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Abstract: This paper deals with the study of a particular single track vehicle, named Anaconda. Numerical simulations 
are performed to assess the vehicle’s linear dynamic behavior. Indeed, multibody models of each component 
of the Anaconda and the one of the entire vehicle are developed and linearized around stationary states. The 
out-of-plane linearized sub-models are then used to have more insight in the lateral behaviour of the Anaconda 
and the influence of one of its component, the pedal module, on this behaviour is outlined. These tasks are 
carried out within the EasyDyn framework, an open source multibody library. Informative observations on 
the simulation results help to find out some features of the Anaconda concerning its linear dynamic behaviour; 
and some comment are made on the possibility of controlling its unstable eigenmodes. 

1 INTRODUCTION 

Anaconda is an in-line polycycle with reference to 
single track vehicles, like bicycle and motorcycle. It 
is composed of a head module which is a classical 
bicycle followed by some pedal modules as shown in 
Fig. 1.  

 
Figure 1: Anaconda with two pedal modules. 

This vehicle can transport several people one on 
each module. Modules are connected each other by 
spherical joints, and each pedal module is equipped 
with a rear steered wheel so as its rider can contribute 
in the vehicle balance and help in the following the 
prescribed path; while the rider on the head module 
decide which path to follow.  

In this conceptual model, electric generators 
provide energy when riders pedal. This energy is 
managed by a central unit in order to redistribute it in 

a proper manner to motor-wheels and store the 
exceeded energy in batteries (Verlinden and Kabeya, 
2012; Kabeya and Verlinden, 2010). 

Anaconda as bicycles are human-powered 
vehicles and nowadays the latter are used as healthy 
and less pollutant transportation means. Riding a 
bicycle can be learned intuitively and, when 
mastered, this activity becomes a second nature. 

 However, the dynamic behaviour behind the 
bicycle riding is more complex. The modularity of the 
Anaconda makes its dynamic behaviour much more 
complex than that of the bicycle and its investigation 
is a challenging task. 

The main issues in studying single track vehicle 
are their stability characteristics and their dynamic 
behaviour; and literature contains papers outlining 
their dynamic studies (Sharp, 1985; Sharp, 1971; 
Limebeer and Sharp 1971; Cossalter, 2006, Meijaard 
et al., 2007). 

This paper is concerned with the stability of an 
Anaconda composed of one pedal module. Thanks to 
the well established stability analysis of single track 
vehicle, the aim of this study is to describe the lateral 
stability of the Anaconda and to figure out the 
influence of the pedal module. Numerical simulations 
are carried out on multibody models of the vehicles; 
based on the EasyDyn framework. Models concerned 
in this study are those of the head module alone, the 
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pedal module alone and an Anaconda with one pedal 
module. Simulation results allow us to get more 
insight in the lateral stability features of this vehicle 
and to figure out the pedal module influences.  

2 EasyDyn FRAMEWORK AND 
VEHICLE’S MODELS  

2.1 EasyDyn Framework 

The studied mechanical models are developed 
according to a multibody approach influenced by 
EasyDyn (Verlinden et al., 2005; Verlinden et al., 
2013).  

EasyDyn is C++, open source and flexible, 
multibody library from the Department of the 
Theoretically Mechanics, Dynamics and Vibrations 
of the Faculty of Engineering of the University of 
Mons in Belgium. 

EasyDyn uses minimal coordinates to describe the 
kinematics of rigid bodies connected by joints, thanks 

 
Figure 2: EasyDyn simulation data flow. 

to homogeneous transformation matrices; and the 
principle of virtual power to derive the equations of 
motion which are then integrated according to the 
Newmark scheme (Newmark-ଵସ). Fig. 2 depicts the 
simulation data flow in the EasyDyn framework.  

