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Abstract: A key role in the modern telecommunication networks is played by routing aspects as the great number of
works present in literature proves. In particular, in the mobile ad-hoc networks routing is a fundamental
aspects because the mobile devices nature and their elevate dynamism. In fact, it is important to have the
possibility of finding the minimum overhead for connectivity in the network and, calculate the communication
potential through the analysis of different parameters. The focus of this paper is represented by the analysis
of the entropy in this type of mobile networks. The entropy gives the possibility of studying and predicting
the dynamics of mobile nodes. The knowledge of these aspects can help to optimise some key features of
wireless mobile communications, such as nodes stability, channel failures, and routing costs. Many simulation
campaigns have been carried out by taking into account the movement of the real nodes, obtaining beneficial
results, which confirm the effectiveness of the proposed study.

1 INTRODUCTION

One of the main aspects of any networks, and in par-
ticular of decentralized ones, is represented by rout-
ing protocols and algorithms which allow the com-
munication among nodes and, considering some pa-
rameters, allow to take into account efficiency issues
directly correlated with energy consumption, scalabil-
ity and safety. The main issue in a decentralized and
distributed network where no fixed infrastructure re-
gards the elevate dynamism of the network nodes that
change their position in the time causing frequent and
unpredictable topology, such as shown in (De Rango
et al., 2003) and the energy efficiency and saving such
as in (De Rango and Fotino, 2009; De Rango and Tro-
pea, 2009). These considerations are still more ev-
ident when the number of nodes inside the network
increase posing serious problem of scalability. The
communication between nodes depends by nodes dy-
namism and, then the unpredictability of the connec-
tion is linked to the number of nodes to be cross for
reaching the destination and depends to node mobility
that causes frequent network topology changes.

The focus of this paper is to analyse the entropy
concept in a mobile ad-hoc networks where nodes are
mobile and their position vary in time and space. We
propose a entropy concept strongly linked to some

different aspects of the network such as Connection
Dropping Probability (CDP), fading issues, link dis-
ruption phenomena, network instability and other ef-
fects on the network conditions (Fazio et al., 2012;
Fazio et al., 2014).

So, the paper proposes a detailed analysis of the
entropy in a context of a mobile network from a par-
ticular point of view: the capability of performing
a prediction analysis of the entropy behavior in this
network typology. Approaches based on prediction
analysis are broadly studied by researchers, and they
regard different aspects of a telecommunication net-
work. One of the key aspect of ”prediction” is rep-
resented by the accuracy, that means the goodness of
the approach and how it is able to follow network dy-
namism (Fazio et al., 2013; Fazio et al., 2016). Inte-
grating, for example, a routing protocol with a predic-
tive approach leads to the enhancement of the overall
performance (Masip-Bruin et al., 2010). The concept
of entropy related to nodes mobility, is completely
suitable to describe mobility predictability, in order
to pre-configure the needed resources of the network.
In addition, having a model for nodes’ entropy, it is
possible to choose a proper scenario, that exploits its
optimal performance for a given set of protocols.

When dealing with mobile networks, nodes mo-
bility is crucial for the overall performance of the en-
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tire system, especially in Mobile Ad-hoc NETworks
(MANETs), where the optimal and stable routes need
to be frequently evaluated. There are many works in
literature that take into account mobility under a dif-
ferent point of view (as underlined in the next sec-
tion): so, entropy can be considered as a metric for
assigning a weight to each path segment. If we are
interested, for example, to MANET routing, and if
we are able to define new composite metrics (based
also on the entropy concept), it is possible to gauge
other aspects of network dynamics, giving the pos-
sibility to better develop research testbeds, that can
provide more accurate information about the needed
resources (best path, channel bandwidth, transmission
power, bitrate, etc.) .

The remainder of the paper is organized as fol-
lows: Section 3 introduces the entropy concept and
the deployment of adaptive filtering for temporal pre-
diction of nodes evolution, while Section 4 provide
details about the main obtained results, in terms of
entropy values in function of different system pa-
rameters and prediction possibilities, discussing the
broader aspects of our approach. Section 5 concludes
the paper.

2 RELATED WORK

The creation and management of any mobile network
is a challenging problem and any metric which can
be used to characterize or optimize the network cre-
ation is welcome. In the literature, a lot of works pro-
posed by scientific community make use of the en-
tropy information and disparate metrics are used and
combined to analyse the mobile behavior in order to
enhance and optimize different aspects and routines
of mobile networks’ protocols.

