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Abstract: Constrained IoT devices are becoming ubiquitous in society and there is a need for secure communication
protocols that respect the constraints under which these devices operate. EDHOC is an authenticated key
establishment protocol for constrained IoT devices, currently being standardized by the Internet Engineering
Task Force (IETF). A rudimentary version of EDHOC with only two key establishment methods was formally
analyzed in 2018. Since then, the protocol has evolved significantly and several new key establishment meth-
ods have been added. In this paper, we present a formal analysis of all EDHOC methods in an enhanced
symbolic Dolev-Yao model using the Tamarin tool. We show that not all methods satisfy the authentication
notion injective of agreement, but that they all do satisfy a notion of implicit authentication, as well as Per-
fect Forward Secrecy (PFS) of the session key material. We identify other weaknesses to which we propose
improvements. For example, a party may intend to establish a session key with a certain peer, but end up
establishing it with another, trusted but compromised, peer. We communicated our findings and proposals to
the IETF, which has incorporated some of these in newer versions of the standard.

1 INTRODUCTION

As IoT devices become more prevalent and get in-
volved in progressively sensitive functions in soci-
ety, the need to secure their communications be-
comes increasingly important. Most security anal-
ysis has focused on computationally strong devices,
such as cars and web-cameras, where existing pro-
tocols like (D)TLS suffice. Constrained devices, on
the other hand, which operate under severe band-
width and energy consumption restrictions, have re-
ceived much less attention. These devices may be
simple sensors, which only relay environment mea-
surements to a server every hour, but need to function
autonomously without maintenance for long periods
of time. The IETF standardized the Object Security
for Constrained RESTful Environments (OSCORE)
protocol to secure communications between con-
strained devices (Selander et al., 2019). However,
the OSCORE protocol requires a pre-established se-
curity context. The IETF has been discussing re-
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quirements and mechanisms for a key exchange pro-
tocol, named Ephemeral Diffie-Hellman Over COSE
(EDHOC), for establishing OSCORE security con-
texts. Naturally, EDHOC must work under the same
constrained requirements as OSCORE itself. While
not all use cases for EDHOC are firmly set, the overall
goal is to establish an OSCORE security context, un-
der message size limitations. It is therefore important
to ensure that EDHOC satisfies fundamental security
properties expected from a key exchange protocol.

The first incarnation of EDHOC appeared in
March 2016. It contained two different key estab-
lishment methods, one based on a pre-shared Diffie-
Hellman (DH) cryptographic core1 and a second
based on a variant of challenge-response signatures
in the style of OPTLS (Krawczyk and Wee, 2016).
EDHOC is therefore a framework of several key es-
tablishment methods. In May 2018, the core based

1By a cryptographic core, or simply core, we mean an
academic protocol, without encodings or application spe-
cific details required by an industrial protocol. A key estab-
lishment method is a core with some such details added.
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on challenge-response signatures was replaced by
one based on SIGMA (SIGn-and-MAc) (Krawczyk,
2003; Selander et al., 2018). Since then the proto-
col has undergone significant changes. Three new
cores, mixing challenge-response signatures and reg-
ular signatures for authentication, were added (Se-
lander et al., 2020).

We formulate and formalize a security model cov-
ering all four key establishment methods, which is
important especially since the specification (Selander
et al., 2020) lacks a clear description of the intended
security model and overall security goals.

We perform the analysis in a symbolic Dolev-Yao
model. In this framework, we model messages as
terms in an algebra, with operations such as encryp-
tion modelled as functions on these terms. These
functions are assumed perfect, e.g., one cannot de-
crypt an encrypted message without access to the key.
The adversary, while unable to break encryption or
reverse hashing, is modelled as the network. That is,
the adversary, can block reroute, replay and modify
messages at will. A symbolic model like this, while
slightly severe an abstraction, still allows us to ana-
lyze EDHOC for logical flaws without incurring the
complexity of a computational model. The standard-
ization process is ongoing, with the authors releasing
newer versions of the specification (see Section 5 for
more detail about how these versions differ from the
one analyzed here).

1.1 Contributions

In this paper, we formally analyze the EDHOC pro-
tocol (with its four key establishment methods) using
the Tamarin tool (Meier et al., 2013). We present a
formal model we constructed of the protocol as given
in the specification (Selander et al., 2020).

We give an explicit adversary model for the proto-
col and verify properties such as session key material
and entity authentication, and perfect forward secrecy,
for all four methods.

The model itself is valuable as a basis for verifying
further updates in the ongoing standardization. It is
publicly available (Norrman et al., 2020). It took sev-
eral person-months to interpret the specification and
construct the model. Termination requires a hand-
crafted proof oracle to guide Tamarin.

We show that not all EDHOC’s key establishment
methods provide authentication according to the in-
jective agreement definition on the session key ma-
terial, and none on the initiator’s identity. However,
we show that all methods fulfill an implicit agreement
property covering the session key material and the ini-
tiator’s identity. We identify a number of subtleties,

ambiguities and weaknesses in the specification. For
example, the authentication policy requirements al-
low situations where a party establishes session key
material with a trusted but compromised peer, even
though the intention was to establish it with a differ-
ent trusted party. We provide remedies for the identi-
fied issues and have communicated these to the IETF
and the specification authors, who have incorporated
some of our suggestions and are currently considering
how to deal with the remaining ones.

1.2 Comparison with Related Work

The May 2018 version of EDHOC was formally an-
alyzed by (Bruni et al., 2018) using the ProVerif
tool (Blanchet, 2001). Their analysis covered a
pre-shared key authenticated core and one based on
SIGMA. The properties checked for therein were se-
crecy, PFS and integrity of application data, identity
protection against an active adversary, and strong au-
thentication.