The process starts with a Mupad file (Applic.mu) 
which contains bodies’ inertia data and their relative 
configurations expressed in term of the vehicle 
configuration parameters.   A symbolic tool called 
CAGeM is used to generate symbolically the 
kinematics of the vehicle. The resulted C++ file 
(Applic.cpp) from CAGeM contains basic EasyDyn 
command lines; and the user can include in this file 
other EasyDyn command lines dedicated to his 
application. Among the output files of this process 
there are those required for the stability analysis of 
the multibody systems under this research. 

2.2 Mechanical Model 

The Anaconda mechanical model was presented in 
(Verlinden and Kabeya, 2012); where a multibody 
approach was used by taking into account the 
confirmed modelling assumptions made for single 
track vehicle: bodies are considered to be rigid, 
rider’s lower body is firmly attached to the module 
frame, rider’s upper body can rotate about the 
longitudinal axis of the module frame, tire-ground 
contact is modelled as force element.   

Fig. 3 illustrates the mechanical models of an 
Anaconda composed of a head module with one pedal 
module and a pedal module alone.  

 
Figure 3: Riders-vehicle mechanical model. 

The number of bodies (nb) and the one of degrees 
of freedom (ncp) of each system are summarized in 
Tabs. 1 and 2. Parameters defining these degrees of 
freedom are considered as configuration parameters. 

Three vehicle’s models are investigated in this 
work:  
 The head module alone: nb = 6, ncp = 10; 

 The pedal module alone: nb = 6, ncp = 6; 

 The Anaconda with one pedal module: nb = 10, 
ncp = 16. 
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Table 1: Bodies and their relative degrees of freedom for 
the Anaconda with one pedal module. 

 

Table 2: Bodies and their relative degrees of freedom for 
the pedal module alone. 

 

Taking advantages of the parametric and generic 
model of the Anaconda implemented in EasyDyn 
(Kabeya and Verlinden, 2011), the numerical model 
of the head module alone and the one of the Anaconda 
with one pedal module are derived from the same 
mechanical model.  

The implementation of the pedal module alone is 
made apart from the mechanical model presented in 
Fig. 3. The pedal module is considered as a trailer 
towed by a front moving body, replacing the head 
module, whose motion is imposed. Physically, this 
corresponds to the hypothesis that the head module 
motion is not affected by the one of the pedal module. 

2.3 Mathematical Model 

For each vehicle’s model, the ncp second order 
equations of motion are derived and recasted in a 
matrix form as:  

M(q) . qሷ  + h(q,qሷ ) = g(q,qሷ ,t) (1)

where:  
 q  is a (ncp,1) vector gathering all the 

configuration parameters; 

 M is a (ncp,ncp) mass matrix;  
 h is a (ncp,1) vector gathering contributions of 

centrifugal and Coriolis forces; 
 g is a (ncp,1) vector gathering contributions of 

external forces. 

The forces taken into account in these models are 
gravity and tyre-ground contact forces. 

Furthermore, equations of motion are linearized 
around a stationary state, defined as the state in which 
the vehicle is let going straight ahead in a constant 
configuration position q଴  and at a constant forward 
velocity. The linearized equations are given as: 

M . Δqሷ + CT . 𝚫qሶ  + KT . 𝚫q   =   0 (2)

where:  
 Δq  = q  – q଴  is the relative configuration 

parameter vector defined with respect the 
stationary state position q଴; 

 CT is a (ncp,ncp) tangent damping matrix;   
 KT is a (ncp,ncp) tangent stiffness matrix. 

For the linearization state, the lateral or out-of-
plan dynamic is decoupled from the in-plane one 
(Koenen, 1983). Then sub matrices concerned with 
out-of-plane dynamic: the reduced mass matrix (M୰), 
the reduced tangent damping (C୰) and the reduced 
tangent stiffness matrix (K୰ ) are drawn from their 
respective counterparts of the entire linearized system 
by taking into account only the concerned 
configuration parameters ( q୰ ). The configuration 
parameters involved in the out-of-plane dynamic are:  
 The lateral displacement, the yaw, roll and steer 

angles for the head module alone: nr = 4; 
 The yaw, roll and steer angles for the pedal 

module alone: nr = 3; 
 The combination of the above two 

configuration parameters for an Anaconda with 
one pedal module: nr = 7. 

