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Abstract: The random generation of Euclidean addition chains fits well with a GLV context (Dosso et al., 2018) and
provides a method with decent performance despite the growth of the base field required to get the same level
of security. The aim of this paper is to reduce the size of the base field required. Combined with an algorithmic
improvement, we obtain a reduction of 21% of the memory usage. Hence, our method appears to be one of
the most compact scalar multiplication procedure and is particularly suitable for lightweight applications.

1 INTRODUCTION AND
CONTEXT

The increasing importance of smart devices such as
smart cards or sensor networks comes with growing
needs for low cost algorithms in the area of crypto-
graphic primitives. Relevant solutions should involve
low memory usage and a compact code which does
not sacrifice protection against physical attacks. The
aim of this paper is to improve a regular and con-
stant time method, so we obtain a very compact al-
gorithm both from a memory usage and size code
point of view. This algorithm could be dedicated for
lightweight applications.

1.1 Purpose and Main Idea

The Euclidean addition chains are sequences of cou-
ples of integers starting from (1,1) and such that (u,v)
leads to (u,u+ v) or to (v,u+ v). Such chains enable
to take advantage of the ZADD operation, which is an
efficient way to compute the sum of two points of an
elliptic curve with the same Z Jacobian coordinate.

According to (Dosso et al., 2018), this approach
fits well with the GLV-like context of an elliptic curve
endowed with an efficiently computable endomor-
phism. Indeed, the method described in (Dosso et al.,
2018) leads to a simple and compact way to compute
the elliptic curve scalar multiplication kP (ECSM) for
a Diffie-Hellman key exchange protocol. The main
drawback of this method is that it requires the use of

a larger curve as compared to other methods for the
same security level. But despite the growth of the
base field, it provides decent speed results and very
good memory usage performance.

The aim of this paper is to improve the method
described in Section 4 of (Dosso et al., 2018). First,
we obtain an asymptotic reduction of 7.97% of the
size of the base field required. Next, we modify the
original ZADD algorithm to save one register over Fp.
For practical usage, we obtain a reduction of 21% of
the memory used in the method described in (Dosso
et al., 2018).

In comparison with the method proposed in
(Dosso et al., 2018), the progress lies in the restric-
tion of the random generation to a subset S of all Eu-
clidean addition chains. Call the chaining (u,v)→
(u,u+v) a small step and the chaining (u,v)→ (v,u+
v) a big step. The subset S to which we restrict our-
selves is the one of Euclidean chains with more small
steps than big steps. The subset S has been chosen
such that its chains are sufficiently numerous with re-
spect to their growth (see Theorem 1), and quite easy
to randomly generate (see lines 2-6 of Algorithm 3).

1.2 Context

Let us now describe more precisely the context of our
work. We intend to define a variable scalar multipli-
cation algorithm to be used in the context of Diffie-
Hellman key exchange, to provide a regular and con-
stant time algorithm (which is nowadays a minimum
requirement for any cryptographic primitive), to re-
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spect low memory constraints, to work with an ellip-
tic curve E defined over a prime field Fp and endowed
with one efficient endomorphism.

1.3 Related Papers

One wants to compute a scalar multiplication point
kP to perform a part of a Diffie-Hellman key ex-
change under the above constraints. In (Herbaut
et al., 2010) one suggests to randomly sam-

ple an Euclidean additions chain (P,2P)
small step−−−−−−→

(P,3P)
big step−−−−→ (3P,4P)→ . . . rather than an integer

k.
In (Gallant et al., 2001) it is proposed to make use

of one efficient endomorphism φ on a curve to per-
form kP. The idea to randomly sample Euclidean
additions chains starting from (P,φ(P)) appears in
(Dosso et al., 2018). These ideas and the notations
are progressively recalled in Section 2.

Note that the idea to randomly sample other ele-
ments than the scalar in order to compute scalar mul-
tiplication also appears in other works, (see for ex-
ample the beginning of Section 4 in (Costello et al.,
2014)). It necessary leads to a study of the repartition
of the computed points (see for example Proposition
4 of (Costello et al., 2014)). The methods described
in (Herbaut et al., 2010) leans on an injectivity result
(Proposition 3) or an asymptotic result (Theorem 1).
As for the main method described in (Dosso et al.,
2018), it leans on the injectivity result of Proposition
4. We recall this statement in Section 2, and we im-
prove it with Theorem 1 of Section 3.