In contrast to the key establishment methods ana-
lyzed by Bruni et al., which were based on the well-
understood pre-shared key DH and SIGMA protocols,
the three newly added methods combine two unilat-
eral authentication protocols with the goal to con-
structing mutual authentication protocols. Combin-
ing two protocols, which individually provide uni-
lateral authentication, is not guaranteed to result in
a secure mutual authentication protocol (Krawczyk,
2016). Consequently, even though the framework is
similar to the one analyzed by Bruni et al., the cryp-
tographic underpinnings have significantly increased
in complexity, and is using mechanisms which have
not previously been formally analyzed. The set of
properties we check for is also different. Our analy-
sis is further carried out using a different tool, namely
Tamarin; different kinds of strategies to formulate and
successfully analyze the protocol are required when
working with this tool.

2 THE EDHOC PROTOCOL

We now present the structure of the protocol using
notation for key material, elliptic curve operations
and identities mostly adopted from NIST SP 800-56A
Rev. 3 (Barker et al., 2018). One notable difference is
that we refer to the two roles executing the protocol as
the initiator I and the responder R. We do this to avoid
confusing roles with the parties taking them on. Val-
ues in the analysis are subscripted with I and R when
necessary to distinguish which role is associated with
the values.
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2.1 Preliminaries

Private/public key pairs are written 〈dt,id, Qt,id〉,
where d is the private key, Q the public key, t ∈ {e,s}
denotes whether the key is ephemeral or static, and id
is the role or party controlling the key pair. When
irrelevant, we drop the subscript or parts thereof.
Ephemeral key pairs are generated fresh for each in-
stantiation of the protocol and static key pairs are
long-term keys used for authentication. Static key
pairs are suitable for either regular signatures or
challenge-response signatures. When a party uses
regular signatures for authentication, we say that they
use the signature based authentication method, or SIG
for short. When a party uses challenge-response sig-
natures for authentication, we say that they use the
static key authentication method, or STAT for short.
The latter naming may appear confusing since signa-
ture keys are equally static, but is chosen to make the
connection to the specification clear. We adopt the
challenge-response terminology for this style of au-
thentication from (Krawczyk, 2005).

EDHOC relies on COSE (Schaad, 2017) for el-
liptic curve operations and transforming points into
bitstrings, and we therefore abstract those as follows.
Signatures and verification thereof using party A’s key
pair are denoted by signA(·) and vfA(·) respectively.
The DH-primitive combining a private key d and a
point P is denoted by dh(d,P). We abuse notation
and let these function symbols denote operations on
both points and the corresponding bitstrings.

2.2 Framework Structure

EDHOC’s goal is to establish an OSCORE security
context, including session key material denoted Z,
and optionally transfer application data ad1, ad2 and
ad3. To accomplish this, the specification (Selander
et al., 2020) gives a three-message protocol pattern,
shown in Figure 1. We first describe this pattern and
the parts that are common to all key establishment
methods. Then we describe authentication and deriva-
tion of keys in more detail. The latter is what differen-
tiate the key establishment methods from each other.

2.2.1 Protocol Pattern

The first two messages negotiate authentication meth-
ods M and a ciphersuite SI . In M, the initiator I pro-
poses which authentication method each party should
use. These may differ, leading to four possible com-
binations: SIG-SIG, SIG-STAT, STAT-SIG and STAT-
STAT. We refer to these combinations of authenti-
cation methods simply as methods to align with the
specification terminology. The first authentication

method in a combination is the one proposed for the
initiator and the last is the one proposed for the re-
sponder. The responder R may reject the choice of
method or cipher suite with an error message, result-
ing in negotiation across multiple EDHOC sessions.
Our analysis excludes error messages.

EDHOC’s first two messages also exchange con-
nection identifiers CI and CR, and public ephemeral
keys, Qe,I and Qe,R. The connection identifiers CI and
CR, described in Section 3.1 of the specification, de-
serve some elaboration. The specification describes
these identifiers not as serving a security purpose for
EDHOC, but only as aiding message routing to the
correct EDHOC processing entity at a party. Despite
this, the specification states that they may be used
by OSCORE, or other protocols using the established
security context, without restricting how they are to
be used. Because EDHOC may need them in clear-
text for routing, OSCORE cannot rely on them be-
ing secret. Section 7.1.1 of the specification requires
the identifiers to be unique. Uniqueness is defined
to mean that CI 6= CR for a given session and the
specification requires parties to verify that this is the
case. The same section also require that OSCORE
must be able to retrieve the security context based on
these identifiers. The intended usage of CI and CR by
OSCORE is not made specific and therefore it is not
clear which properties should be verified. We verify
that the parties agree on the established values.

The two last messages provide identification and
authentication. Parties exchange identifiers for their
long-term keys, IDI and IDR, as well as informa-
tion elements, AuthI and AuthR, to authenticate that
the parties control the corresponding long-term keys.
The content of AuthI and AuthR depends on the au-
thentication method associated with the correspond-
ing long-term key. For example, if M = SIG-STAT,
the responder R must either reject the offer or provide
an IDR corresponding to a key pair 〈ds,R, Qs,R〉 suit-
able for use with challenge-response signatures, and
compute AuthR based on the static key authentication
method STAT. In turn, the initiator I must provide an
IDI corresponding to a key pair 〈ds,I , Qs,I〉 suitable
for a regular signature, and compute AuthI based on
the signature based authentication method SIG.

2.2.2 Authentication

Regardless of whether STAT or SIG is used to com-
pute AuthR, a MAC is first computed over IDR, Qs,R,
a transcript hash of the information exchanged so
far, and ad2 if included. The MAC is the result of
encrypting the empty string with the Authenticated
Encryption with Additional Data (AEAD) algorithm
from the ciphersuite SI , using the mentioned infor-
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mation as additional data. The MAC key is derived
from the ephemeral key material Qe,I , Qe,R, de,I and
de,R, where I computes dh(de,I , Qe,R) and R computes
dh(de,R, Qe,I), both resulting in the same output in the
usual DH way.

