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Abstract: An unmanned Aerial Vehicle (UAV) is a highly non-linear unstable system. In this work using fractional
order calculus, a novel fractional order dynamics of UAV is proposed. The concept of fractional order depicts
the more realistic behavior of UAVs. For proposed fractional order model, a fractional order sliding mode
controller (SMC) is designed such that the desired path can be achieved by the UAV in finite-time. In addition
to this model uncertainty and disturbance is considered in the system which is handled by the proposed robust
SMC. Stability analysis is given for the fractional order SMC using fractional Lyapunov method. Simulations
have been done for position and attitude tracking of UAV to demonstrate the efficacy of the proposed method.

1 INTRODUCTION

Recently, UAVs are being used for wide variety of
applications some of them are transportation, survel-
liance (Aubry et al., 2014), forest trail destection
(Giusti et al., 2015), agriculture purposes (Mogili and
Deepak, 2018) etc. however to control a quadrotor is
quite challenging due to its characteristics like high
nonlinearity, underactuation propoerty and external
disturbances. From the past few years it is a subject
of interest for researchers to design a robust controller
for quadrotor UAVs.

Although there are several controllers e.g. LQR
controller (Cohen et al., 2020), Backstepping Con-
troller (Yu et al., 2019), (Liu et al., 2016) developed
and applied on the UAV, still a robust control scheme
has been an interest of research. Sliding mode control
(SMC) (Rı́os et al., 2018) is one of the most popular
and robust control technique which has the ability to
rejects disturbances and uncertainties but at the cost
of chattering (Boiko and Fridman, 2005). The chat-
tering actuates the unwanted dynamics of the system
which can deteriorate the system performance, hence
disturbance rejection at a cost of deteriorated perfor-
mance is not appreciable. Since quadrotor is a rela-
tive degree two type of system, a proper stable sliding
surface is needed for the design of controller. De-
pending upon the type of surface the convergence of
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error can be asymptotic or finite-time. The asymptotic
surface (Xiong and Zhang, 2016) shows slower con-
vergence than the finite-time surface but finite-time
surface or terminal sliding surface (Weidong et al.,
2015), (Wang et al., 2016) cause singularity issue.

Most of the controllers discussed above are inte-
ger order control schemes. Recently, fractional order
controllers (Chen et al., 2019)(Cajo et al., 2019)(Hua
et al., 2019) have drawn much attention due to appli-
cation of powerful processors. The fractional order
terms provides an extra degree of freedom in terms of
controller parameters which can be adjusted for bet-
ter tracking performance. Some of the work on frac-
tional order controller on UAV are as (Oliva-Palomo
et al., 2019) presents a PI fractional order controller
for quadrotor for only attitude control. A novel
fractional controller has been proposed in (Izaguirre-
Espinosa et al., 2018) for attitude control as well as
position control of quadrotor. Conventinal SMC has
been employed in (Shi et al., 2020) for position and
attitude control of quadrotor where fractional order
switching law is proposed to compensate the uncer-
tainties on integer model of quadrotor. A fast termi-
nal SMC (FTSMC) has been presented in (Labbadi
et al., 2019) for faster convergence of tracking er-
ror however FTSMC is applied only on attitude con-
trol whereas conventional SMC is employed for posi-
tion control and thus overall scheme doesn’t provide
faster convergence. All these schemes hasve been ap-
plied on applied on the integer order model of the
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quadrotor UAV. Moreover, less attention is given to
the fractional-order based dynamics. Though we con-
sider the dynamics of the quadrotor of integer order
but practically it may not be of integer order because
there may be some fractional order term exist which
effects the dynamics of the quadrotor. Hence, a frac-
tional order controller can increase the robustness and
usability of controller if employed with the fractional
order model of the quadrotor.