As we claim very good memory management,
we try to provide a fair comparison with competi-
tive side-channel attack resistant scalar multiplication
algorithms in the context of our paper. We give in
Section 4 details about the memory consumption of
the following well-known algorithms: endomorphism
of the x-line (Costello et al., 2014), FourQ (Costello
and Longa, 2015), Ted-glv (Gallant et al., 2001) tak-
ing benefits from the sign-aligned column decompo-
sition of the scalar (Faz-Hernández et al., 2015) and
the twisted Edwards coordinates system, Ted127-glv4
(Faz-Hernández et al., 2015), the Montgomery ladder
algorithm exploiting the benefit of the Curve25519
(Bernstein, 2006).

2 BACKGROUND AND
NOTATIONS

2.1 Elliptic Curves with One Efficient
Endomorphism and Co-Z
Arithmetic

The well known GLV method was introduced in 2001
by Gallant, Lambert and Vanstone in (Gallant et al.,
2001). It has given rise to many efficient algorithms
in a broader range of contexts (see (Galbraith et al.,
2009; Longa and Sica, 2014; Faz-Hernández et al.,
2015; Costello et al., 2014) for instance). As in (Gal-
lant et al., 2001) we will consider an elliptic curve E
defined over a prime field Fp, endowed with an ef-
ficiently computable endomorphism φ : E → E. A
first list of such curves and endomorphisms is given in
Section 2 of (Gallant et al., 2001). We will keep the
context and the notations of (F. Sica and M. Ciet and
J-J. Quisquater, 2003). Namely, we will fix a point
P∈ E of order N such that #E/N 6 4, we assume that
X2+rX +s∈Z[X ] is the characteristic polynomial of
φ and that φ(P)=λP with 0 < λ < N.

Recall that if two different points P and Q given
by their Jacobian coordinates (X : Y : Z) and (X ′ :
Y ′ : Z′) share the same third coordinate Z = Z′ (some-
times called the Z-coordinate) then the ZADD opera-
tion introduced in (Méloni, 2007) computes the sum
P+Q for the elliptic curve law group at a low cost of
5M+2S. Since, this operation and its variants have at-
tracted attention and yielded efficient scalar multipli-
cation schemes (Longa and Miri, 2008; Hutter et al.,
2011; Goundar et al., 2010; Goundar et al., 2011;
Baldwin et al., 2012). To be more precise, the ZADD
operation enables to recover, at the same cost, rep-
resentatives of both P + Q and P with the same Z-
coordinate, or representatives of both P + Q and Q
with the same Z-coordinate.

Lastly, with regard to the memory usage, let us
emphasize that the x-only trick introduced by Mont-
gomery in (Montgomery, 1987) fits well with the Co-
Z arithmetic context. Indeed, consider the formulas
given in (Méloni, 2007) to perform the addition of two
points with the same Jacobian Z-coordinate: the com-
putation of the X and Y coordinates of the sum does
not involve the Z coordinate of the input. When one
does not care about the Z coordinate, one can perform
the addition saving one register and one multiplica-
tion (so the cost drops down to 4M+2S).
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2.2 Random Generation of Euclidean
Addition Chains in GLV-like
Context

The idea of the random generation of chains is intro-
duced in (Herbaut et al., 2010) when the base point
P is fixed. The scope is extended to the context
of variable-base scalar multiplication on a curve en-
dowed with an endomorphism in (Dosso et al., 2018).
The Proposition 4 of the latter paper is the result we
want to improve and exploit in this work. Namely,
this proposition states that under some assumptions
2` different chains of length ` compute 2` different
points when applying the Algorithm 2 of (Dosso et al.,
2018) and starting from (P,φ(P)). Let us recall what
it means.

We introduce M` = {0,1}` in order to represent
choices of computations in a sequence of ZADD op-
erations. When dealing with elements of M` in this
context, the vocabulary involves the word chains be-
cause of the links with addition chains (see (Brauer,
1939) for example). The words Euclidean addition
chains (EAC in the sequel of this paper) are also used
because of the link with the Euclidean algorithm (see
(Montgomery, 1983) for example).

To introduce Algorithm 1, fix c ∈M` and a point
P ∈ E. Start from (P,φ(P)). If c0 = 1, compute
(P,P+φ(P)) with ZADD. We call this chaining a
small step. If c0 = 0, compute (φ(P),P+φ(P)).
We call this chaining a big step. In both cases
the representatives of the computed points share
the same Z-coordinate. In the first case, if c1 =
1, compute (P,2P+φ(P)). If c1 = 0 compute
(P+φ(P),2P+φ(P)). In the second case, if c1 =
1, compute (φ(P),P+2φ(P)). If c1 = 0 compute
(P+φ(P),P+2φ(P)). Repeat this procedure for each
bit ci. At the end, sum the two components with a last
call to ZADD. Now assume that φ(P)=λP with λ ∈ Z.
It naturally leads to a point (k1+k2λ)P for some inte-
gers k1 and k2. It leads to the Algorithm 1 which cor-
responds to the method of Section 4 in (Dosso et al.,
2018).