In case R uses the SIG authentication method,
AuthR is R’s signature over the MAC itself and
the data that the MAC already covers. In case R
uses the STAT authentication method, AuthR is sim-
ply the MAC itself. However, when using STAT,
the key for the MAC is derived, not only from the
ephemeral key material, but also from R’s long-term
key 〈ds,R, Qs,R〉. For those familiar with OPTLS, this
corresponds to the 1-RTT semi-static pattern comput-
ing the MAC key sfk for the sfin message (Krawczyk
and Wee, 2016). The content of AuthI is computed
in the corresponding way for the initiator I. In Fig-
ure 1, we denote a MAC using a key derived from
both 〈ds,R, Qs,R〉 and 〈de,I , Qe,I〉 by MACI , and a
MAC using a key derived from both 〈ds,I , Qs,I〉 and
〈de,R, Qe,R〉 by MACR.

Parts of the last two messages are encrypted and
integrity protected, as indicated in 1. The second mes-
sage is encrypted by XORing the output of the key
derivation function HKDF (see Section 2.2.3) on to
the plain text. The third message is encrypted and in-
tegrity protected by the AEAD algorithm determined
by the ciphersuite SI .

Initiator Responder
m1: M, SI , Qe,I , CI , ad1

m2: CI , Qe,R, CR, {IDR, AuthR, ad2}

m3: CR, {IDI , AuthI , ad3}

M AuthI AuthR
SIG-SIG signI(·) signR(·)

SIG-STAT signI(·) MACR(·)
STAT-SIG MACI(·) signR(·)

STAT-STAT MACI(·) MACR(·)
Figure 1: Structure of EDHOC: {t} means t is encrypted
and integrity protected.

2.2.3 Key Schedule

At the heart of EDHOC is the key schedule depicted
in Figure 2. EDHOC uses two functions from the
HKDF interface (Krawczyk and Eronen, 2010) to de-
rive keys. HKDF-extract constructs uniformly dis-
tributed key material from random input and a salt,
while HKDF-expand generates keys from key mate-
rial and a salt.

The key schedule is rooted in the ephemeral DH
key Pe, which is computed as dh(de,I ,Qe,R) by I and as

dh(de,R,Qe,I) by R. From Pe, three intermediate keys
PRK2e, PRK3e2m and PRK4x3m are derived during the
course of protocol execution. Each of them is used
for a specific message in the protocol, and from these
intermediate keys, encryption and integrity keys (K2e,
K2m, K3ae, and K3m) for that message are derived. The
salt for generating PRK2e is the empty string.

The protocol uses a running transcript hash th,
which includes the information transmitted so far.
The value of the hash, denoted thi for the ith message,
is included in key derivations as shown in Figure 2.

Successful protocol execution establishes the ses-
sion key material Z for OSCORE. Z can be con-
sidered a set that always includes Pe. If the ini-
tiator uses the STAT authentication method, Z also
includes dh(de,R, Qs,I) = dh(ds,I , Qe,R), which we
denote by PI . If the responder uses the STAT au-
thentication method, it also includes dh(de,I , Qs,R) =
dh(ds,R, Qe,I), which we denote by PR. From the ses-
sion key material, a key exporter (EDHOC-Exporter)
based on HKDF is used to extract keys required for
OSCORE.

As an illustrative example of the entire process,
we refer to Figure 3, which depicts the protocol pat-
tern, operations and key derivations for the SIG-STAT
method in more detail.

3 FORMALIZATION AND
RESULTS

The EDHOC specification (Selander et al., 2020)
claims that EDHOC satisfies many security proper-
ties, but these are imprecisely expressed and moti-
vated. In particular, there is no coherent adversary
model. It is therefore not clear in which context prop-
erties should be verified. We resolve this by clearly
specifying an adversary model, in which we can ver-
ify properties.

3.1 Adversary Model

We verify EDHOC in the symbolic Dolev-Yao model,
with idealized cryptographic primitives, e.g, en-
crypted messages can only be decrypted using the
key, no hash collisions exist etc. The adversary con-
trols the communication channel, and can interact
with an unbounded number of sessions of the proto-
col, dropping, injecting and modifying messages to
their liking.

In addition to the basic Dolev-Yao model, we
also consider two more adversary capabilities, namely
long-term key reveal and ephemeral key reveal. Long-
term key reveal models the adversary compromising a
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PRK2e

R uses STAT?

PRK3e2m

N

I uses STAT?

PRK4x3m

N

HKDF-extract

HKDF-extractHKDF-expandK3m

HKDF-expandEDHOC-Exporter

HKDF-expandK2m

HKDF-expandK2e

HKDF-expandK3ae

Enc (XOR)
in m2

MAC2 (signed if
R uses SIG)

AEAD in m3

MAC3 (signed if
I uses SIG)

Y

Y

HKDF-extract Pe

Salt

PR

PI

th2

th3

th4

Figure 2: Key schedule: Light blue boxes hold DH keys (Pe,PI ,PR), orange boxes intermediate key material (PRK2e,
PRK3e2m, PRK4x3m), and dark blue boxes keys for AEAD or XOR encryption (K2e, K2m, K3ae, K3m). Dashed boxes are
conditionals.

party A’s long-term private key ds,A at time t, and we
denote this event by At

LTK(A). The event At
Eph(A,k)

represents that the adversary learns the ephemeral pri-
vate key de,A used by party A at time t in a session
establishing key material k. These two capabilities
model the possibility to store and operate on long-
term keys in a secure module, whereas ephemeral
keys may be stored in a less secure part of a device.
This is more granular and realistic than assuming that
the adversary has equal opportunity to access both
types of keys.

We now define and formalize the security proper-
ties we are interested in, and then describe how we
encode them into Tamarin. The adversary model be-
comes part of the security properties themselves.

3.2 Formalization of Properties

We use the Tamarin verification tool (Meier et al.,
2013) to encode the model and verify properties. This
tool uses a fragment of temporal first order logic to
reason about events and knowledge of the parties and
of the adversary. For conciseness we use a slightly
different syntax than that used by Tamarin, but which
has a direct mapping to Tamarin’s logic.