Moreover, it is to highlight that rider’s upper body 
degree of freedom is frozen in these models. This 
configuration parameter together with the rider’s legs 
are involved in the human control activities 
attempting to maintain the vehicle balance. Their 
influence where proved to be less significant with 
respect to the steer angle (Kooijman et al., 2009). 

The out-of-plane matrices are recasted in an 
equivalent state space model:  xሶ   = A  .  x (3)

where: 
 x is the reduced state vector of dimension (ns,1) 

with ns = 2*nr; and is equal to 
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x  = ቊq୰qሶ ୰ቋ (4)

 A is the evolution matrix of dimension (ns,ns) 
defined from the reduced matrices as: 

A  =  ൤ 0 I−(M୰)ିଵ K୰ −(M୰)ିଵC୰൨ (5)

with 0 and I the zero and identity matrices of 
appropriate dimensions. 

The evolution matrix is used in the sequel for the 
computation of eigenvalues and eigenmodes of the 
vehicle’s out-of-plane dynamic. Positions of 
eigenvalues in the complex plane will vary with the 
forward speed. The stability analysis of eigenmodes 
is rely on these positions. 

3 SIMULATION RESULTS 

3.1 Modes Determination Procedure 

For each vehicle, simulations are made as follows:   
 The vehicle is brought in a steady state 

condition letting it run straight ahead at a 
constant velocity. The velocity ranges from 0.2 
to 10 m/s with a step of 0.1 m/s are selected; 

 The linearization of the equations of motion is 
performed around this steady state 
configuration; 

 The text files containing the matrices of the 
linearized equations of motion from EasyDyn 
are retrieved under Matlab where the subset of 
the lateral dynamics is extracted and recasted in 
an equivalent state space model. 

 Eigenvalues are computed for each forward 
velocity and their evolution analysed.   

The two first step are performed with EasyDyn. 
Combination of the information from eigenvalues 
evolution over the forward speed, mode shapes and 
their animations are used to distinguish them from 
each other. 

3.2 Modes of the Head Module Alone 

According to the considered mechanical model, six 
distinct head module’s modes are observed from the 
eight eigenvalues computed. They are denoted from 
HMMode1 to HMMode6. Evolutions of their 
eigenvalues over the forward speed are given in Figs. 
4 and 5. 

 
Figure 4: HM modes evolution over the forward speed 
range (HMMode1 and HMMode2).  

 
Figure 5: HM modes evolution over the forward speed 
range (HMMode3, HMMode4, HMMode5 and 
HMMode6). 

HMMode1, 2, 3 and 5 are stable modes whereas 
HMMod4 and 6 are unstable ones. HMMode6 
evolves to the stable region as the forward speed 
increases with a crossing speed V3 equal to 4.6 m/s. 
All modes are non-oscillatory except HMMode2 and 
6 that start in this form with two branches that merge 
(at V1 = 5 m/s and V2 = 1 m/s) and became 
oscillatory. 

Some of these modes are common with the ones 
of single track vehicles: HMMode1, upper branch of 
HMMode2, HMMode5 and HMMode6. They 
correspond to the classical wobble, caster, capsize 
and weave modes.  

Let us mention that HMMode1 is characterized by 
a dominant steer angle motion in opposite phase with 
the one of the roll angle as it can be seen in Fig. 4. In 
this figure, aside the mode shape (left) there is a 
screenshot (right) that illustrate its vibrational 
behaviour.  
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Figure 6: HMMode1 shape (right) and screenshot of its 
vibrational motion (left) at 2 m/s. 

This faster mode is responsible of the counter 
steering phenomenon. In this investigated mechanical 
model, HMMode1 is stable and non-oscillatory as the 
wobble mode of a simplified motorcycle (Cossalter 
and Roberto, 2015). The unstable and oscillatory 
wobble encounter in bicycle model is due to the 
implementation of the front frame flexibility and the 
tire dynamics (Sharp, 2008; Dressel and Rahman, 
2010).  