Important Remark. This algorithm makes exactly
n+ 1 calls to ZADD, where n is the length of c. As
it will be explained in the next section, this size will
be determined by the required security level. Hence,
once the security level of the protocol is settled, the
number of calls to ZADD is constant.

The algorithm requires P ∈ E such that φ(P)=λP
and c = (c1, . . . ,c`) ∈M`. This algorithm computes
kP where k = (1,λ)∏

`
i=1 Sci

(
1
1

)
and where S0 and S1

denote the matrices defined as follows.

Algorithm 1: EAC Point Mul(c: an addition chain of length
n).

Require: P ∈ E and c ∈Mn
Ensure: Q = χ1,λ(c)P
1: (U1,U2)← (P,φ(P))
2: for i = 1 . . . length(c) do
3: if ci = 0 then
4: (U1,U2) ← ZADD(U2,U1) [it corresponds to

(U2,U1 +U2)]
5: else
6: (U1,U2) ← ZADD(U1,U2) [it corresponds to

(U1,U1 +U2)]
7: end if
8: end for
9: (U1,U2)← ZADD(U1,U2)

10: return Q =U2

Definition 1. S0 =

(
0 1
1 1

)
and S1 =

(
1 1
0 1

)
.

To exploit this linear algebra point of view we also
introduce the following definitions.

Definition 2. Let (a,b) ∈ N2, s ∈ N∗ and c =
(c1, . . . ,cs) ∈Ms. We define:

. ψa,b(c) = (a,b)∏
s
i=1 Sci and χa,b(c) =

(a,b)∏
s
i=1 Sci

(
1
1

)
. µ(c) = ∏

s
i=1 Sci

(
1
1

)
Now we understand the statement of the Proposi-

tion 4 in (Dosso et al., 2018). We recall that N de-
notes the order of the point P and that X2 + rX + s is
the characteristic polynomial of the endomorphism φ

as mentionned in subsection 2.1.

Proposition 1. (Proposition 4 in (Dosso et al.,
2018)) If N > F2

n+2 (1+ |r|+ s), then the 2n chains
c∈Mn compute 2n different points when applying Al-
gorithm 1.

This statement has justified the following proce-
dure: randomly choose c ∈Mn and compute χ1,λ(c)P
with the algorithm above. Unfortunately, the condi-
tion N > F2

n+2 (1+ |r|+ s) involves the use of a curve
of greater size than usual. For instance, for a 128-
bit security level, the conditions of Proposition 4 of
(Dosso et al., 2018) leads to work over a field of size
358.

3 OUR CONTRIBUTION

3.1 Notations and Preliminary Results

The main idea of this paper is to consider a subset
S ⊂ M` and to randomly choose c in S rather than
in M`, so it enables to decrease the minimum size
of the curve E. Here the point is to choose a subset
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S large enough and whose elements c yield couples
(k1,k2) := ψ1,λ(c) such that k1 and k2 are not too big
as compared to the order of P. The subset S we pro-
pose in this work is the subset of the chains c ∈M`

whose Hamming weight is greater or equal than half
the size `. This subset offers a good tradeoff between
the two conditions stated above. Its elements are also
easy to produce in a simple and quite symmetric way
(see lines 2-6 of Algorithm 3). It leads to the follow-
ing notations.

Definition 3. Let ` and w be two non-zero integers.
We define

. M`,w as the set of the elements of {0,1}` of Ham-
ming weight w,

. M`,>w as the set of the elements of {0,1}` of Ham-
ming weight greater or equal to w.

Although the following lemma is an easy conse-
quence of a coefficient by coefficient comparison of
the couples computed by chains, it will make the read-
ing of the proof of Proposition 2 easier.

Lemma 1. Let `, m, a and b be four integers such that
0 6 m 6 ` and 1≤ a≤ b. Then

max{χa,b(c) | c∈M`,>m}=max{χa,b(c) | c∈M`,m} .

Proof. Fix a chain c of length ` and weight
m, and consider any chain ĉ obtained from c by
changing a 0 into a 1. An induction on the length of
the chain enables to prove that the couples arising in
the computation of χa,b(c) are greater or equal than
the the couples arising in the computation of χa,b(ĉ)
when comparing coefficients by coefficients.