Event types are predicates over global states of
system execution. Let E be an event type and let t be
a timestamp associated with a point in a trace. Then
Et(pi)i∈N denotes an event of type E associated with a
sequence of parameters (pi)i∈N at time t in that trace.
In general, more than one event may have the same
timestamp and hence timestamps form a quasi order,
which we denote by t1 l t2 when t1 is before t2 in a
trace. We define .

= analogously. However, two events
of the same type cannot have the same timestamp, so
t1

.
= t2 implies Et1 = Et2 . Two events having the same

timestamp does not imply the there is a fork in the
trace, only that the two events happen simultaneously.

This notation corresponds to Tamarin’s use of action
facts E(pi)i∈N@t.

The event K t(p) denotes that the adversary knows
a parameter p at time t. Parameters are terms in a term
algebra of protocol specific operations and generic
operations, e.g., tuples 〈·〉. Intuitively, K t(p) eval-
uates to true when p is in the closure of the parame-
ters the adversary observed by interacting with parties
using the protocol, under the Dolev-Yao message de-
duction operations and the advanced adversary capa-
bilities up until time t. For a more precise definition
of knowledge management, we refer to (Meier et al.,
2013). An example of a formula is

∀t,k,k′ .K t(〈k,k′〉) → K t(k)∧K t(k′),

expressing that if there is a time t when the adversary
knows the tuple 〈k,k′〉, then the adversary knows both
k and k′ at the same point in time.

An initiator I considers the protocol run started
when it sends a message m1 (event type IS) and the
run completed after sending a message m3 (event type
IC). Similarly, a responder R considers the run started
upon receiving a m1 (event type RS), and completed
upon receiving a m3 (event type RC).

3.2.1 Perfect Forward Secrecy (PFS)

Informally, PFS captures the idea that session key ma-
terial remains secret even if a long-term key leaks in
the future. We define PFS for session key material Z
as PFS in Figure 4.

The first parameter I of the IC event represents the
initiator’s identity, and the second, R, represents that
I believes R to be playing the responder role. The
third parameter, Z, is the established session key ma-
terial. The parameters of the RC event are defined
analogously. Specifically, the first parameter of RC
represents the identity of whom R believes is playing
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Initiator

Knows 〈ds,I , Qs,I〉, IDI , IDR, ad1, ad3

Responder

Knows 〈ds,R, Qs,R〉, IDR, ad2

Generates M, SI , CI , 〈de,I , Qe,I〉
m1: M, SI , Qe,I , CI , ad1

Generates CR, 〈de,R, Qe,R〉
Pe = dh(de,R, Qe,I)
PR = dh(ds,R, Qe,I)

th2 = h(m1,〈CI ,Qe,R,CR〉)
PRK2e = HKDF-extract(“”,Pe)

PRK3e2m = HKDF-extract(PRK2e,PR)
K2m = HKDF-expand(PRK3e2m, th2)

MAC2 = AEAD(K2m;〈IDR, th2,Qs,R,ad2〉; “”)
K2e = HKDF-expand(PRK2e, th2)

m2: CI , Qe,R, CR,

CIPHERTEXT 2︷ ︸︸ ︷
K2e XOR 〈IDR,MAC2,ad2〉

Pe = dh(de,I , Qe,R)
PRK2e = HKDF-extract(“”,Pe)

PR = dh(de,I , Qs,R)
PRK4x3m = PRK3e2m = HKDF-extract(PRK2e,PR)

K3ae = HKDF-expand(PRK3e2m, th2)
th3 = h(th2,CIPHERTEXT 2,CR)

K3m = HKDF-expand(PRK4x3m, th3)
MAC3 = AEAD(K3m;〈IDI , th3,Qs,I ,ad3〉; “”)

Sig3 = signI(〈〈IDI , th3,Qs,I ,ad3〉,MAC3〉)

m3 : CR,AEAD(K3ae; th3;〈IDI ,Sig3,ad3〉)

th3 = h(th2,CIPHERTEXT 2,CR)
K3m = HKDF-expand(PRK3e2m, th3)
K3ae = HKDF-expand(PRK3e2m, th3)

Figure 3: The SIG-STAT method. Tuples are denoted 〈·〉, and the hash function h is as determined by SI .

the initiator role. The essence of the definition is that
an adversary only knows Z if they compromised one
of the parties long-term keys before that party com-
pleted the run, or if the adversary compromised any
of the ephemeral keys at any time after a party starts
its protocol run. One way the definition slightly dif-
fers from the corresponding Tamarin lemma is that
Tamarin does not allow a disjunction on the left-hand
side of an implication in a universally quantified for-
mula. In the lemma, therefore, instead of the disjunc-
tion It2

C(I,R,Z) ∨ Rt2
C(I,R,Z), we use a single action

parametrized by I, R, and Z to signify that either party
has completed their role.

3.2.2 Authentication

We prove two different flavors of authentication, the
first being classical injective agreement following
Lowe (Lowe, 1997), and the second being an implicit
agreement property. Informally, injective agreement
guarantees to an initiator I that whenever I completes
a run ostensibly with a responder R, then R has been
engaged in the protocol as a responder, and this run
of I corresponds to a unique run of R. In addition, the
property guarantees to I that the two parties agree on a
set S of parameters associated with the run, including,
in particular, the session key material Z. However, we

will treat Z separately for clarity. On completion, I
knows that R has access to the session key material.
The corresponding property for R is analogous.

Traditionally, the event types used to describe in-
jective agreement are called Running and Commit, but
to harmonize the presentations of authentication and
PFS in this section, we refer to these event types as IS
and IC respectively for the initiator, and RS and RC
for the responder. For the initiator role we define in-
jective agreement as given by InjAgreeI in Figure 4.