In the last years, researchers have spent a lot of
time and made progress on study about uncertain de-
vice location and random propagation conditions in
the connectivity among devices. In (Coon et al., 2018)
the authors make a study about conditional entropy
of wireless networks focus on network entropy with
the assumption that pairwise connections between de-
vices are statistically independent. The authors in
this contribution present an analytical framework for
studying the network entropy conditioned on the node
positions in space, providing also a method to calcu-
late a entropy lower bound useful for performing es-
timation of network entropy.

The channel allocation is another issue object of
study by scientific researchers. Normally, the choice
of the channel, based on link measurement, fall back
on channel with fewest co-channel interference. In

(Elujide and Liu, 2020) an entropy-based WLAN
channel allocation using channel state information is
proposed by authors. The authors present this pro-
posal in order to avoid the known problem of the
RSSI technique. The proposal is based on a machine
learning approach and, in this way, they try to predict
channel spectral entropy from physical layer network.
Their results prove the goodness of the proposal able
to select a channel with high throughput and low jitter.
In (Wang et al., 2020) the concept of entropy is related
with a trust reasoning model based on cloud model
and fuzzy Petri net (FPN). This approach try to give
to nodes a value of credibility. The authors propose
a routing algorithm based on trust entropy in order
to improve QoS in a MANET. Finally, they present
simulation results where they illustrate the better per-
formance of their proposal in terms of packet delivery
ratio and average latency. Due to energy issues the
authors in (Osamy et al., 2018) a cluster tree routing
for wireless networks where a cluster head selection
algorithm based on a entropy criteria is proposed.

In (Sun et al., 2006), an entropy-based approach
is proposed, emphasising the way ad-hoc nodes move
into the considered network. The authors apply the
“mobility entropy” concept to optimise routing oper-
ations through predictions and guarantee a given level
of Quality of Service (QoS). Besides, the concept
of information entropy and energy entropy in ad-hoc
networks is considered in (Cerasoli and Dimarogonas,
2008). The authors refer to Shannon entropy defini-
tion in information theory, considering the “amount of
information” which is exchanged through packet sig-
nalling. In (Hua and Haas, 2009), the authors propose
some in-depth analysis of the way the stability of a
point-to-point connection can be predicted, in ad-hoc
environments.

3 THE ENTROPY CONCEPT AND
THE PREDICTIVE ADAPTIVE
FILTERING

In our work, we consider the concept of entropy (pro-
posed by Shannon (Cerasoli and Dimarogonas, 2008)
as a way for measuring the uncertainty in a generic
statistical model), but from another point of view.
Starting from the classical definition, given a finite set
of n symbols, any sequence s of those symbols (with
duplication allowed) has an associated entropy value,
given by the following expression:

Et(s) =−
n

∑
i=1

pi · logb pi (1)
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Figure 1: An example of matrix GR applied to a geographical MAP with N=1.8 km, M=3.5 km, and an area of M×N =
6.3 km2; as regards matrix GR, we considered n=5 and m=6, so each region gri j has the dimensions 360m×580 m.

where pi is the probability of i-th symbol in s and
b is the base of the logarithm, that is a positive real
value. We base our proposal by starting from eq. 1
and adapting it to extract the needed knowledge from
the evolution of a MANET.

3.1 Entropy Evaluation based on
Geographic Location/Mobility

In particular, one of the main aims of this work is the
association of an entropy value to a node into the net-
work, based on its position and/or the way it has to
move among different adjacent areas. Given that we
are considering a MANET scenario, a grid GR is de-
fined, able to subdivide the considered geographical
MAP (where mobile nodes are moving) into a finite
set of n×m areas, defined as follows:

GR =

gr11 gr12 ... gr1m
... ... ... ...

grn1 grn2 ... grnm

 (2)

Given that the dimensions of the considered map
are N ×M, each gri j belonging to GR, with a regu-
lar square shape, will have the dimensions (N/n) and
(M/m), as depicted in Figure 1.