Motivated from the above discussion, a fractional
order model of quadrotor has been considered in-
stead of an integer order model In this work which is
more practical and feasible with the real world model.
Thereafter, A robust control law as fractional order
sliding mode controller (SMC) has been presented for
the quadrotor model while considering the uncertain
dynamics. There is a trade-off has been done between
the asymptotic surface and finite-time time surface
using fractional order theory. Using fractional order
theory, a novel fractional sliding surface is proposed
for the quadrotor which improves the response of the
surface as well as avoids the singularity issue of the
finite-time sliding surface. Next for mitigating the
chattering issue of SMC, a power rate reaching law
along with a proportional term has been used in the
control laws for position and attitude tracking. There
are six fractional order control laws are designed for
UAV where, three are position controllers which gen-
erates the thrust required and attitude reference for
attitude controller while rest of the three are attitude
controllers. The main contribution of the paper are
summarised as follows:

1. A fractional order novel sliding surface is pro-
posed so that the region of stability increased in
left half plane.

2. A novel fractional order singularity free control
law is proposed which rejects the model uncer-
tainties present in the quadrotor.

3. Stability of the fractional sliding surface and the
controller is given using Lyapunov stability the-
ory.

4. Simulations are conducted for quadrotor position
and attitude tracking and it is shown that the pro-
posed technique is better than the existing second
order twisting controller.

Rest of the paper is organized as follows: prelim-
inaries for fractional calculus is provided in section
2 and section 3 constitutes the problem formulation.
Fractional order quadrotor model is presented in sec-
tion 4 which is followed by the controller design in
section 5 and stability analysis in section 6. Simula-
tion results slong with the comparative analysis has

been presented in section 7. Finally, conclusion and
future scope is given in section 8.

2 PRELIMINARIES

The caputo fractional derivative (Odibat, 2006) of any
function f (ϑ) is represented by:

Dβ[ f (ϑ)] =
1

Γ(n−β)

∫ t

t0

f (n)(τ)
(t− τ)(β−n+1) dτ (1)

where, Γ(.) represents the Gamma function and n−
1 < β < n ∈ N.
Fractional order integral (Odibat, 2006) of order α >
0 can be expressed as:

Jα[ f (ϑ)] =
1

Γ(α)

∫ t

t0
(t− τ)(α−1) f (ϑ)dτ (2)

3 PROBLEM FORMULATION

The control architecture is shown in Fig .1 consists of
two control loops where first one corresponds to inner
or attitude control loop which runs at high frequency,
another is position control loop which estimates the
attitude reference to the attitude controller in terms
of φd ,θd and thrust to the quadrotor. The speed of
the rotor is regulated by the pulse width modulated
(PWM) signal.The generation of the desired PWM
signal is controlled by the output of attitude controller
i.e. torque and thrust from the position controller,
which then actuates the motors of quadrotor.
The objective is to track the desired position and at-
titude in presence of uncertainties where the desired
position xd ,yd ,zd and desired yaw angle ψd are pro-
vided by the user. Here a novel fractional order slid-
ing surface is proposed which increases the stability
range of the error plane. After that a fractional order
SMC is applied on the quadrotor which rejects the un-
certainty present in the system.

So mathematically, the objective is

lim
t→∞

x→ xd , lim
t→∞

y→ yd , lim
t→∞

z→ zd and lim
t→∞

ψ→ ψd

4 QUADROTOR MODEL

Fig. 2 represents the pictorial view of quadrotors and
direction of the forces acting on the four arms. The
forces F1, F2, F3 and F4 works in the upwards direc-
tion to generate the desired thrust so that the quadrotor
can fly in the qpwards direction. The sum of the total
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Figure 1: Control Architecture for UAV.

(a) (b)

Figure 2: (a.) Quadrotor (b.) Direction of Forces acting on Four arms.

forces uµ = F1 +F2 +F3 +F4 is called the total thrust
required to lift the quadrotor. The minimum thrust
required to drag the UAV in the upward direction
should be greater than the weight of the UAV. There-
fore small UAVs required small thrust compared to
big one to achieve the same height from the ground
and hence takes less power.