The property captures that for an initiator I, either
the injective agreement property as described above
holds, or the long-term key of the believed responder
R has been compromised before I completed its role.
Had the adversary compromised R’s long-term key,
they could have generated a message of their liking
(different from what R agreed on) and signed this or
computed a MACR based on Qe,I , ds,R and their own
chosen ephemeral key pair 〈de,R, Qe,R〉. This places
no restrictions on the ephemeral key reveals, or on the
reveal of the initiator’s long-term key. For the respon-
der we define the property InjAgreeR as in Figure 4.

Unlike PFS, not all EDHOC methods enjoy the
injective agreement property. Hence, we show for all
methods a form of implicit agreement on all the pa-
rameters mentioned above. We take inspiration from
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PFS , ∀I,R,Z, t2, t3 .K t3(Z) ∧ (It2
C(I,R,Z) ∨ Rt2

C(I,R,Z))→
(∃t1 .At1

LTK(I)∧ t1 l t2) ∨ (∃t1 .At1
LTK(R)∧ t1 l t2) ∨ (∃t1 .At1

Eph(R,Z)) ∨ (∃t1 .At1
Eph(I,Z))

InjAgreeI , ∀I,R,Z,S, t2 .I
t2
C(I,R,Z,S)→

(∃t1 .Rt1
S (R,Z,S)∧ t1 l t2)∧ (∀I′R′t ′1 .I

t ′1
C(I
′,R′,Z,S)→ t ′1

.
= t1) ∨ (∃t1 .At1

LTK(R)∧ t1 l t2)

InjAgreeR , ∀I,R,Z,S, t2 .Rt2
C(I,R,Z,S)→

(∃t1 .It1
S (I,R,Z,S)∧ t1 l t2)∧ (∀I′R′t ′1 .R

t ′1
C(I
′,R′,Z,S)→ t ′1

.
= t1) ∨ (∃t1 .At1

LTK(I)∧ t1 l t2).

ImpAgreeI , ∀I,R,Z,S, t1 .I
t1
C(I,R,Z,S)→

(∀I′,R′,S′, t2 .Rt2
C(I
′,R′,Z,S′)→ (I = I′∧R = R′∧S = S′))

∧ (∀I′,R′,S′, t ′1 .(I
t ′1
C(I
′,R′,Z,S′)→ t ′1

.
= t1)

∨ (∃t0 .At0
LTK(R)∧ t0 l t1)∨ (∃t0 .At0

Eph(R,Z))∨ (∃t0 .A
t0
Eph(I,Z)).

Figure 4: Formalization of security properties and adversary model.

the computational model definitions of implicit au-
thentication, proposed by (Delpech de Saint Guilhem
et al., 2020), to modify classical injective agreement
into an implicit property. A small but important dif-
ference between our definition and theirs, is that they
focus on authenticating a key and related identities,
whereas we extend the more general concept of agree-
ing on a set of parameters, starting from the idea of
injective agreement (Lowe, 1997). We use the term
implicit in this context to denote that a party A as-
sumes that any other party B who knows the session
key material Z must be the intended party, and that
B (if honest) will also agree on a set S of parame-
ters computed by the protocol, one of which is Z.
When implicit agreement holds for both roles, upon
completion, A is guaranteed that A has been or is en-
gaged in exactly one protocol run with B in the oppo-
site role, and that B has been or will be able to agree
on S. The main difference from injective agreement
is that A concludes that if A sends the last message
and this reaches B, then A and B have agreed on I,
R and S. While almost full explicit key authentica-
tion, as defined by (Delpech de Saint Guilhem et al.,
2020), is a similar property, our definition does not
require key confirmation, so our definition is closer
to their definition of implicit authentication. In the
Tamarin model we split the property into one lemma
for I (ImpAgreeI) and one for R (ImpAgreeR) to save
memory during verification. We show only the defi-
nition for I in Figure 4, because it is symmetric to the
one for R.

For implicit agreement to hold for the initiator I,
the ephemeral keys can never be revealed. Intuitively,
the reason for this is that the implicit agreement relies

on that whomever knows the session key material is
the intended responder. An adversary with access to
the ephemeral keys and the public keys of both parties
can compute the session key material produced by all
methods. However, the responder R’s long-term key
can be revealed after I completes its run, because the
adversary is still unable to compute Pe. The initiator’s
long-term key can also be revealed at any time with-
out affecting I’s guarantee for the same reason.

3.2.3 Agreed Parameters

The initiator I gets injective and implicit agreement
guarantees on the following partial set SP of parame-
ters:

• the roles played by itself and its peer,

• responder identity,

• session key material (which varies depending on
EDHOC method),

• context identifiers CI and CR, and

• cipher suites SI .

Because EDHOC aims to provide identity protection
for I, there is no injective agreement guarantee for I
that R agrees on the initiator’s identity. For the same
reason, there is no such guarantee for I with respect
to the PI part of the session key material when I uses
the STAT authentication method. There is, however,
an implicit agreement guarantee for I that R agrees on
I’s identity and the full session key material. Since
R completes after I, R can get injective agreement
guarantees on more parameters, namely also the ini-
tiator’s identity and the full session key material for
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all methods. The full set of agreed parameters SF is
SP∪{I,PI}when PI is part of the session key material,
and SP∪{I} otherwise.

3.2.4 Inferred Properties

From the above, other properties can be inferred to
hold in our adversary model. Protocols where a
party does not get confirmation that their peer knows
the session key material may be susceptible to Key-
Compromise Impersonation (KCI) attacks (Blake-
Wilson et al., 1997). Attacks in this class allow an ad-
versary in possession of a party A’s secret long-term
key to coerce A to complete a protocol run believing
it authenticated a certain peer B, but where B did not
engage with A at all in a run. Because both our above
notions of agreement ensure agreement on identities,
roles and session key material, all methods passing
verification of those are also resistant to KCI attacks.

