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Abstract: Agent-based systems are inherently distributed and parallel by a distributed memory model, but agent-based 
simulation is often characterised by a shared memory model. This paper discusses the challenges of and 
solution for large-scale distributed agent-based simulation using virtual machines. Simulation of large-scale 
multi-agent systems with more than 10000 agents on a single processor node requires high computational 
times that can be far beyond the constraints set by the users, e.g., in real-time capable simulations. Parallel 
and distributed simulation involves the transformation of shared to a communication-based distributed 
memory model that can create a significant communication overhead. In this work, instead distributing an 
originally monolithic simulator with visualisation, a loosely coupled distributed agent process platform 
cluster network performing the agent processing for simulation is monitored by a visualisation and 
simulation control service. A typical use case of traffic simulation in smart city context is used for 
evaluation the performance of the proposed DSEJAMON architecture. 
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1 INTRODUCTION AND 
OVERVIEW 

Agent models typically model behaviour and 
interaction that are used intensively in Agent-based 
simulation (ABS) and modelling (ABM) of complex 
systems providing a simplified mapping of real-
world entity behaviour on a simplified simulation 
world. Parallel and distributed agent-based 
simulation (PDABS) aims at reducing the execution 
time through executing concurrently the agent 
models distributed on different processors, which is 
a first-level approach to improve the execution speed 
and is simplified by the agent memory model. 
Recent progress of distributed ABS is shown in 
(Mastio, 2018) addressing geospatial systems 
(traffic). They achieved a speed-up about 10 by 
using macroscopic interaction models. Agent 
scheduling and distribution on processors are the 
main issues to be addressed among communication 
complexity arising in distributed systems. Load 
balancing is an important key methodology, too 

(Cordasco, 2017). Agent communication can 
dominate inner agent computation. 

There is an ongoing and increasing interest in the 
parallelisation of simulations, especially, but not 
limited to, for large-scale ABS (Aaby, 2010). 
Although, there is recent progress in utilisation of 
GPGPU systems for the exploitation of data path 
parallelism, exploitation of control path parallelism 
is not addressed and therefore considered in this 
work. The cellular automata computing model with 
neighbourhood communication is close to the agent 
model and can be processed partially and efficiently 
on GPU systems (Richmond, 2009). Hardware 
accelerators can be used to speed up special 
computations for simulation (Xiao, 2018). But in 
general, agents pose dynamic, irregular, short- and 
long-range communication that cannot be mapped 
efficiently on GPU-based processing systems. 
Distribution of simulations can base on two main 
principles: Distribution of the environment and 
distribution of agents (Rihawi, 2014). In this work, 
both principles are addressed. 

The processing of simulations using Virtual 
Machines (VM) with hardware and operating system 
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abstractions shows significant benefits in flexibility 
and adaptivity required in most simulation scenarios. 
Therefore, in this work there is a focus of 
simulations performed on VMs and their 
parallelisation. Considering large-scale ABS, the 
large-scale distributed Web with millions of servers 
and billions of user is an attractive distributed 
machine for simulation.  

The agent model itself poses inherent parallelism 
due its low degree of coupling to the processing 
platform and between agents. Interaction between 
agents commonly takes place with well-defined 
message-based communication. e.g., by using 
synchronised tuple spaces. Therefore, the agent 
model is an inherent parallel and distributed 
processing model relying on a distributed memory 
model (DMM) natively. But in simulation worlds a 
shared memory model (SMM) is often used for 
efficient and simplified agent interaction and 
communication. Typical examples for SM-based 
Multi-agent systems (MAS) are NetLogo (Tisue, 
2004) or SESAM (Klügl, 2006). Commonly, agent 
models used in simulation cannot be deployed in 
real computing environments. In addition to ABS 
there is Agent-based Computation (ABC), 
commonly involving totally different agent 
processing platforms (APP) and agent models. 