The next result could be considered as the main in-
gredient of the work (Dosso et al., 2018) and of this
contribution. Indeed, when trying to prove that dif-
ferent chains give rise to different points, it enables to
bound k1 and k2 rather than bounding k1 + k2λ. This
result appears in the section 2.1 of (F. Sica and M.
Ciet and J-J. Quisquater, 2003) and it is also stated in
Lemma 6 of (Longa and Sica, 2014). Proofs release
on the irreductibility of X2 + rX + s on Z[X ].

Lemma 2. Let (k1,k2) ∈ Z\{(0,0)}. If k1 + k2λ≡ 0
(mod N) then

max(|k1|, |k2|)≥

√
N

1+ |r|+ s
.

3.2 New Theoretical Results

We first want to have an upper bound on the coeffi-
cient of µ(c) when c is a chain of M2n,>n.

Proposition 2. Let n > 3 be an integer. Then

max{‖µ(c)‖∞ | c ∈M2n,>n}= 8αn−2 +11βn−2

where αm = (1+
√

2)m+(1−
√

2)m

2 and βm =
(1+
√

2)m−(1−
√

2)m

2
√

2
.

Proof. Fix an integer n > 2. We begin by proving
that max{‖µ(c)‖∞ | c ∈M2n,>n}= max{χ1,2(c) | c ∈
M2n−2,n−2}. Recall that for any couple of integers
(x,y) we have

S0
( x

y
)
=
( y

x+y
)

and S1
( x

y
)
=
( x+y

y
)
,

so the biggest component of µ(c) is the sum of the
components of µ(ĉ) where ĉ is obtained from c
by removing its first element. Taking into account
that the first element of c can be 0 or 1, we obtain
that max{‖µ(c)‖∞| c ∈ M2n,>n} is the greatest
integer between max{χ1,1(c)| c ∈ M2n−1,>n} and
max{χ1,1(c)| c ∈M2n−1,>n−1}. Using Lemma 1 we
see that one can consider M2n−1,n and M2n−1,n−1
rather than M2n−1,>n and M2n−1,>n−1. Now, with the
same argument as in the proof of Lemma 1 the max-
imum we look for is max{χ1,1(c)| c ∈ M2n−1,n−1}.
Remark that whatever the first step is a small or a big
one, it maps (1,1) to (1,2), so the maximum taken is
the maximum between max{χ1,2(c)| c ∈M2n−2,n−2}
and max{χ1,2(c)| c ∈M2n−2,n−1}. The maximum we
look for is the first one for the same reason as above.
We conclude making use of (Herbaut et al., 2010,
Theorem 2) which gives the maximum of χ1,2.

The next result is our main statement: it enables better
memory usage than Proposition 1.
Theorem 1. Let n > 3 be an integer. We consider
an elliptic curve E endowed with an endomorphism φ

whose characteristic polynomial is X2 + rX + s. Let
P ∈ E of prime order N, if

N > (8αn−2 +11βn−2)
2 (1+ |r|+ s)

then, starting from (P,φ(P)), the 22n−1 chains c ∈
M2n,>n compute 22n−1 different points when applying
the Algorithm 1 .

Proof. We follow the proof of Proposition 4 in
(Dosso et al., 2018). Suppose that the chains c and c′

in c ∈M2n,>n compute the same point when applying

Algorithm 1. If
( k1

k2

)
= µ(c) and

( k′1
k′2

)
= µ(c′), then

one should have k1+k2λ≡ k′1+k′2λ (mod N) and so
(k1− k′1)+(k2− k′2)λ≡ 0 (mod N). But the integers
ki and k′i are positive, so with Proposition 2 we get
|ki − k′i| < 8αn−2 + 11βn−2, hence by hypothesis

|ki − k′i| <
√

N
1+|r|+s . It remains to apply Lemma 6

of (Longa and Sica, 2014) to obtain
( k1

k2

)
=
( k′1

k′2

)
and
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thus c = c′ , as µ is injective (see Proposition 1 in
(Dosso et al., 2018)).

The necessary condition in this theorem is more
favourable than the one of Proposition 1. Indeed, let
us estimate the field size required for a t-bit secu-
rity level. For such a security level we need to have
2n−1 > 2t which implies to take n > t +1. Thus, if
we take n= t+1, Theorem 1 shows that it is sufficient
to have

N > (8αt−1 +11βt−1)
2 (1+ |r|+ s). (1)

In the worst case we consider we have 1+ |r|+ s =
4. According to the definition of α and β, the right
hand side of the last inequation (1) can be seen as a
polynomial of degree 2t−2 in (1−

√
2) and (1+

√
2).