Moreover, HMMode3 has an eigenvalue equal to 
zero and characterized by a large lateral displacement 
as HMMmode4. This behaviour is observed also with 
HMMode4 and 5 when they are close the HMMode3 
(below 4.2 m/s and above 5.5 m/s, respectively).  

3.3 Modes of the Pedal Module Alone 

The six eigenvalues computed exhibit four distinct 
pedal module modes denoted from PMMode1 to 4. 
Their evolutions over the forward speed are given in 
Fig. 7. 

Furthermore, PMMode1 to 3 are stable modes 
whereas PMMode4 is the only unstable mode.  

PMMode1 is also non-oscillatory like HMMode1 
but slower with time constant value varying from 6E-
4 to 5E-2 second. It is characterized by a roll motion 
in antiphase with those of the yaw and steer angles. 
This can be seen on the mode shape in Fig. 8 (left). 
Below 8.6 m/s, the steer motion is the dominant one; 
and above this speed the roll motion become 
dominant. This antiphase configuration feature 
between the roll and the steer angles characterizes the 
steer into the lean manoeuvre required to keep the 
pedal module in equilibrium. Which means that the 
rear steered handlebar play its designed role. The 
steer into the lean manoeuvre is illustrated in Fig. 8 
(right). 

 
Figure 7: PM modes evolution over the forward the forward 
speed range. 

   
Figure 8: PMMode1 shape (right) and screenshot of its 
vibrational motion (left) at 3 m/s. 

In addition, PMMode2 behaves the same way as 
PMMode1 but in an oscillatory manner with 
frequencies varying from 0.64 Hz at the beginning of 
the simulation process (at 0.2 m/s) to 3 Hz at 10 m/s. 
A the forward speed of 1.7 m/s a frequency minimum 
value of 0.17 Hz is reached together with a maximum 
damping ration of 84%.  

The yaw and the steer angle motions are the only 
ones involved in PMMode3 and PMode4. PMMode3 
is a non-oscillatory mode whereas PMMode4 is a 
quasi-oscillatory one above V5 = 4.1 m/s. This 
unstable begins with two non-oscillatory branches 
that merge at V5 in an oscillatory form with a 
maximum frequency equal to 5.7E-2 Hz reached at 
8.8 m/s. The yaw and steer motions evolves in (quasi) 
antiphase configuration for these pedal module 
modes (see Fig. 9 (left)). The screenshot of 
PMMode4 shown in Fig. 9 (right) suggests that as 
time increases, higher yaw angle will be reached 
(indeed slowly) due to the unstable nature of this 
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mode. This will lead the pedal module to hit the front 
one.   

   
Figure 9: PMMode1 shape (right) and screenshot of its 
vibrational motion (left) at 3 m/s. 

3.4 Modes of the Anaconda with One 
Pedal Module 

From the fourteen eigenvalues computed, only ten 
distinct modes are found out to be distinct for the 
Anaconda with one pedal module. They are denoted 
from AMode1 to 10. Figs. 10, 11 and 12 depict the 
evolutions of their eigenvalues with the forward 
speed.  

The first figure (Fig. 10) is concerned with stables 
modes having lower time constant in the speed range. 

 
Figure 10: First group of stable modes of the Anaconda 
(AMode1, AMode2 and AMode3). 

Moreover, each mode of the Anaconda with one 
pedal module is found out to be a combination of one 
mode of the head module and another one of the pedal 
module; the head and the pedal modules being 
considered alone as mentioned above.  

Fig. 11 and 12 illustrate the remainder stable 
modes and the unstable ones respectively. 

 
Figure 11: Second group of stable modes of the Anaconda: 
AMode4, AMode5, AMode6 and AMode7. 

 
Figure 12: Unstable modes of the Anaconda: AMode8, 
AMode9 and AMode10. 