The starting point of this work is an already 
existing unified agent model that can be used for 
ABS and ABC in real-word data processing 
environments, too (Bosse, 2019). Simulation of 
MAS is performed by using the same platform for 
ABS and ABC, the JavaScript Agent Machine 
(JAM) (Bosse, 2020), which can be processed by 
any generic JavaScript (JS) VM like nodejs or by a 
Web browser (e.g., spidermonkey). Application of 
parallelisation to VM is difficult and is limited to 
some special cases. Most significant barrier for 
parallelisation in VMs is the automatic memory 
management (AMM) and garbage collection (GC) 
prohibiting SMM. Parallelisation is here considered 
as a synonym for distribution of computation and is 
no further distinguished in this work. 

The JAM platform supports already distributed 
loosely coupled platform networks, i.e., a set of 
nodes ℕ={N1,N2,..,Nn} is connected by an arbitrary 
communication graph G=〈ℕ,ℂ〉 that connects nodes 
by point-to-point communication channels ℂ={ci,j}. 
But there is no DMM, agents on different nodes are 
independent. JAM agents are capable to migrate 
between nodes (by code and data snapshot check-
pointing and migration). This feature implements 
some kind of a distributed memory virtually, but 
without any central managing instance or group 

communication. Basically, an agent carries some 
isolated region of the distributed memory and 
memory access is only possible by agent 
communication (using TS/signals). JAM networks 
are inherently distributed by strict data and control 
decoupling, and there are no shared resources among 
the set of nodes. Up to here we have a well scaling 
distributed network. Indeed there is no upper bound 
limit of connected nodes. 

The already existing Simulation Environment for 
JAM (SEJAM) (Bosse, 2019) extends one physical 
JAM node with a visualisation layer and simulation 
control and enables simulation of real-world JAM 
agents situated in an artificial two-dimensional geo-
spatial simulation world. Additionally, the JAM 
node of SEJAM can be connected to any other 
external JAM node providing real-world-in-the-loop 
simulation (i.e., agents from a real-world vehicle 
platform connected via the Internet can migrate into 
the simulation world and vice versa!). Virtualisation 
of JAM nodes enables simulation of JAM networks 
by SEJAM. In contrast to pure computational JAM 
networks the simulator couples its JAM nodes by 
shared memory (SM) tightly and is connected to all 
parts of the JAM node including direct agent access. 
Transforming this SM to a distributed memory (DM) 
architecture would cause significant Interprocess-
Communication (IPC) costs by messaging limiting 
the speed-up. 

In this work three main strategies are applied and 
evaluated to provide an almost linear scaling of the 
speed-up for large-scale distributed simulations: 

1. Strict decoupling of visualisation and 
simulation control from computation (of 
agents and platforms); 

2. Adding a Distributed Object Memory layer 
(DOM) to the existing JAM platform to 
enable distributed but coupled JAM node 
networks with distributed shared objects 
and virtualisation; 

3. Mapping of simulation entities (virtual 
platforms and agents) on multiple coupled 
physical platforms by preserving spatial 
and communication context (environmental 
and agent distribution based on principle 
discussed in (Rihawi, 2014)); 

In (Šišlák, 2009) a basically similar approach 
was applied to large-scale agent systems using signal 
and message communication for node coupling, but 
limited to local agent interaction. The approach 
presented in this work poses no communication 
range limitations. To understand the challenges and 
pitfalls of different approaches a short introduction 
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of the underlying agent model, its original JAM, and 
the simulator SEJAM is required, discussed in the 
next sections. 

The novelty of this work is a the deployment of 
an unified agent platform for distributed 
computation and simulation supporting large-scale 
ABC/ABM/ABS based on an optimised 
virtualisation layer using distributed shared object 
memory. A simulation monitor providing 
visualisation and control is attached to the 
distributed JAM network. Different mapping 
methods are introduced and compared. Agents can 
migrate seamless between virtual and real world. 