4.1 Quadrotor Dynamics

Generally fractional order controllers are designed for
integer order system. In (Hua et al., 2019) fractional
order sliding mode controller is designed for integer
order UAVs. It will be more realistic if one would
take the dynamics of UAVs also fractional order. The
fractional order dynamics of quadrotor in presence of
model uncertainty and external disturbance, is pre-
sented here by taking the fraction order of the model
of UAV given in (Singh et al., 2020). It is to be
noted that in this paper a novel fractional model of

the quadrotor is designed.
Dα

φ1 = φ2

Dα
φ2 = δ f (φ, t)+dφ(t)+ θ̇ψ̇(

Jy− Jz

Jx
)+

uφ

Jx

Dα
θ1 = θ2

Dα
θ2 = δ f (θ, t)+dθ(t)+ φ̇ψ̇(

Jz− Jx

Jy
)+

uθ

Jy

Dα
ψ1 = ψ2

Dα
ψ2 = δ f (ψ, t)+dψ(t)+ φ̇θ̇(

Jx− Jy

Jz
)+

uψ

Jz

Dαz1 = z2

Dαz2 = δ f (z, t)+dz(t)+
uµ

m
(CφCθ)−g

Dαx1 = x2

Dαx2 = δ f (x, t)+dx(t)+
uµ(CφSθCψ+SφSψ)

m
Dαy1 = y2

Dαy2 = δ f (y, t)+dy(t)+
uµ

m
(CφSθSψ−SφCψ)

(3)
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where C(.),S(.) corresponds to cos(.) and sin(.) re-
spectively, φ1, θ1, ψ1 are three attitude angles i.e.
roll, pitch and yaw angles respectively whereas x1,
y1, z1 are positions of the quadrotors. There are total
twelve states including angular velocities φ2, θ2, ψ2
and translational velocities x2, y2, z2. All these twelve
states are controlled by four control inputs uµ, uφ, uθ

and uψ. δ f (φ, t), δ f (θ, t) , δ f (ψ, t), δ f (x, t) , δ f (y, t) ,
δ f (z, t) are model uncertainty and dφ(t) , dθ(t) , dψ(t)
are external disturbances. The relation between ro-
tor forces and four control inputs is given in (Singh
et al., 2020). The dynamics of the quadrotor can be
represented as second order fractional subsystems if
the virtual control laws are selected as:

ux1 =
uµ

m
(cosφsinθcosψ+ sinφsinψ)

uy1 =
uµ

m
(cosφsinθsinψ− sinφcosψ)

uz1 =
uµ

m
(cosφcosθ)−g

(4)

Therefore,

uµ = m
√

(ux1)2 +(uy1)2 +(uz1 +g)2 (5)

After considering all the virtual control inputs the dy-
namics of the quadrotor can be decoupled using six
second order subsystems. Now objective is to design
tracking controller such that desired positions and at-
titude angles are achieved.

4.2 Error Model

In this section error dynamics of x, y, z and φ, θ, ψ is
given. Now, the second order fractional dynamics for
x position is:

Dαx1 = x2

Dαx2 = δ f (x, t)+dx(t)+ux1
(6)

If the desired x position is xd then the error will be:

ex1 = x1− xd

ex2 = x2−Dαxd
(7)

Hence, fractional order error dynamics for x position
in presence of model uncertainty and disturbance is:

Dαex1 = ex2

Dαex2 = δ f (x, t)+dx(t)+ux1−D2αxd
(8)

Like wise error dynamics for rest of the five subsys-
tems are:

Dαey1 = ey2

Dαey2 = δ f (y, t)+dy(t)+uy1−D2αyd
(9)

Dαez1 = ez2

Dαez2 = δ f (z, t)+dz(t)+uz1−D2αzd
(10)

Dαeφ1 = eφ2

Dαeφ2 = θ̇ψ̇(
Jy− Jz

Jx
)+δ f (φ, t)+dφ(t)+uφ−D2α

φd

(11)
Dαeθ1 = eθ2

Dαeθ2 = φ̇ψ̇(
Jz− Jx

Jy
)+δ f (θ, t)+dθ(t)+uθ−D2α

θd

(12)
Dαeψ1 = eψ2

Dα

ψ2 = φ̇θ̇(
Jx− Jy

Jz
)+δ f (ψ, t)+dψ(t)+uψ−D2α

ψd

(13)
Now, in next section fractional order controller is

designed for the quadrotor.