Entropy can be used to evaluate the activeness of a
node in a given observation window T, during which
mobile nodes are free to move into MAP, by changing
the area they visit or remaining into the same area for
the entire time period. So, if we indicate a mobile
with nk, then the symbol nT

k represents the set of areas
visited by nk during T. So, if ||nT

k || = V (the number
of areas visited by nk in T), then:

nT
k = {gr1 j1...gr1 jV |gri jl ∈ GR, l = 1..V} (3)

The probability of visiting gri j by nk in T is:

pT
k (gri j) = (number o f times gri j appears in nT

k )/V
(4)

and it is easy to derive the expression of nodes nk’s
entropy Et:

Et(nT
k ) =−

V ∗

∑
l=1

pT
k (gri jl) · ln[pT

k (ai jl)] (5)

where V ∗ is the number of distinct gri j visited by nk.

3.2 How to Predict the Entropy Values
by the Recursive Least Squares
(RLS)

After the definition of the term Et(nT
k ), we would

like to describe a way for predicting the future en-
tropy samples. We based our approach on the idea of
(Semnani and Cowan, 1994), where an adaptive filter
can adapt the coefficients of its impulse response in
function of a given optimisation algorithm. We con-
sidered the Recursive Least Squares (RLS) (Haykin,
1999), because it optimises the coefficients by min-
imising a weighted linear least squares cost function.
This kind of approach suits our scope perfectly: a
MANET topology can be updated periodically so, for
each node, entropy can be evaluated step-by-step at
each update time. We assume that, the last entropy
value depends on the previous K ones, so we can
write:

Et(T ) = β1 ·Et(T −1)+β2 ·Et(T −2)+ ...

...+βK ·Et(T −K)+ et
(6)

where et is the error (generally a white Gaussian
process), and β1, ...,βK are the coefficients that should
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Table 1: Parameters used in simulations.

Parameter Value
Global geographical simulated area (GR) 6.25 km2

Side lengths (N and M) of the simulated area 2500 m
Mobility scenario Urban and extra-urban
Average speed of mobile nodes 11.1, 13.9, 19.4 m/s
GR elements side size l from 50 to 200 meters
Number of GR elements from 2500 to 156
Simulation Tools OpenStreetMap and Matlab
Simulation time 3600 s
Mobility model C4R
Acceleration/Deceleration -2.4 m/s2

Figure 2: The simulated geographical area.

be optimised, considering the last K entropy samples.
Eq. 6 can be rewritten in a compact form as:

Et(T ) = [ ~BETA] · [ ~Et(T −K)]tr + et (7)

where ~BETA is the vector of coefficients,
~Et(T −K) is the vector of entropy values (samples

from T − 1 to T −K, and [tr] is the transpose opera-
tor. When the RLS algorithm is applied, the optimal

~BETA∗ vector is found (Haykin, 1999). At the end,
the algorithm is based on the evaluation of:

~BETA(T ) = ~BETA(T −1) · ~GV (T ) · [DO(T )+ ...

...− ~BETAtr(T −1) · ~IN(T )]
(8)

where T is the current observation time window,
~IN(T ) is the INput vector for the RLS algorithm at

T (the set of last K entropy values), ~GV (T ) is the
Kalman Gain Vector (Haykin, 1999) at T , DO(t) is
the Desired Output at T (that is DO(T )=Et(T )). The
initial conditions are n = 0 and BETA(0) = [0]. There
are many other terms that lead to the expression of eq.
8, so for more details please refer to (Haykin, 1999)
and to the RLS theory.

4 NUMERICAL RESULTS

We provide to manage nodes mobility through the
OpenStreetMap core (ope, 2019) and C4R (Martinez
et al., 2008). A MAP with N = M = 2500 meters and
an area of about 6.25 km2 has been considered, ex-
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(a) (b)
Figure 3: (a) An example of a typical trend of mobility entropy associated with a mobile node, with an average speed of
13.9 m/s, l = 60m and T = 25s; (b) Average entropy associated with mobile nodes for different values of T and l.