2 PARALLEL AND DISTRIBUTED 
SIMULATION 

2.1 Parallel and Distributed Agent 
Processing Architecture 

The core of the JAM agent processing platform is 
the Agent Input-Output System (AIOS). The AIOS 
provides a set of modules and operations that can be 
accessed by the agents. First part of virtualisation of 
the JavaScript code execution is a sandbox 
environment and the agent scheduler. Second part 
are virtual JAM nodes (vJAM). Each vJAM is a 
virtual isolation container with its own tuple space 
and agent process table. An agent can only interact 
with other agents via the AIOS by: 

1. Anonymously storing and extracting data 
via a synchronised tuple space data base 
(generative communication); 

2. Addressed sending of signal messages to 
other agents (mainly used by parent-
children groups); 

3. Agent control supporting creation and 
termination of agents including replication. 

In this section three different JAM platforms modes 
are considered: 

1. pJAM. A physical JAM node executed by 
a generic JS VM; 

2. vJAM. A virtual JAM node providing 
virtualisation of a pJAM and attached to 
and executed by a pJAM node; 

3. dJAM. A distributed JAM node part of a 
JAM cluster network providing coupling by 
Distributed Object Spaces (including a 
distributed simulation world). 

The original JavaScript Agent Machine (JAM) is 
a portable processing platform for reactive state-

based JavaScript agents (Bosse, 2019). JAM is 
programmed entirely in JavaScript as well as the 
agents. This enables the deployment of the platform 
on arbitrary computing devices including WEB 
browsers and the integration in any existing software 
just requiring an embedded JavaScript interpreter. JS 
execution is strictly single-threaded with only one 
control flow preventing any parallelisation on JS 
level except asynchronous IO operations that can be 
scheduled in parallel. One major feature of JAM 
agents is their mobility. An agent can migrate at any 
time its snapshot to any other JAM node preserving 
the code, the data, and control state. The distributed 
dJAM node is sub-classified in tightly coupled 
pJAM nodes (dpJAM) sharing most of their data 
structures, and in coupled vJAM nodes (dvJAM) 
sharing only a sub-set of platform data structures. 
Each pJAM node has a scheduler with a scheduling 
loop iteration over the set of associated vJAM nodes. 
All agents of a vJAM node are proecssed 
sequentielly by executing the next activity of an 
agent. Any remote operations (always asynchronous 
operations) are queued and proecssed after the first 
run of the scheudling loop finished (two-phase 
processing). 

2.2 Distributed Shared Objects 

Virtual nodes can be clustered to a distributed virtual 
node by sharing: 

1. Tuple Space (copy-on-demand by RPC 
with event notifications); 

2. Process Table (replicated on all distributed 
nodes, strict consistency required); 

3. Auxiliary objects by higher software layers 
managed by a single central instance, e.g., 
the graphics layer of simulator (P2P RPC) 

4. Agent data (Direct Agent Access, copy-on-
demand by RPC, no consistency required). 

Shared objects are managed by a virtual node 
object manager (OM) by using point-to-point 
communication and FIFO message queues. Access 
of shared objects involves multi-cast group 
communication emulated by single point-to-point 
messages. To satisfy consistency of data objects, 
group communication (implemented by multiple 
point-to-point messages) must be totally ordered. 
For this reason, one node of the group must act as a 
sequencer. 

Shared objects are modified by: 
1. A one-phase update protocol; 
2. A two-phase primary-copy update protocol; 
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3. An invalidation protocol; or 
4. By a P2P RPC protocol. 

Using point-to-point messaging provided by 
DAMP and managed by the sequencer to broadcast 
the messages to all group members. Tuple space 
output store operation are not replicated to all group 
member tuple spaces (copy-on-demand). Centralised 
stored and handled objects like the modification of 
the graphical simulation world is performed directly 
by RPC messages. Tuple space communication 
provides no guarantee for completion and reliability. 
For example, agents can concurrently try to remove 
a tuple, but only one agent will succeed. 