5 CONTROLLER DESIGN

In this section, a novel robust fractional order SMC
has been proposed to counteract parametric uncer-
tainty, external disturbances as well as unmatched un-
certainty.

5.1 Fractional Order Sliding Surface
Design

The proposed fractional order sliding surface is:

sx(t) = Dα−1ex2 +Dα−2

[[
kx1(| ex1 |+ | ex1) |β)+ kx2

(| ex2 |+ | ex2) |β)+(sign(ex1)D1−αex2)
]
sign(ex2)

]
(14)

where, β∈ (0,1) is a positive constant. and kx1 and kx2
are positive tuning parameters. Taking the derivative
of sliding surface eq.(14), we get

ṡx(t) = Dαex2 +Dα−1

[[
kx1(| ex1 |+ | ex1) |β)+ kx2

(| ex2 |+ | ex2) |β)+(sign(ex1)D1−αex2)
]
sign(ex2)

]
(15)
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After the reaching phase is achieved i.e. when ṡx(t) =
0, eq.(15) reduces to,

Dαex2 =−Dα−1

[[
kx1(| ex1 |+ | ex1) |β)+ kx2.

(| ex2) |+ | ex2) |β)+(sign(ex1)D1−αex2)
]
sign(ex2)

]
(16)

5.1.1 Error Dynamics in Sliding Mode

From Eq. (16) and (7), fractional dynamics for x po-
sition in sliding mode can be written as :

Dαex1 = ex2

Dαex2 =−Dα−1

[[
kx1(| ex1 |+ | ex1) |β)+ kx2.

(| ex2 |+ | ex2 |β)+(sign(ex1)D1−αex2)
]
sign(ex2)

]
(17)

Likewise, error dynamics for rest of the quadrotor
states can be obtained.

5.2 Fractional Order Controller Design

Again revisiting eq.(15)

ṡx(t) = Dαex2 +Dα−1

[[
kx1(| ex1 |+ | ex1 |β)+ kx2.

(| ex2 |+ | ex2 |β)+(sign(ex1)D1−αex2)
]
sign(ex2)

]
(18)

Substituting value of Dαex2 from eq.(8) in eq.(18) and
substituting ṡx(t) = −kx3sx − kx4 | sx |γ sign(sx) the
control law ux1 will be:

− kx3sx− kx4 | sx |γ sign(sx) = δ f (x, t)+dx(t)+ux1

−D2αxd +Dα−1

[[
kx1(| ex1 |+ | ex1 |β)+ kx2.

(| ex2 |+ | ex2 |β)+(sign(ex1)D1−αex2)
]
sign(ex2)

]
(19)

where, γ∈ (0,1) is a positive constant. and kx3 and kx4
are positive tuning parameters. Further simplifying

ux1 =−kx3sx− kx4 | sx |γ sign(sx)−δ f (x, t)−dx(t)

+D2αxd−Dα−1

[[
kx1(| ex1 |+ | ex1 |β)+ kx2.

(| ex2 |+ | ex2 |β)+(sign(ex1)D1−αex2)
]
sign(ex2)

]
(20)

For rejecting the model uncertainties and disturbances
the control law is modified to,

ux1 =−kx3sx− kx4 | sx |γ sign(sx)− (δx1 +δx2)sign(sx)

+D2αxd−Dα−1

[[
kx1(| ex1 |+ | ex1 |β)+ kx2.