If for first approximation we only consider the terms
in (1+

√
2) then the condition becomes

N > 4(1+
√

2)2t−2
(

16+121/8+44/
√

2
)
,

which amounts to choosing N such that log2(N) >
2.54t − 1.41. Asymptotically we need log2(N) >
2.54t, so as compared to the protocol described in
(Dosso et al., 2018) (where log2(N) > 2.76t) we
asymptotically obtain a gain of 7.97%. We give in
Table 1 the order of the point P necessary for a given
security level computed from inequation (1). For in-
stance in the case of a 128-bit security level, rather
than considering a point P of order 358 as in (Dosso
et al., 2018) we can now consider a point of order 331,
which enables a gain of 7.5%.

3.3 The ZADDu Algorithm

In our implementation, our priority is to minimize the
number of active registers. For this purpose, we use
a slightly modified version of the ZADD procedure.
We call this procedure ZADDu (see Algorithm 2).

Algorithm 2: ZADDu(X0,Y0,X1,Y1,Z,A).

1: A← X1−X0
2: Z← Z.A
3: A← A2

4: X0← X0.A
5: A← X1.A
6: Y1← Y1−Y0
7: X1← Y 2

1

8: X1← X1−X0
9: X1← X1−A

10: A← A−X0
11: Y0← Y0.A
12: A← X0−X1
13: Y1← A.Y1
14: Y1← Y1−Y0

Compared to ZADD, it saves one register. Indeed,
the coordinates of the two input points can be used
to store some intermediate results. Hence the register
B used in Algorithm 9 of (Dosso et al., 2018) is not

necessary. It is important to note that this procedure
only uses its five parameters and one auxiliary register
to perform all its computations, no extra variable is
needed.

With this procedure it is possible to perform a
scalar multiplication using Algorithm 3. There are
two main differences between this algorithm and Al-
gorithm 1. First, note that Theorem 1 requires that
more than half of the bits of the chain c are 1’s. In
practice it only means that more than half of the op-
erations are small steps. As it is purely arbitrary to
consider that a 1 represent a small step, the if state-
ment from line 2 to 6 ensure that the bit b will rep-
resent a big step and thus b⊕ 1 a small step. Sec-
ondly, each step of the for loop must compute either
ZADDu(P0,P1) or ZADDu(P1,P0) depending on the
current EAC bit. In order to avoid the if statement
and eliminate a possible cache timing attack, the swap
of variables is achieved using the same trick shown in
(Düll et al., 2015) (line 9 to 11).

From a memory perspective, it is important to note
that the whole scalar multiplication only requires 6
active registers for storing 6 field elements. Most
scalar multiplication algorithms require at least so
many registers just to store the base point P (that must
be kept during the whole process, for instance when
using double and add) and the result value Q. If the
Z-coordinate is not required by the protocol, it is pos-
sible to perform a (X ,Y )-only scalar multiplication,
saving 1 register as the computation involving Z be-
comes superfluous (Méloni, 2007).

3.4 First Implementation and Practical
Results

We describe here a C implementation of our scalar
multiplication scheme. It is worth noting that it is
a proof of concept implementation, meaning we do
not aim at any speed record, and that is why all field
arithmetic operations are performed using the GNU
Multi Precision library1. We measured the compu-
tation time of our method. For practical reasons we
have used EAC of length 256 so that we can gener-
ate 2255 different chains leading to a potential secu-
rity of 127.5 bits. This is coherent with other stan-
dards such as curve25519 (whose security is 126
bits) (Bernstein, 2006). Based on Table 1, it is suf-
ficient to choose a base field defined by a prime p of
331 bits in order to achieve this level of security. That
is why we used the curve E331(Fp331) : y2 = x3 + 3
with p331 = 2331−36301 for our experiments.

We use the endomorphism φ: (x,y) 7→ (βx,y)

1http://github.com/eac-team/eac scalarmult
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Table 1: Field and chain sizes required for a given security level when φ satisfies φ2 + rφ + s = 0 and (r,s) =
(0,1)/(1,1)/(−1,2).

Security level 80 96 112 128 192 256 384
Chain length 162 194 126 258 386 514 770
Field size 209 250 290 331 494 657 982

where β is an element of order 3 so that φ satisfies
the equation φ2 + φ+ 1 = 0. With the vocabulary of
Section 3 we have r = s = 1 so the results of Table 1
do apply.

Measurements were performed on an Intel(R)
Core(TM) i5-6500 CPU 3.20GHz using gcc 9.3.0 and
gmp 6.2.1. The test procedure first runs 1000 times the
scalar multiplication function to heat the cache. Then
1000 random data sets are used and for each of them,
one takes the minimum as well as the median value
of the execution clock cycle numbers over a batch of
1000 runs. The performance is the average of all the
minimums and median values. Cycle count is done
as recommended in (Paoloni, 2010). The results ob-
tained with curve E331 are given in table 2.