Some shared objects are updated lazily and 
directly by the group members without using the 
broadcast sequencer, i.e., data consistency is not 
guaranteed, but not being relevant in this case. To 
support distributed object memory and group 
communication, the AMP is extended by a 
Distributed AMP (DAMP) using either P2P RPC or 
multi-cast messages with a sequencer with the 
following (low-level) messages supporting 
distributed shared objects (DSO), based on a ordered 
multi-cast message implementation using point-to-
point messages (Kaashoek, 1989): JOIN, B-
REQUEST, BROADCAST, RETRANS, 
PHASE1, PHASE2, ACK, supporting one- and 
two-phase object update and invalidation including 
lazy updates. Finally, DAMP supports (high-level) 
access to a distributed region-segmented simulation 
world (via the DSOM, mainly shapes, resources, 
platforms): ADD, ASK, REM, SEARCH, 
MIGRATE. DAMP is commonly handled on separate 
communication ports spawning a JAM platform 
network. 

2.3 Distributed Shared Object 
Manager (DSOM) 

The object manager (OM) is responsible for the 
underlying object sharing management and 
messaging. But the original JAM architecture and 
API would require a significant redesign of the 
entire JAM architecture to support DMM via the 
OM. Since DMM is only required for simulation and 
JAM should be deployed in simulation and computer 
networks without modification, a distribution shared 
object manager (DSOM) connects to the JAM code 
on demand (i.e., if JAM is part of a simulator or 
simulation network). The DSOM extends and 
exchanges parts of the JAM code to connect to the 
JAM supporting DMM and vJAM migration. To 
reduce communication, a log-based approach with 

P2P RPC communication is used to update a global 
object map. The log contains changes of distributed 
objects. Agents typically access spatially bounded 
data only. 

2.4 Simulation Environment for JAM 

The core of the distributed simulation environment 
is the already existing Simulation Environment for 
JAM (SEJAM, Bosse, 2020), which consists 
basically of a physical JAM node (pJAM) with a 
visualisation and simulation control layer. In 
SEJAM; each JAM agent is associated with a visual 
shape visible in a two-dimensional simulation world, 
shown in Fig. 2 (left). The simulator extends the 
AIOS of JAM with additional APIs, beside 
visualisation, most important, a NetLogo-like shared 
memory model enabling spatial and pattern search 
and modification (i.e., direct agent access), and 
access of data storage (e.g., SQL data bases). 

 
Figure 1: Distribution strategies: (a) Each virtual JAM 
node is assigned to a different physical node (b) A 
distributed virtual JAM node (dvJAM) is created by 
distributing agent processing on different physical nodes 
(c) in Regions of agents with their vJAM nodes are 
distributed on different pJAM nodes by preserving local 
context. 

SEJAM supports physical and computational 
agents (introduced in Sec. [Agent-based Modelling, 
Computation, and Simulation]). A physical agent is 
always bound to its own vJAM and cannot migrate to 
another vJAM. Computational agents (processed in 
simulation and computer networks) can migrate 
between different vJAM nodes on different pJAM 
nodes. Note that SEJAM processes the JAM node and 
the simulation layer by one JS VM in one computa-
tional process. There are basically three distribution 
strategies that could be applied (see Fig. 1): 

1. Each simulation vJAM is moved to a 
remote pJAM node; 

2. One simulation vJAM node is distributed 
across multiple remote pJAM nodes;  
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3. Spatial regions of simulation vJAM nodes 
are mapped on single pJAM nodes. 

Beside the computational parallelisation of the 
agent processing, the agent-simulator interface (e.g., 
operations that modify the agent shape visualisation 
and simulation worlds) and extended APIs provided 
by the simulator have to be considered in the parallel 
and distributed simulator architecture. The extended 
NetLogo-like API for physical agents maps a shared 
memory model on the multi-agent system, i.e., 
agents can access other agent data and control state 
directly (Direct Agent Access, DAA). All DAA 
operations must be forwarded to remote JAM nodes 
by using DAMP primitives and the OM, too. The 
distribution of DAA (i.e., basically the powerful 
NetLogo ask operation) is a challenge and non-
trivial, and can result in high computational costs. 
Grouping of vJAM nodes with a spatial context 
(region of the simulation world) on the same pJAM 
node can reduce communication significantly. 