In summary, Tab. 3 relates each Anaconda mode with 
its combination. 

In addition, AMode1 and AMode2 are non-
oscillatory evolving over the speed range with an 
increasing time constants like HMMode1 and 
PMMode1.  

AMode3 is oscillatory and a replication of 
HMMode2. The weak influence of the pedal module 
on this mode can be observed on shapes of both 
modes (see Fig. 13). In these modes, the dominant 
motion is the one of head module yaw angle. 
AMode4, AMode5 and AMode10 are other cases of 
complete replication of a mode over the speed range. 
Particularly, Fig. 14 shows the replication of 
PMMode2 in AMode4. 
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Table 3: Anaconda modes combinations. 

AMode Combination 
AMode1 HMMode1 +  PMMode1 
AMode2 HMMode2 lower branch + PMMode1 
AMode3 HMMode2 + fixed pedal module 
AMode4 fixed head module + PMMode2 
AMode5 HMMode3 + fixed pedal module 
AMode6 fixed head module + PMMode3 (v < V6) 

Deformed shape of AMode6 (V6 < v < V7) 
AMode7 HMMode5 + fixed pedal module (v < V7) 

HMMode5 + PMMode3 (v > V7) 
AMode8 HMMode5 + PMMode4 
AMode9 HMMode6 + PMMode4 
AMode10 fixed head module + PMMode4 

   
Figure 13: Shapes of HMMode2 and AMode3. 

   
Figure 14: Shapes of PMMode2 and AMode4. 

Indeed, AMode6 begins with two non-oscillatory 
branches below V6 = 2 m/s (replication of PMMode3 
for the lower branches). These branches merge at this 
speed in a quasi-oscillatory form up to V7 = 3.6 m/s. 
In this speed range, the replication of PMMode3 is 
slightly deformed by the presence of the lateral 
displacement motion in anti-phase with the one of the 
pedal module steer angle and in quasi-phase with the 
one of the pedal module yaw angle. Beyond V8, 

AMode7 is non-oscillatory and a replication of 
HMMode5. From this speed, it merges with the lower 
branch of AMode6 in an oscillatory form. In this 
latter form, modes HMMode5 and PMMode3 are 
combined.  

It is emphasized that when the real part of an 
eigenvalue is close to zero, the corresponding mode 
shape is characterized by a dominant lateral 
displacement motion.   

The capsize (HMMode5) and weave HMMode6) 
are the bicycle modes involved in the combination of 
the unstable modes of the Anaconda:  AMode8, 
AMode9 and AMode10. Except AMode8 which 
evolves over the speed range in a non-oscillatory 
manner, AMMode9 and AMMode10 switch from one 
form to another over the speed range (V9 = 0.6 m/s, 
V10 = 2.9 m/s and V11 = 3.9 m/s).  

They are known to be controllable at any forward 
speed. Their combination with PMModes4 yields 
unstable modes with real parts below 5 rad/s (but still 
decreasing with the forward speed); so as the unstable 
modes of the Anaconda can be controlled in the 
human capabilities. 

4 CONCLUSIONS 

This study is concerned with the out-of-plane 
dynamic of an Anaconda with one pedal module. The 
linearization of nonlinear equations of motion of the 
vehicle around a stationary state is required and 
numerical simulations are carried out for some 
forward speed in a speed range to get more insight in 
the lateral behaviour of the Anaconda. All these tasks 
are accomplished thanks to a co-simulation process 
between EasyDyn and Matlab. Taking advantage of 
the dynamic behaviours of the Anaconda’s 
components it was found out that component modes 
are combined each other or replicated in order to form 
the one of the Anaconda. Particularly, the only one 
unstable mode of the pedal module considered alone 
is involved in the Anaconda’s unstable modes. The 
analysis of the evolution of these unstable modes of 
the Anaconda help to draw conclusions that tackle a 
control issue for driving the Anaconda by human 
drivers. 
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