Table 2: Performance (CPU cycles) for a 128-bit security
level.

Min Median
EAC 1,397,527 1,400,548
EAC (X ,Y )-only 1,199,439 1,201,950

To give the reader an order of idea, there are sev-
eral benchmarks available on the SUPERCOP site
(Bernstein and Lange, 2008) for a Diffie-Helmann ex-
change on an elliptic curve2. All the results corre-
spond to optimized versions of Diffie-Helmann key
exchange on different curves. Our implementation is
just a proof of concept and relies on the general GNU
multiprecision library, hence it cannot be considered
as an optimized implementation. However, let us con-
sider as an example the NIST P-256 curve which is an
international standard used in OpenSSL. Three dif-
ferent implementations of this curve are available in
the SUPERCOP package. The first one, developped
by Y. Nawaz and G. Gong (University of Waterloo,
Canada), only runs on Sun’s Ultrasparc processors,
hence we could not perform any evaluation on our
platform. The second one (named wbl) has been de-
velopped by Watson Ladd (Cloudfare company) from
the source code of the NIST P-256 implementation of
the OpenSSL project developped by Adam Langley
(Google). It contains optimized arithmetic operations
and uses Jacobian coordinates (like our protocol). The
last one (named ref), developped by Jan Mojzis 3, is

2https://bench.cr.yp.to/results-dh.html
3https://github.com/janmojzis

a constant-time version which uses Jacobian coordi-
nates and implements low-level fast arithmetic (un-
like our proof of concept). We followed the procedure
described in the SUPERCOP package to evaluate the
wbl and ref versions. We obtained the following out-
puts on our platform :

REF version :
20210125 ionplatform amd64 20210306
crypto_dh nistp256/timingleaks cycles -
1139366 1140132 1139246 1138687 ...
1145814 1139340 1140060 1139187

WBL version :
20210125 ionplatform amd64 20210306
crypto_dh nistp256/timingleaks cycles -
689569 689551 689520 689250 ...
689827 689520 688843 689639

Each value corresponds to the number of cycles re-
quired to compute one scalar multiplication. Hence
our non-optimized version is competitive with the ref
version and it is almost half as fast as the wbl ver-
sion. Once again, the purpose of this section is not to
claim any speed record but to show that, despite the
extra cost in terms of field size, our algorithm remains
practical speed wise compared to existing standards.

Algorithm 3: EACsmult(X0,Y0, c).

Require: β ∈ Fp, P in affine coordinates
Ensure: Return Q = (X1,Y1,Z) the point computed from

(P,φ(P)) and the Euclidean addition chain c
1: w← weight(c)
2: if w 6 length(c)/2 then
3: b← 0
4: else
5: b← 1
6: end if
7: X1,Y1,Z← X0.β,Y0,1
8: for i = 1 . . . length(c) do
9: A← (X0⊕X1)× (ci⊕b)

10: X0,X1← X0⊕A,X1⊕A
11: A← (Y0⊕Y1)× (ci⊕b)
12: Y0,Y1← Y0⊕A,Y1⊕A
13: ZADDu(X0,Y0,X1,Y1,Z)
14: end for
15: ZADDu(X0,Y0,X1,Y1,Z)
16: return X1,Y1,Z
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4 MEMORY USAGE

The aim of this section is to compare our approach
with other well known side-channel attack resistant
scalar multiplication algorithms from a memory us-
age point of view.

We sum up the comparison details in Table 3 for
a 128-bit level of security. The first column recalls
the size of the prime p (given in bits). Then, the
“Inputs” double-column gathers the number of Fp-
registers and the corresponding size (given in bytes)
of the input data of the scalar multiplication proce-
dure. The “ECSM” (Elliptic Curve Scalar Multi-
plication) double-column gathers the number of Fp-
registers and the corresponding size (given in bytes)
of the ancillary data used in addition and doubling
formulas. Last, the “Total” column summarizes the
sizes (given in bytes) of the whole data involved in
the ECSM procedure. For the reader’s convenience
we now provide some details to better understand the
memory count for the different methods.