2.5 Distributed Simulation and 
Monitoring 

In this work, parallelisation is always implemented 
by message-based communicating processes, i.e., 
parallelisation is an equivalent of distribution. The 
unified distribution approach does not distinguish 
between (computer) local and remote network 
operations. To reduce communication complexity 
and costs a new approach is proposed using a 
distributed JAM network cluster for simulation 
without a tightly coupled simulator, shown in Fig. 2. 
The simulation and visualisation layer is only 
loosely coupled and acts as a monitor and a 
controller. Since physical agents situated in a 
graphical simulation world can change the 
simulation world, a backing-store architecture with a 
change log is proposed. Each pJAM node represents 
a region of the simulation world with a backing-
store layer that maps the visual world with visual 
shapes representing agents, virtual platforms, and 
resources (with data). Additionally, agents can get 
information from the backing-store, i.e., resources 
and their constraints, e.g., streets of a city map. The 
simulator will periodically collect changes to update 
the real visual representation of the world and vice 
versa via P2P RPC messages. Each region can 
access any other region, too. 

Each pJAM is extended by typical simulation 
APIs, most of all the NetLogo API. Depending on 
the NetLogo operation and the involved set of 
entities (agents, resources), the operation can be  
 

 
Figure 2: (a) Original monolithic SEJAM simulator with 
one pJAM and multiple vJAM nodes (b) Distributed 
simulation network consisting of coupled and extended 
pJAM networks. The simulator monitors the agents and its 
visual backing-store. 

performed by local computation and data, or by 
additional communication with remote pJAM nodes 
via DAMP. The location and current pJAM node 
association of physical agents is represented by a 
distributed object table (with a local copy on each 
pJAM node with a one-phase update protocol). 

Physical agents can migrate from one region to 
another requiring the migration of the entire 
associated vJAM, but a vJAM is just an 
administrative data structure including the tuple 
spaces (significant payload). All simulator-
pJAM/vJAM and vJAM-vJAM IPC is performed 
using the DAMP. The vJAM nodes can be linked 
(ad-hoc and dynamically) via AMP, too. If the nodes 
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are on the same pJAM node this link can be virtual 
(direct object and message passing), If the vJAM 
nodes are located on different pJAM nodes the 
virtual link must be replaced by a communication 
channel via DAMP. 

There is still one central pJAM node part of the 
DSEJAMON architecture providing a multi-cast 
sequencer and a central simulation clock controlling 
single-stepping of all nodes synchronously. The 
synchronous stepping of all regions is important to 
reduce multi-cast messaging and synchronisation 
between regions. A simulation step is atomic. A 
logical world agent is used to control the simulation, 
accessing data bases, computing and distributing 
sensors, monitoring agents, and finally providing 
sensor input to the physical agents via tuple spaces. 
This requires remote tuple space operation requests 
implemented by DAMP via P2P messages. The 
simulation world is distributed in regions with a 
local backing store and log-based modification 
tracking avoiding expensive synchronised 
distributed shared memory. Nodes are connected via 
UDP (remote and local IPC) or UNIX socket (local 
IPC only) channels. 

3 EVALUATION AND USE-CASE 
TRAFFIC SIMULATION 

The last section considered only the number of 
messages to implement various distribution 
approaches. Network latency, data bandwidth, and 
message volume have a significant effect on the real 
speed-up that can be achieved. The largest 
contributions to communication costs are vJAM 
migration and remote simulation world access. To 
evaluate the new distributed simulation 
environment, a typical use-case with a large number 
of computational intensive agents is investigated. 
The main question is the scaling and overall 
performance (speed-up) of the distributed parallel 
simulation compared with the classical sequential 
single-instance simulation. 

