecture comprises 1-3 convolution layers,
each followed by a max-pooling layer with a ReLU
activation and 1-3 fully connected layers with a ReLU
activation. The shadow models are trained for 50
epochs using the Mean Squared Error loss and the
Adam optimizer with a learning rate of 0.001 and
without decay or regularization.

Attack Model and Evaluation. The attack model
classifies shadow models on whether they were
trained on a dataset with the property P. The dataset
used for the attack is composed of the 1800 shadow
models and is split into training (1500 models), vali-
dation (100 models), and test sets (200 models). The
training algorithm is presented in Algorithm 1. The
attack model is a simple multi-layer perceptron tuned
using the validation set and evaluated on the test set.

Algorithm 1: Attack model training.

1: procedure TRAIN_ATTACK(D, k)
2: let: D be the dataset of images, k be the number of
shadow models to train, Dy, be a subset of D, Py, be a
boolean value determining whether P is True on Dy,, D,
be the dataset used to train the attack model
Dy {}
fori«< 1,kdo
Dy, < sample subset of D
Py, < evaluate P on D,
M, < train(Dy,)
Wy, < getWeights(M,)
: Dy < D U{(Wy,,Py,)}
10: end for
11: M, < train(Dy)
12: return M,
13: end procedure

R Al 1

We tuned the attack model by performing a grid
search over the following hyper-parameters: learning
rate, loss function, batch size, optimizer, and the acti-
vation function of the first layer of the attack model.
The hyper-parameters values we used are presented
in Table 4. We trained six attack models for the 9
model architectures and each combinations of param-
eters during ten epochs. We selected the best param-
eters by combining the largest median accuracy over
the 9 model architectures.

The attack model’s inputs are the flattened weights
of the model it is trying to classify as having or not
the property P. Therefore, a target model architec-
ture with a larger number of parameters induces a

more comprehensive input layer for the attack model.
The attack model comprises two fully connected lay-
ers (the first with 10 neurons followed by a ReLU
activation and the second, the output layer, with one
neuron) which were trained 30-fold for 20 epochs for
each shadow model architecture. The average per-
formances (Mean Squared Error) is presented when
the Adam optimizer was used with learning rate 0.005
and without any regularization.

S DISCUSSIONS AND
CONCLUSION

Figure 2 summarizes the performance of our attack.
In detail, Figure 2a presents the accuracy of the at-
tacks on each target model architecture, which varies
between 56% — 80% depending on the architecture.
These results confirm the findings of (Ganju et al.
(2018)) that the target models do learn information
unrelated to the task they were trained to learn. We
create as many shadow models presenting the prop-
erty P as ones not presenting it in our setup. There-
fore, the expected baseline is 50% accuracy. Our at-
tack’s accuracy are always above this baseline inde-
pendently of the underlying architecture.

We performed PIAs on distinctive neural network
architectures with different amounts and types of lay-
ers. As convolution layers and fully connected ones
play different roles in a CNN, we also tested whether
the type of used layers impacts the attack’s accuracy.
Thus we conducted three additional PIAs on each of
the architectures presented in Table 2: 1) using all
the weights of the shadow model; 2) using only the
weights of the convolution layers, and 3) using only
the weights of the fully connected layers. Figure 2b
presents the accuracy of the three attacks. For most
target model architectures, the PIA using only the
fully connected weights performs as well, and some-
times better, as the PIA using the weights from both
types of layers. Consequently, the information leaked
by a CNN seems to be contained in the fully con-
nected part of the network. Moreover, the leakage
does seems to be related to the attacked model’s com-
plexity (which we define by the number of parame-
ters) as shown in Figure 3.

Conclusion. This work presents an attack that tries
to determine if a given dataset (of faces) used to train
a CNN model (to determine if a mouth is open in a
picture) has some property P, in our case, whether the
dataset was unbalanced gender-wise. We conducted
several experiments to uncover the relationship be-
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Table 2: Layer-level description of target and shadow models’ architectures. Parameters in each layer are shown in Table 3.

Conv. 1 Max-pool Conv.2 Max-pool Conv.3 Max-pool FC1 FC2 FC3
Ay v v v v v v v v v
Ay v v v v v v v v
A3z v v v v v v v
Ay v v v v v v v
As v v v v v v
Ag v v v v v
A7 v v v v v
Ag v v v v
Ag v v v
100 Attacks Performances 100 Convolution vs FCN layers
BB accuracy . full
80 [ precision o 80 1 fen
3 recall [ conv
R 60 £ 60 i
~ >
g 40 g 40
©
20 20
0 - 0 -
— o m < n O ~ [ee] ()] — o m < n o ~ [ce) [¢)]
@© © © © © © @© © (1] (1] (1]

© © _(U
Target model architecture

(a) Accuracy, precision, and recall using weights from entire
target model.

@© @© © _m
Target model architecture

(b) Accuracy using weights from: entire target model (full),
only fully connected layers (fcn), and only convolution layers
(conv).

Figure 2: Attack’s performance on each architecture (bars = median of 30 attacks; error bars = + standard deviation).

Table 3: Layers in target and shadow models’ architecture.

Table 4: Hyper-parameter tuning for attack model with op-

Layer Description timal ones marked in bold.

Convolution 1 6 filters 5x5 Parameter Values

Max-pool 2x2, ReLU :

Convolution 2 16 filters 5x5 Learning rate 0.005; 0.001; 0.0005
Max-pool 2x2, ReLU Loss function MSE; L1-loss
Convolution 3 32 filters 5x5 Batch size 16; 32; 64
Max-pool 2x2, ReLU Optimizer SGD; Adam

Fully-Connected 1
Fully-Connected 2

120 neurons, ReLU Input layer act. func.

sigmoid; ReLU; tanh

84 neurons, ReLU

Fully-Connected 3 1 neuron

Number of parameters influence

©
o

R “80.0
67.2

I 64.0 610 ° 52-f4'5 63.0
® ° : °
e e 56.2 572 °
5 60 -

o ®
3
s 103 104 10° 10°

Number of weights in target model architecture

Figure 3: Influence of the complexity of the target model
(express as the number of parameters) on the accuracy of the
attacks on each architecture (dot = median of 30 attacks).

tween target model complexity and privacy leakage

(aka PIA’s accuracy), and we find no significant cor-
relation between the two. Although our findings do
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not support our initial hypothesis, they reveal a sur-
plus of personal data used in the training stage of
CNN models. Intuitive solutions for the surplus of
data, such as cropping images to contain only the
area relevant for the classification task, could prove
insufficient. As empirically demonstrated?, gender
traits can be encoded in many areas of a facial image.
Other alternatives (e.g., feature anonymization (Kim
and Yang (2020)) or gender obfuscation through mor-
phing (Wang (2020))) could be tested for their impact
on PIAs. We leave this task for future work. Due

3https://www.pewresearch.org/interactives/how-does-a-
computer-see-gender/
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to the nature of PIAs, our work has an explicit lim-
itation: it is tailored to one specific property of the
dataset. Our attack can be adapted to other properties
P as well, as long as the attacker can fabricate datasets
containing or not the given property.
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