(| ex2 |+ | ex2 |β)+(sign(ex1)D1−αex2)
]
sign(ex2)

]
(21)

where δx1 and δx2 are positive tuning parameters.
Like wise control laws for rest of the position and Eu-
ler angels can be calculated. Control law for y posi-
tion tracking is:

uy1 =−ky3sy− ky4 | sy |γ sign(sy)− (δy1 +δy2)sign(sy)

+D2αyd−Dα−1

[[
ky1(| ey1 |+ | ey1 |β)+ kx2

ky2(| ey2 |+ | ey2 |β)+(sign(ey1)D1−αey2)
]
sign(ey2)

]
Control law for altitude z tracking is:

uz1 =−kz3sz− kz4 | sz |γ sign(sz)− (δz1 +δz2)sign(sz)

+D2αzd−Dα−1

[[
kz1(| ez1 |+ | ez1 |β)+ kz2.

(| ez2 |+ | ez2 |β)+(sign(ez1)D1−αez2)
]
sign(ez2)

]
Control law for roll φ tracking is:

uφ = Jx

(
− kφ3sφ− kφ4 | sφ |γ sign(sφ)− θ̇ψ̇(

Jy− Jz

Jx
)

− (δφ1 +δφ2)sign(sφ)+D2α
φd−Dα−1

[[
kφ1(| eφ1) |

+ | eφ1) |β)+ kφ2(| eφ2) |+ | eφ2) |β)+(sign(eφ1)×

D1−αeφ2)
]
sign(eφ2)

])
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Control law for pitch θ is:

uθ = Jy

(
− kθ3sθ− kθ4 | sθ |γ sign(sθ)− φ̇ψ̇(

Jz− Jx

Jy
)

− (δθ1 +δθ2)sign(sθ)+D2α
θd−Dα−1

[[
kθ1(| eθ1 |

+ | eθ1 |β)+ kθ2(| eθ2 |+ | eθ2 |β)+(sign(eθ1)×

D1−αeθ2)
]
sign(eθ2)

])
Control law for yaw θ is:

uψ = Jz

(
− kψ3sφ− kψ4 | sψ |γ sign(sψ)− φ̇θ̇(

Jx− Jy

Jz
)

− (δψ1 +δψ2)sign(sψ)+D2α
ψd−Dα−1

[[
kψ1(| eψ1 |

+ | eψ1 |β)+ kψ2(| eψ2) |+ | eψ2) |β)+(sign(eψ1)×

D1−αeψ2

]
sign(eψ2

])

6 STABILITY ANALYSIS OF
CONTROLLER

For the stability analysis, two different Lyapunov
function have been taken where one is for reaching
phase stability analysis and the other is for sliding
phase.

6.1 Reaching Phase Stability

For reaching phase we have to show that reachability
law ṡx(t) = −kx3sx− kx4 | sx |γ sign(sx) converges to
zero. Let us take Lyapunov candidate as:

Vr =| sx | (22)

The derivative of Vr is

V̇r = sign(sx)ṡx (23)

Substituting derivative of sliding surface using
eq.(15) in eq.(23)

V̇r =

(
Dαex2 +Dα−1

[[
kx1(| ex1) |+ | ex1) |β)+ kx2(

| ex2 |+ | ex2) |β)+(sign(ex1)D1−αex2)
]
sign(ex2)

])
× sign(sx)

(24)

After substituting the value of Dαex2 from error dy-
namics and inserting the control law ux1 eq.(24) will
become:

V̇r ≤−sign(sx)(kx3sx + kx4 | sx |γ sign(sx)) (25)

Using sign(sx)sx =| sx | and sign2(sx)sx = 1. The Lya-
punov derivative will become-

V̇r ≤−kx(| sx |+ | sx |γ)≤−kx | sx | (26)

where, kx = min(kx3,kx4). Eq.(26) is negative definite
hence it is stable.

6.2 Sliding Phase Stability

for sliding phase stability we have to show that both
the error states of x position tracking converges to
zero. Let us take Lyapunov candidate as:

Vs =| ex1 |+ | ex2 | (27)

The derivative of Vs is

V̇s = sign(ex1)ėx1 + sign(ex2)ėx2 (28)

Eq.(23) can also be written as using property of frac-
tional order theory

V̇s = sign(ex1)[D1−αDαex1]+ sign(ex2)[D1−αDαex2]

From eq.(8) and eq.(16) substituting the values of
Dαex1 and Dαex2 in the above Eq.