If a party A can be coerced into believing it com-
pleted a run with B, but where the session key ma-
terial is actually shared with C instead, the protocol
is vulnerable to an Unknown Key-Share (UKS) at-
tack (Blake-Wilson et al., 1997). For the same rea-
son as for KCI, any method for which our agreement
properties hold is also resistant to UKS attacks.

From the injective agreement properties it follows
that each party is assured the identity of its peer upon
completion. Therefore, the agreement properties also
capture entity authentication.

3.3 Tamarin

We chose Tamarin to model and verify EDHOC in
the symbolic model. It is an interactive verification
tool in which models are specified as multi-set rewrite
rules that define a transition relation. The elements of
the multi-sets are facts representing the global sys-
tem state. Rules are equipped with event annotations
called actions. Sequences of actions make up execu-
tion traces, over which logic formulas are defined.

Multi-set rewrite rules are written l−[e]→ r, where
l and r are multi-sets of facts, and e is a multi-set of
actions. Facts and actions are n-ary predicates over
a term algebra, which defines a set of function sym-
bols, variables and names. Tamarin checks equality
of these terms under an equational theory E. For
example, one can write dec(enc(x,y),y) =E x to de-
note that symmetric decryption reverses the encryp-
tion operation under E. The equational theory E is
fixed per model, and hence we omit the subscript.
Tamarin supports let-bindings and tuples as syntactic
sugar to simplify model definitions. It also provides
built-in rules for Dolev-Yao adversaries and for man-
aging their knowledge. We implement events using

actions, and parameters associated with events using
terms of the algebra.

3.3.1 Protocol Rules and Equations

Tamarin allows users to define new function symbols,
equational theories and rules, which are added to the
set of considered rules during verification. For exam-
ple, in our model we have a symbol to denote authen-
ticated encryption, for which Tamarin produces a rule
of the following form:
[!KU(k), !KU(m), !KU(ad), !KU(ai)] --[]->

[!KU(aeadEncrypt(k, m, ad, ai))]

to denote that if the adversary knows a key k, a mes-
sage m, the authenticated data ad, and an algorithm ai,
then they can construct the encryption, and thus get to
know the message aeadEncrypt(k, m, ad, ai).

3.4 Tamarin Encoding of EDHOC

We model all four methods of EDHOC, namely SIG-
SIG, SIG-STAT, STAT-SIG and STAT-STAT. Because
the methods share a lot of common structure, we de-
rive their Tamarin-models from a single specification
written with the aid of the M4 macro language. To
keep the presentation brief, we only present the STAT-
SIG metohod, as it illustrates the use of two different
asymmetric authentication methods simultaneously.
The full Tamarin code for all models can be found
at (Norrman et al., 2020). Variable names used in
the code excerpts here are sometimes shortened com-
pared to the model itself to fit the paper format.

3.4.1 Primitive Operations

Our model uses the built-in theories of exclusive-
or and DH operations, as in (Dreier et al., 2018;
Schmidt et al., 2012). Hashing is modeled via the
built-in hashing function symbol augmented with a
public constant as additional input, modelling dif-
ferent hash functions. The HKDF interface is rep-
resented by expa for the expansion operation and
extr for the extraction operation. Signatures use
Tamarin’s built-in theory for sign and verify oper-
ations. For AEAD operations on key k, message m,
additional data ad and algorithm identifier ai, we use
aeadEncrypt(m, k, ad, ai) for encryption. De-
cryption with verification of the integrity is defined
via the equation
aeadDecrypt(aeadEncrypt(m, k, ad, ai),

k, ad, ai) = m.

The integrity protection of AEAD covers ad, and this
equation hence requires an adversary to know ad even
if they only wish to decrypt the data. To enable the
adversary to decrypt without needing to verify the in-
tegrity we add the equation
decrypt(aeadEncrypt(m, k, ad, ai), k, ai) = m.

The latter equation is not used by honest parties.
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3.4.2 Protocol Environment and Adversary
Model

We model the binding between a party’s identity and
their long-term key pairs using rules for SIG- and
STAT-based methods separately.
rule registerLTK_SIG:

[Fr(˜ltk)] --[UniqLTK($A, ˜ltk)]->
[!LTK_SIG($A, ˜ltk),
!PK_SIG($A, pk(˜ltk)),
Out(<$A, pk(˜ltk)>)]

rule registerLTK_STAT:
[Fr(˜ltk)] --[UniqLTK($A, ˜ltk)]->

[!LTK_STAT($A, ˜ltk),
!PK_STAT($A, ’g’ˆ˜ltk),
Out(<$A, ’g’ˆ˜ltk>)]

The fact Fr(˜ltk) creates a fresh term ltk, repre-
senting a long-term secret key, not known to the ad-
versary. The fact Out(<$A, pk(˜ltk)>) sends the
identity of the party owning the long-term key and
the corresponding public key to the adversary. The
event UniqLTK together with a corresponding restric-
tion models the fact that the each party is associated
with exactly one long-term key. Consequently, an ad-
versary cannot register additional long-term keys for
an identity. In line with the EDHOC specification,
this models an external mechanism ensuring that long
term keys are bound to correct identities, e.g., a cer-
tificate authority.

We rely on Tamarin’s built-in message deduction
rules for a Dolev-Yao adversary. To model an ad-
versary compromising long-term keys, i.e., events of
type ALTK, and revealing ephemeral keys, i.e., events
of type AEph, we use standard reveal rules. The timing
of reveals as modelled by these events is important.
The long-term keys can be revealed on registration,
before protocol execution. The ephemeral key of a
party can be revealed when the party completes, i.e.,
at events of type IC and RC. 2

3.4.3 Protocol Roles

We model each method of the protocol with four
rules: I1, R2, I3 and R4 (with the method suffixed
to the rule name). Each of these represent one step
of the protocol as run by the initiator I or the respon-
der R. The rules correspond to the event types IS,
RS, IC, and RC, respectively. Facts prefixed with StI
carry state information between I1 and I3. A term
unique to the current thread, tid, links two rules to
a given state fact. Similarly, facts prefixed with StR
carry state information between the responder role’s

2A stronger, and perhaps more realistic, model would
reveal ephemeral keys upon creation at the start of the run,
but we failed to get Tamarin to terminate on this.

rules. Line 28 in the R2 STAT SIG rule shown below
illustrate one such use of state facts.