(a) (b)
Figure 4: (a) Values for the fitting functions of eq. 9 and eq. 10; (b) PACF for an entropy set of 30 samples, l = 30m, T = 10s,
average speed 13.9 m/s.

tracted from the territory of Cosenza, in the southern
of Italy, see Figure 2. Mobility has been configured
to be urban and extra-urban, with average speeds of
11.1, 13.9 and 19.4 m/s, while the areas have been
considered to be square, with a side size l from 50 m
to 200 m. In this way, the number of areas goes from
about 2500 to about 156. Mobility traces have been
generated and, then, parsed with a Java application,
to evaluate entropy samples, according to eq. 5 and
the dimensions of MAP. Figure 3a shows the typi-
cal trend of 135 samples of entropy values (taken ev-
ery T = 35 seconds, while a mobile node nk is mov-
ing). Figure 3b illustrates the average trend of Et(nT

k )
by varying T and l (with a fixed average speed of
11.5 m/s). For larger values of area side l, the en-
tropy value decreases since each mobile node takes
more time to move outside the current location gri j;
besides, for larger observation window size T the en-
tropy increases, because each mobile node vk can visit
more locations in T .

After the preliminary analysis, we proceed to
fit the obtained curves by using MATLAB and its
c f tool, by which we derived that the trends depicted
in Figure 3 can be well approached by a linear com-

bination of exponential functions:

Et(T, l) = a(l) · eb(l)T + c(l) · ed(l)T (9)

where coefficients a,b,c,d are functions of l
which can be expressed as polynomial functions as
follows:

a(l) = b(l) = c(l) = d(l) = p1 · l3+ p2 · l2+ p3 · l+ p4
(10)

Figure 4a resumes the obtained values of p1, ..., p4
for each coefficient in eq. 9 and the values of the poly-
nomial fitting of eq. 10. For such combination of pa-
rameters, the fitting indicators are Sum of Squares due
to Error (SSE) = 0.1116, R-square (R2) = 0.9926,
Adjusted-R2 (AR2) = 0.9908 and Root Mean Square
Error (RMSE) = 0.09649, which describes the appro-
priate fitting values.

Further, we implemented the RLS filter in MAT-
LAB: given a complete entropy samples data-set of
Et(nT

k ) for different values of T , l and average speed,
we found the accurate way to predict entropy values
with RLS. In particular, this approach can be useful
for real-time decisions, such as routing or minimum
cost evaluation, given that future entropy trends can
be predicted.
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Figure 5: Entropy samples prediction with RLS for K=1,
β=0.1, 0.3, 0.5, 0.7 (number of samples on the x-axis and
entropy values on the y-axis).

In order to select the proper value of K, we take
into account the Partial Auto-Correlation Function
(PACF), defined as the autocorrelation between Et(T )
and Et(T −K) with the linear dependence of Et(T )
on Et(T − 1) through Et(T −K + 1) removed (Box
et al., 2015).

After the analysis of different sets of entropy sam-
ples, we can state that the PACF correlogram, like the
one depicted in Figure 4b helps to select the best val-
ues of K, for which the prediction error is minimised.
In our examples, several largest spikes are obtained:
that is, for each combination of simulation parame-
ters (T , avg speed, l, mobility model and other) a set
K∗ = {K1,K2, ...,Kr} of lag values can be obtained,
for which the PACF function has a local maximum.
Additional benefit can be seen that regardless of the
chosen combination of simulation parameters, each
correlogram has a spike for K = 1, that is the entropy
process can always be considered also as a K=1-order
Auto Regressive Process (ARP(1)).

In the next step, we chose K = 1 to confirm that
the RLS algorithm can predict the entropy trend with
an acceptable error. Figure 5 shows the results ob-
tained by considering 120 samples of Et(nT

k ), with
T = 5s, l = 30m, avg speed = 13.9 m/s. It can be
seen how, in general, the RLS can evaluate future
samples with high accuracy.

5 CONCLUSION AND FUTURE
WORKS

In this paper, we presented an in-depth analysis of
the entropy concept related to mobility in MANETs.
In particular, we underlined the key factors that in-
fluence its trend during host mobility inside a geo-
graphical region. A new way of approaching mo-
bility entropy evaluation has been presented, and a

closed form has been obtained for the description of
its average values, in function of several system pa-
rameters. Also, we provided instructions to predict
future entropy values, obtaining beneficial results re-
garding prediction error. Future works will regard the
application of this analysis to forwarding operations
in MANETs, such as packet routing, novel metrics
definition, system stability analysis and predictive re-
laying, and considering the possibility of using novel
routing approaches based on social networks such as
in (Socievole et al., 2013; Socievole et al., 2014).
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