X-line (Costello et al., 2014). The ECSM proce-
dure takes as inputs four affine elements x(P), x(Q),
x(P−Q) and x(P+Q) where Q = ψ(P). Each el-
ement has two Fp2 coordinates (Z : T ) and each el-
ement of Fp2 is encoded into two Fp-registers. To
compute kP, the procedure uses the ADD AFFINE
and DBLADD AFFINE formulas described in (Bern-
stein and Lange, 2005). However, considered “as is”,
these formulas are not optimal for memory usage. We
provide in Algorithms 4 and 5 modified versions in
order to minimize the number of registers. The letter
in bracket indicates the name of the register originally
used in (Bernstein and Lange, 2005). We notice that
6 supplementary Fp2 elements (i.e 12 Fp-registers)
are needed for these formulas. Moreover the whole
ECSM procedure requires 4 Fp-registers (z0, . . . ,z3)
and 3 affine points T0,T1,T2 (i.e 12-Fp registers)

Algorithm 4: ADD AFFINE(X2,Z2,X3,Z3,X1).

1: X5← X2 +Z2 (A)
2: Z5← X3−Z3 (D)
3: DA← X5×Z5
4: X5← X2−Z2 (B)
5: Z5← X3 +Z3 (C)

6: CB← X5×Z5
7: X5← (DA+CB)2

8: Z5← X1× (DA−CB)2

9: return X5,Z5

Ted-glv-Sac. To compute kP we exploit the well-
known GLV method (Gallant et al., 2001) on a curve
defined over Fp with one efficiently computable endo-
morphism, and the Sign-Aligned Column decompo-
sition of k decribed in (Faz-Hernández et al., 2015).

Algorithm 5: DBLADD AFFINE(X2,Z2,X3,Z3,X1).

1: X4← X2 +Z2 (A)
2: Z4← X3−Z3 (D)
3: Z4← X4×Z4 (DA)
4: X5← X2−Z2 (B)
5: Z5← X3 +Z3 (C)
6: Z5← X5×Z5 (CB)
7: X5← X2

4 (AA)

8: BB← X2
5

9: E← X5−BB
10: X4← X5×BB
11: X5← (Z4 +Z5)

2

12: Z5← X1× (Z4−Z5)
2

13: Z4← E× (BB+a24×E)
14: return X4,Z4,X5,Z5

The points are represented using the Twisted Ed-
wards coordinates system. To obtain better perfor-
mances, point doubling and addition are computed
mixing standard twisted Edwards coordinates with
extended twisted Edwards coordinates. Standard
twisted Edwards coordinates are encoded on 3 Fp-
registers while extended twisted Edwards coordinates
need 4 resisters. The algorithm is described in (Dosso
et al., 2018, Alg. 7 )4.

The point doubling takes as input extended twisted
Edwards coordinates and outputs extended twisted
Edwards coordinates (for the point Q). The corre-
sponding formula (non optimized for memory) can be
found in the section 3.3 of (Hisil et al., 2008). The
C implementation shows that in practice only the 4
registers of the point Q and 2 additional registers are
needed to update Q. The point addition takes as input
extended twisted Edwards coordinates and standard
twisted Edwards coordinates. The output is expressed
in extended twisted Edwards coordinates. The for-
mula is given in section 3.2 of (Hisil et al., 2008)
when a = −1 and Z2 = 1. In the C implementation
which is provided, only the 4 registers of the point Q
and 2 additional registers are needed to perform this
point addition. Hence 6 registers are needed to com-
pute any of these two operations. Last, the input of
the ECSM algorithm consists of two points given in
standard twisted Edwards coordinates, that is 6 regis-
ters.

Ted127-glv4 (Faz-Hernández et al., 2015). Here
the authors take benefit of two efficiently computable
endomorphisms φ and ψ on a curve defined over
Fp2 . The points are represented either in standard
twisted Edwards coordinates or in extended twisted
Edwards coordinates. Each coordinate is encoded
on 2 Fp-registers. The input of the algorithm con-
sists of four points: P, φ(P), ψ(P), φψ(P) (we need
4 coordinates for each of these points, see annex B
of (Faz-Hernández et al., 2015)). It gives a total of

4A C implementation is available on
https://github.com/eacElliptic/Scalar-multiplications/tree/
master/C/with edwards coord/sac glv
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Table 3: Memory storage for a 128-bit security level.