We do not model the error message that R can send
in response to message m1, and hence our model does
not capture the possibility for R to reject I’s offer.

We model the XOR encryption of CIPHERTEXT 2
with the key K 2e using Tamarin’s built in theory for
XOR, and allow each term of the encrypted element to
be attacked individually. That is, we first expand K 2e
to as many key-stream terms as there are terms in the
plaintext tuple by applying the HKDF-expand func-
tion to unique inputs per term. We then XOR each
term in the plaintext with its own key-stream term.
This models the specification closer than if we would
have XORed K 2e as a single term onto the plaintext
tuple. The XOR encryption can be seen in lines 19–22
in the listing of R2 STAT SIG below.

1 rule R2_STAT_SIG:
2 let
3 agreed = <CS0, CI, ˜CR>
4 gx = ’g’ˆxx
5 data_2 = <’g’ˆ˜yy, CI, ˜CR>
6 m1 = <’STAT’, ’SIG’, CS0, CI, gx>
7 TH_2 = h(<$H0, m1, data_2>)
8 prk_2e = extr(’e’, gxˆ˜yy)
9 prk_3e2m = prk_2e
10 K_2m = expa(<$cAEAD0, TH_2, ’K_2m’>,
11 prk_3e2m)
12 protected2 = $V // ID_CRED_V
13 CRED_V = pkV
14 extAad2 = <TH_2, CRED_V>
15 assocData2 = <protected2, extAad2>
16 MAC_2 = aead(’e’, K_2m, assocData2,

$cAEAD0)
17 authV = sign(<assocData2, MAC_2>, ˜ltk)
18 plainText2 = <$V, authV>
19 K_2e = expa(<$cAEAD0, TH_2,

’K_2e’>, prk_2e)
20 K_2e_1 = expa(<$cAEAD0, TH_2,

’K_2e’, ’1’>, prk_2e)
21 K_2e_2 = expa(<$cAEAD0, TH_2,

’K_2e’, ’2’>, prk_2e)
22 CIPHERTEXT_2 = <$V XOR K_2e_1,

authV XOR K_2e_2>
23 m2 = <data_2, CIPHERTEXT_2>
24 exp_sk = <gxˆ˜yy>
25 in
26 [!LTK_SIG($V, ˜ltk), !PK_SIG($V, pkV),

In(m1), Fr(˜CR), Fr(˜yy), Fr(˜tid)]
27 --[ExpRunningR(˜tid, $V, exp_sk, agreed),

R2(˜tid, $V, m1, m2)]->
28 [StR2_STAT_SIG($V, ˜ltk, ˜yy, prk_3e2m,

TH_2, CIPHERTEXT_2, gxˆ˜yy,
˜tid, m1, m2, agreed),

29 Out(m2)]

To implement events and to bind them to pa-
rameters, we use actions. For example, the action
ExpRunningR(˜tid, $V, exp_sk, agreed) in
line 27 above implements binding of an event of type
RS to the parameters and session key material.
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As explained in Section 3.2.3, it is not possi-
ble to show injective agreement on session key ma-
terial when it includes PI (not visible in the rule
R2 STAT SIG). Therefore, we use certain actions to
implement events that include PI in the session key
material and other actions that do not. Session key
material which includes (resp. does not include) PI is
referred to as imp sk (resp. exp sk) in the Tamarin
model. In the case of SIG-SIG and SIG-STAT, there-
fore, imp sk is the same as exp sk.

3.5 Tamarin Encoding of Properties

The properties and adversary model we defined in
Section 3.2 translate directly into Tamarin’s logic, us-
ing the straightforward mapping of events to the ac-
tions emitted from the model. As an example, we
show the lemma for verifying the property PFS.

1 lemma secrecyPFS:
2 all-traces
3 "All u v sk #t3 #t2.
4 (K(sk)@t3 & CompletedRun(u, v, sk)@t2) ==>
5 ( (Ex #t1. LTKRev(u)@t1 & #t1 < #t2)
6 | (Ex #t1. LTKRev(v)@t1 & #t1 < #t2)
7 | (Ex #t1. EphKeyRev(sk)@t1))"

The action CompletedRun(u, v, sk) in line 4 is
emitted by both the rules I3 and R4, and corresponds
to the disjunction of events It2

C ∨Rt2
C in the definition

of PFS in Section 3.2.1. Similarly, EphKeyRev(sk)
in line 7 models that the ephemeral key is revealed for
either I or R, or both.

4 DISCUSSION

There are a few places where EDHOC can be im-
proved, which we found during this work and com-
municated to the authors. We discuss them below.

4.1 Unclear Intended Use

The EDHOC specification lists several security goals,
but they are imprecise and difficult to interpret due
to lack of context and intended usage descriptions.
Without knowing how the protocol is to be used, it
is not clear whether the listed security goals are the
most important ones for constrained IoT devices.

The abstract goal of EDHOC is simple: establish
an OSCORE security context using few roundtrips
and small messages. From that, the design of EDHOC
is mainly driven by what can be achieved given the
technical restrictions. Focusing too much on what can
be achieved within given restrictions, and paying too
little attention to the use cases where the protocol is

to be used and their specific goals, risks resulting in
sub-optimal trade-offs and design decisions.

EDHOC is intended to cover a variety of use
cases, many of which are difficult to predict today.
However, this does not prevent collecting typical use
cases and user stories to identify more specific secu-
rity goals that will be important in most cases.

While constructing our model, we made up simple
user stories to identify security properties of interest.
Several of these revealed subtleties and undefined as-
pects of EDHOC. We informed the EDHOC authors,
who addressed these aspects in the specification.