V̇s = sign(ex1)[D1−αex2]− sign(ex2)D1−αDα−1×[[
kx1(| ex1) |+ | ex1) |β)+ kx2(| ex2) |+ | ex2) |β)

+(sign(ex1)D1−αex2)
]
sign(ex2)

]
(29)

After simplifying eq.(29), we get

V̇s =−
[
kx1(| ex1) |+ | ex1 |β)+ kx2(| ex2) |+ | ex2) |β

]
which is negative definite. Hence both the reaching
phase and sliding phase of designed fractional order
controller is stable.

7 SIMULATION RESULTS

Proposed approach has been validated in MATLAB
where following set of parameters specification has
been taken as:

Mass (m) 1.0 Kg
Inetria (Ixx) 1.676×10−2

Inetria (Iyy) 1.676×10−2

Inetria (Izz) 2.314×10−2
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The gain parameters value has been chosen by trial
and error as. kx1 = kx2 = 2,ky1 = ky2 = 2,kz1 = kz2 = 2
and kφ1 = kφ = 1.2,kθ = kθ = 1.2,kψ = kψ = 1.4.
The fractional derivatives are selected as α = 0.6 and
β = 0.7. The proposed approach has been validated
for two cases i.e. quadrotor hovering at 1.25m and
spiral trajectory tracking. A comparison has also been
provided against twisting controller (Shtessel et al.,
2017) and the superiority of presented approach is
validated.

7.1 Quadrotor Hovering
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Figure 3: Hovering of UAV using proposed method.

Here, the objective is to takeoff the quadrotor to
zd = 1.25m and hover thereafter at this height. To
check the robustness of the proposed controller, a dis-
turbance has been added at hovering in all of the three
directions x,y and z at different time instants, the max-
imum bound on the magnitude of disturbances in all
the three directions are 0.2 ∗ sint. Disturbances are
applied in all the three directions at different instants
of time to check the robustness of the controller. The
simulation results are shown in Fig 3 where we see
that the quadrotor successfully reaches at 1.25 m and
hover as shown in 3(a) in spite of the disturbance.
Thus we can conclude from Fig 3 that the quadrotor
effectively counteract the disturbance and hover con-
tinuously at 1.25 m.

7.2 Spiral Trajectory Tracking

Now, the quadrotor is required to track the spiral
shaped trajectory which is generated as follows by
desired positions as: xd = 01 ∗ sin(0.15 ∗ t), yd =
2 ∗ cos(0.2 ∗ t) and zd = 1.5 ∗ t. The proposed ap-

proach is compared with (Shtessel et al., 2017) as well
and obtained results are shown in Fig 4.
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Figure 4: UAV tracking spiral shaped trajectory using
Twisting controller.
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Figure 5: UAV tracking spiral shaped trajectory using pro-
posed fractional order controller.

The tracking results obtained by proposed ap-
proach are shown in Fig 5. Form Fig 4(a) and 5(a),
we see that both of the approaches show good per-
formance in term of disturbance rejection. How-
ever, the control effort required for tracking is having
more chattering as shown in Fig 4(b),(c),(d) and (e)
as compared to the proposed approach in 5(b),(c),(d)
and (e). Due to the large chattering, it may actuate
the unmodelled dynamics which affects the actuator’s
performance and thus the approach (Shtessel et al.,
2017) is not feasible in real-time scenario whereas
proposed approach show less chattering and can be
implemented in real-time.
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8 CONCLUSION AND FUTURE
SCOPE

In the proposed work novel fractional order model is
presented for the quadrotor which is more real for
practical applications. The fractional order parame-
ters achieves the tracking accuracy of the controller.
The comparative study has been done with the pro-
posed method with the existing second twisting con-
troller in terms of chattering attenuation and con-
troller effort. The future scope of the present work
is to design controller for multiagent quadrotor sys-
tems in presence of communication bandwidth limi-
tation using fractional order theory. The present work
is just a proof of the concept to be validated on more
complex systems.
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