There are some major parameters to be 
considered: 

1. The distribution of sensor data and 
monitoring of the simulation world via the 
backing store and change log; 

2. The communication time of agents with the 
distributed simulation world (remote set 
operations) and vJAM migration; 

3. The communication time for shared 
objects; 

4. Scaling efficiency of the underlying 
communication and computer architecture 
(e.g., w.r.t. memory architecture); 

5. The impact of distribution on memory 
management (garbage collection) of the JS 
VM (reducing memory pressure). 

 
Figure 3: Example segmentation of the traffic simulation 
world (art. city with streets, signals, and vehicle agents) 
that is partitioned into four regions, each associated to a 
vJAM node (DOM: Distributed Shared Object Manager).  

Traffic simulation typically involves a large 
number of agents representing vehicles, drivers, and 
passengers. To get reasonable results, MAS with 
more than 10000 agents have to be simulated. An 
agent represents a vehicle/driver group with its own 
vJAM. Even with simplified agent behaviour models 
the processing on one processor is a challenge. An 
already performed traffic simulation from [9] was 
used and compared with the parallelised simulator. 
In this simulation independent driver agents should 
learn long-range navigation by computationally 
intensive reinforcement learning. A typical 
simulation run with the original one-process/pJAM 
SEJAM requires 10 minutes / 10000 simulation 
steps. The distributed simulation maps regions of the 
artificial city with thousands of vJAM nodes on 
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remote pJAM nodes, each associated with a region 
of the simulation world, shown in Fig. 3. The pJAM 
nodes are operating in single-step mode controlled 
by a clock of the central simulation node. Each 
region can access other regions pJAM nodes directly 
via P2P RPC communication via DAMP. Physical 
agents can access all regions of the world via DAMP 
requests. Each region contains shapes representing 
agents and resources spatially organised by an r-tree 
for fast search. Some resources like streets are 
distributed across multiple regions. 

 
Figure 4: Results of the evaluation of the parallel traffic 
simulation. (a) Measured speed-up with respect to number 
of regions/pJAM nodes (b) Scaling of computation time 
with respect to agents/region with 6 pJAM regions 
(summarising all nodes and 10000 simulation steps). 

Currently a speed-up up to 5 with a scaling of 
about 70% can be achieved with a typical 
communication overhead depending on computer 
architecture and the network bandwidth and latency. 
The parallel distributed simulation was evaluated on 
a two CPU / 6 Core per CPU workstation. Fig. 4 
shows some preliminary results with respect to the 
measured speed-up of the traffic simulation for 
10000 simulation steps of the traffic simulation (the 

agent populations was about 1000 agents) and the 
scaling of the speed-up with respect to the number of 
agents per region (and pJAM node). A reasonable 
speed-up can only be achieved if there is a 
significant number of agents per region with a 
significant amount of computational load. 
Communication was composed of message transfers 
between region-region and region-controller nodes. 

4 CONCLUSION 

Distribution and parallelisation of large-scale ABS is 
still a challenge due to the increasing 
communication complexity that can annihilate a 
possible speed-up (below 1). A originally shared-
memory simulator could not be distributed 
efficiently by separating visualisation and agent 
computation. Another approach starting with an 
isolated distributed JAM network mapping 
simulation world agents and their vJAM nodes on 
multiple pJAM nodes by preserving spatial 
constraints (zones) could achieve a significant 
speed-up by moderate communication costs. 
Originally a computational multi-agent system can 
be efficiently mapped on a distributed processing 
network, but simulation overlaps a shared memory 
model hard to be distributed efficiently afterwards. 

The performance of the proposed distributed 
simulation architecture still depends on the micro- 
and macro-scale modelling. Long-range 
communication and interaction of agents (including 
agent search and DAA operations) can increase the 
communication overhead significantly and lower the 
speed-up depending on the communication 
bandwidth. With increasing number of remote pJAM 
nodes (each associated with a spatial region of the 
simulation world) the scaling efficiency decrease 
further, again due to increasing communication 
between regions and more migrations of 
agents/vJAM nodes. The scaling for large networks 
has to be further investigated and WEB browsers as 
pJAM nodes must be considered in future work. 
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