4.1.1 (Non-)Repudiation

An access control solution for a nuclear power-plant
may need to log who is passing through a door,
whereas it may be undesirable for, say, a coffee ma-
chine to log a list of users along with their coffee pref-
erences. Via this simple thought experiment, we real-
ized that the specification did not consider the concept
of (non)-repudiation. In response, the authors of the
specification added a paragraph discussing how dif-
ferent methods relate to (non)-repudiation.

4.1.2 Unintended Peer Authentication

According to Section 3.2 of the specification, parties
must be configured with a policy restricting the set of
peers they run EDHOC with. However, the initiator
is not required to verify that the IDR received in the
second message is the same as the one intended. The
following attack scenario is therefore possible.

Suppose someone has configured all devices in
their home to be in the allowed set of devices, but that
one of the devices (A) is compromised. If another de-
vice B, initiates a connection to a third device C, the
compromised device A may interfere by responding
in C’s place, blocking the legitimate response from C.
Since B does not verify that the identity indicated in
the second message matches the intended identity C,
and device A is part of the allowed set, B will com-
plete and accept the EDHOC run with device A in-
stead of the intended C. The obvious solution is for
the initiator to match IDR to the intended identity in-
dicated by the application, which we included in our
model. We have communicated this to the EDHOC
authors and they are considering a resolution.

4.2 Unclear Security Model

We argue that the specification gives too little infor-
mation about what capabilities an adversary is as-
sumed to have, and that this leads to unclear design
goals and potentially sub-optimal design.
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Table 1: Verified properties. SP contains roles, responder identity, session key material (excluding PI), CI , CR, and SI . SF is
SP, the initiator identity, and PI .

SIG-SIG SIG-STAT STAT-SIG STAT-STAT
Injective agreement for I SF SF SP SP
Injective agreement for R SF SF SF SF
Implicit agreement for I SF SF SF SF
Implicit agreement for R SF SF SF SF
PFS for session key material X X X X

Even though EDHOC incorporates cryptographic
cores from different academic security protocols, its
design does not take into account the adversary mod-
els for which these protocols were designed. For ex-
ample, OPTLS, whose cryptographic core is essen-
tially the same as the STAT authentication method, is
designed to be secure in the CK model (Canetti and
Krawczyk, 2002). The CK security model explicitly
separates the secure storage of long-term keys from
storage of session state and ephemeral keys. This is
appropriate for modelling the use of secure modules.

The EDHOC authors indicated to us that it was not
necessary to consider compromised ephemeral keys
separately from compromised long-term keys. The
rationale is that SIGMA cannot protect against com-
promised ephemeral keys (EDHOC authors, 2020).
That rationale is presumably based on the fact that the
SIG-SIG method is closely modeled on the SIGMA-I
variant of SIGMA, and that it would be preferable
to obtain a homogeneous security level among the
EDHOC methods. That is only true, however, when
restricting attention to session key confidentiality of
an ongoing session. Secure modules provide value
in other ways, for example, by allowing construc-
tions with Post-Compromise Security (PCS) guaran-
tees. We discussed this with the authors, and the latest
version of the specification (Selander et al., 2021) in-
cludes recommendations on storage of long-term keys
and operations on these inside a secure module.

4.3 Session Key Material

EDHOC establishes session key material, from which
session keys can be derived using the EDHOC-
Exporter. The session key material is affected by Pe,
and if a party uses the STAT authentication method,
also by that party’s secret static long-term key. As
shown in Section 3, mutual injective agreement can-
not be achieved for PI . If this property is not impor-
tant for constrained IoT devices which cannot use any
of the other methods, then one can simply accept that
the methods have different authentication strengths.
Otherwise, this is a problem.

We identified three alternatives for resolving this.
One alternative is to include IDI , or its hash, in the

first and second messages. This would, however,
increase message sizes and prevent initiator identity
protection, which are grave concerns for EDHOC. A
second alternative is to not derive the session key ma-
terial from PI . Doing so, however, deviates from the
design of OPTLS (and similar protocols from which
the STAT-based methods are derived), where the in-
clusion of PI plays a crucial part in the security proof
of resistance against initiator ephemeral key compro-
mise. The third alternative is to include a fourth
message from responder to initiator, carrying a MAC
based on a key derived from session key material in-
cluding PI . Successful MAC verification guarantees
to the initiator that the responder injectively agrees
on PI . We presented the options to IETF, and they de-
cided to add a fourth message as an option in the latest
version of the specification (Selander et al., 2021).

We verified that all methods enjoy a common, but
weaker, property: mutual implicit agreement on all of
Pe,PI and PR, where applicable.

5 CONCLUSIONS AND FUTURE
WORK

We formally modeled all four methods of the EDHOC
specification using Tamarin. We formulated several
important security properties and identified precise
adversary models in which we verified these. The
properties are shown in Table 1. Mutual injective
agreement covers the set of parameters SP: respon-
der identity, roles, session key material (except for PI
when initiator uses the STAT authentication method),
context identifiers CI and CR, and cipher suites SI . The
responder in addition is ensured agreement on the ini-
tiators identity and PI , i.e., on the set SF . Implicit
agreement covers all previously mentioned parame-
ters for both peers. Verification of all lemmas, includ-
ing model validation lemmas, took 42 minutes on an
Intel Core i7-6500U 2.5GHz using two cores. Mutual
entity authentication, UKS- and KCI resistance can
be inferred from the verified properties.

Further, we identified a situation where initiators
may establish an OSCORE security context with a
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different party than the application using EDHOC in-
tended, and proposed a simple mitigation. We dis-
cussed how the IETF may extract and better define
security properties to enable easier verification.

We verified each method in isolation. Verifying
security under composition is left as future work.

In this work, we have analyzed the EDHOC ver-
sion as of July 2020 (Selander et al., 2020). There
are newer versions, with the most recent version as of
February 2021 (Selander et al., 2021). However, the
changes to the protocol over these versions are not
particularly significant for our analysis.
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