Inputs ECSM
log2(p) (bits) Fp registers Size(bytes) Fp registers Size(bytes) Total

x-line (Costello et al., 2014) 128 16 256 28 448 704
Ted-glv-sac 256 6 192 6 192 384
Ted127-glv4 (Faz-Hernández et al., 2015) 127 32 508 48 762 1270
FourQ(Costello and Longa, 2015) 127 4 64 98 1556 1620
Montgomery(Bernstein, 2006) 256 1 32 6 192 224
EAC (Dosso et al., 2018) 358 5 224 2 90 314
EAC (this paper) 331 5 207 1 42 249 (-21%)
EAC (X ,Y )-only (Dosso et al., 2018) 358 4 179 2 90 269
EAC (X ,Y )-only (this paper) 331 4 166 1 42 207 (-23%)

32 Fp-registers. Three coordinates are used to en-
code P, which are later extended to 4 coordinates.
In the case of variable base scalar multiplication, as
explained in (Faz-Hernández et al., 2015), 4 more
points are computed during the computation of kP.
Each point is represented using 4 coordinates (X +
Y,Y −X ,2Z,2T ), which leads to 32 Fp-registers. The
results given in table 3 come from (Faz-Hernández
et al., 2015) where the formulas of (Hisil et al., 2008)
have been adapted to reduce memory storage. The
algorithm computes a doubling followed by an addi-
tion. The result of these operations is stored in a point
Q which is represented by 3 coordinates plus two ad-
ditional elements of Fp2 , namely Ta and Tb (see (Ham-
burg, 2012) for the description of the Hamburg’s “ex-
tensible” strategy which requires 10 registers). Dou-
bling needs 2 additional elements of Fp2 , hence 4 reg-
isters (note that in Algorithm 11 of (Faz-Hernández
et al., 2015) X1 and Z1 can be used instead of X2 and
Z2). A point addition requires 3 Fp2 -elements, so 6
registers (X1, Y1 and Z1 can be also used instead of
X3, Y3 and Z3 if line 10 is computed before line 8 in
Algorithm 11 of (Faz-Hernández et al., 2015)). To
conclude, doubling and adding can be done with 6
registers for additional elements and 10 registers for
the storage of the point Q.

FourQ (Costello and Longa, 2015). The ECSM is
processed on an elliptic curve defined over Fp2 and
endowed with two efficiently computable endomor-
phisms. Computations are done using twisted Edward
coordinates. Elements of Fp2 are represented using
two Fp-registers. 5.

The variable-base scalar multiplication is imple-
mented in the function ecc_mul of the ecpp2.c file.
The input consists of two points given in affine co-
ordinates that require 8 Fp-registers. The function
needs a point R with 5 coordinates (X ,Y,Z,Ta,Tb) and
9 points (S, T0,. . . , T7) with 4 coordinates (X +Y,Y −

5The results given in Table 3 come from http://research.
microsoft.com/en-us/projects/fourqlib/

X ,2Z,2dT ), which leads to a total of 82 Fp-registers.
Notice that doubling a point (function eccdouble
from ecpp2_core.c) only needs two extra elements
of Fp2 (i.e 4 registers). Adding two points (func-
tion eccadd from ecpp2_core.c) requires one extra-
point R given by its 4 coordinates (X +Y,Y −Z,Z,T )
and two elements of Fp2 which leads to a total of 12
registers. The whole ECSM needs 98 Fp-registers.

Montgomery Ladder (Montgomery, 1987).
Montgomery curves combined with the Montgomery
ladder algorithm give rise to fast and secure ECSM
and are of particular interest for elliptic curve cryp-
tography. Since December 2016, the IETF (Internet
Engineering Task Force) uses two Montgomery
curves (Curve25519 (Bernstein, 2006) and Curve448
(Hamburg, 2015)) for instantiating Diffie-Hellman
protocols named X25519 and X448 in the Internet
Key Exchange Protocol Version 2 (IKEv2). We focus
on Curve25519 which is defined over Fp. Results
given in table 3 come from (Düll et al., 2015) where
the authors use formulas for the ladder step that
minimize the number of temporary (stack) variables
(see Algorithm 2 of (Düll et al., 2015)). The ECSM
algorithm takes as input the x-coordinate of P (one
Fp-register). The algorithm needs 6 registers (X1, X2,
Y1, Y2, T1 and T2) to process.

EAC and EAC (X ,Y )-only (this Paper). The al-
gorithm takes as input data the points P and φ (P).
Five registers are required to store these points. For
the (X ,Y )-only version, only four Fp-registers are re-
quired. We stress that in this case the Z-coordinate is
not required in the ZADDu procedure. To compute
one step of the main loop of Algorithm 3, only one
additional register is used in ZADDu in both cases.
Notice that one of the main advantage of our method
is that after the first iteration of the main loop the in-
put data are not used again. Hence the corresponding
registers can be used to store new computed values.
This is not the case for the preceding methods.
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To conclude this section, let us supply some ar-
guments about the natural compacity of the code in-
duced by our method. First, when compared to the
classical algorithms which use endomorphisms, we
do not need to implement any decomposition of the
scalar k. Second, when compared to methods which
need to implement double and addition formulae, our
method uses only one operation ZADDu which is
easy to implement in a compact way.
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