
WFDU-net: A Workflow Notation for Sovereign Data Exchange

Heinrich Pettenpohl1, Daniel Tebernum1 and Boris Otto1,2
1Data Business, Fraunhofer Institute for Software and Systems Engineering, Dortmund, Germany

2Industrial Information Management, TU Dortmund University, Dortmund, Germany

Keywords: Petri Net, Data Sovereignty, WFD-net, Usage Control, CTL*.

Abstract: Data is the main driver of the digital economy. Accordingly, companies are interested in maintaining technical
control over the usage of their data at any given time. The International Data Spaces initiative addresses
exactly this aspect of data sovereignty with usage control enforcement. In this paper, we introduce the so-
called Workflow with Data and Usage control network (WFDU-net) model. The data consumer can visually
define his or her workflow using the WFDU-net model and annotate the data operations and context. With
model checking we validate that the WFDU-net follows the usage policies defined by the data owner.
Afterwards, the compliant WFDU-net can be executed by exporting the WFDU-net in a Petri Net Markup
Language (PNML). We evaluated our approach by using our example WFDU-net in a data analytics use case.

1 INTRODUCTION

Data is the main driver of the digital economy.
Therefore, the European Union (EU) wants to provide
users with tools to process their data and retain full
control of their data as it flows within the EU and
even across sectors (The European Data Strategy,
2020). This kind of control is needed both within an
enterprise and within a data ecosystem, when it comes
to data sharing between enterprises. Therefore, the
International Data Spaces Association (IDSA)
developed a reference architecture for sovereign data
exchange between enterprises (Otto & Jarke, 2019).
Data sovereignty means that the data owner can
decide what the data consumer may use the data for.
This is a contrast to today's widespread access
control, where only access but not use is regulated.
Technically, in the IDS, this means that the data
owner annotates his or her usage policies to the raw
data, so that the systems enforce these policies.
Therefore, the IDS use the concept of usage control
(Eitel et al., 2019) to provide the data owner with
control over his or her data while, at the same time,
allowing the data processing on the consumer side.
On the consumer side, there is often not only one
application processing the data, but a whole chain of

1 https://airflow.apache.org/
2 https://argoproj.github.io/projects/argo/
3 https://camel.apache.org/

applications. To link the applications with each other,
workflow engines (Apache Airflow 1 , Argo 2) or
message routers (Apache Camel3, Apache NiFi4) or
message bus systems (Apache Kafka 5 , Apache
ActiveMQ6) are used today. In the IDS, exemplary
Apache Camel with ActiveMQ as well as Apache
Airflow are used to exchange data between the
applications. To enforce the IDS usage policies, the
enforcement tools hooking into the message systems
at runtime and check whether the usage policies are
being violated and, if so, interrupt the data flow. The
applications must also adhere to the terms of use.

The messaging systems do not natively support
usage control. The user of these messaging systems
mostly have to write down configuration files and use
programmatic APIs instead of graphical user
interfaces.

In this paper, we want to support the data owner
to see what his or her data is being used for and we
want to support the data consumer to dynamical
create workflows for data processing with a built-in
usage policy checking. Therefore, we present a
visualization of the workflow, which consists of a
control flow and a data flow. After designing the
workflow, we use model checking to validate whether
the workflow complies with the given usage policies.
Finally, the workflow can be executed.

4 https://nifi.apache.org/
5 https://kafka.apache.org/
6 https://activemq.apache.org/

Pettenpohl, H., Tebernum, D. and Otto, B.
WFDU-net: A Workflow Notation for Sovereign Data Exchange.
DOI: 10.5220/0010550402310240
In Proceedings of the 10th International Conference on Data Science, Technology and Applications (DATA 2021), pages 231-240
ISBN: 978-989-758-521-0
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

231

We will test the execution with the analytics
network approach developed by Tebernum et al.,
which is capable of following usage policies by
design. The overall approach allows us to validate the
workflow even before it is executed. This provides
the user with early feedback already during the design
phase. Additionally, we can forward the workflow
definition to the data owner to keep the data usage
transparent and allow him or her to check the validity
himself or herself.

So, in summary, we have three requirements:
 Graphical visualization of data flows
 Proven validation of data flows with reference

to usage policies at design time, so that data
flows do not simply break off.

 Conversion of the data flows to message
systems

The remainder of this paper is structured as
follows. Section 2 focuses on related work. Section 3
introduces WFDU-nets. In Section 4, we present a use
case that will be realized in the following sections. In
Section 5, we formalize the model checking rules and
implement them. Section 6 concludes the paper and
also provides limitations and future work.

2 RELATED WORK

First, we look at different modelling approaches to
select a graphical visualisation which also can prove
the usage policies. This will result into our research
gap. Then we look at existing usage control solutions
and how they enforce policies.

2.1 Petri Nets

In computer science, there are different types of
modelling for data in general and workflows in
particular. For example, it is possible to use Unified
Modeling Language (UML) (Object Management
Group [OMG], 2017), Business Process Modeling
Notation (BPMN) (Camunda services GmbH et al.,
2010), or Event-driven Process Chains (EPC) (Becker
et al., 2012). All these modelling languages were
extended over the time to fulfil different requirements.
However, we will focus on Petri nets for our approach
as they are mathematically well-founded and can
therefore be better used for analysis purposes in
addition to pure modelling (Murata, 1989; van der
Aalst, 1998). Furthermore, they can visualize the
workflow for the user and it can be used to visualize
the execution of a workflow via markings. There are
some variations of the original Petri nets (Murata,
1989), for example Coloured Petri Nets (Jensen, 2013),

where the colour can be used to attach information to a
token. Also, BPMN, EPC, and UML activity diagrams
can be translated into Petri nets.

Some work has been done to unify data and the
control flow in Petri nets. With Dual Workflow Nets
(DFN), Varea et al. (Varea et al., 2006) introduced a
Petri net model that combines control and data flows
in one Petri net with additionally added data
transitions. In contextual nets (Baldan et al., 2012),
flow relation itself is used to perform data operations
such as reading data within a Petri net. In PN-DO
(Petri Nets with Data Operation), Xiang et al. (Xiang
et al., 2017) customized a Petri net to generate,
update, and write data to places using a specialized
flow relation. Another method to add data flows to a
Workflow net (WF-net) is proposed with the WFIO-
net, where the data is explicitly modelled using
specific data places (Cong et al., 2014). This results
in a redefined transition fire method, so that standard
tools can no longer be used. (Katt et al., 2009) used
Coloured Petri nets to define a Usage control
Coloured Petri Net (UCPN) with colours for the three
main elements of a usage policy: subject, object, and
context. The UCPN is used to verify whether a
subject is allowed to use an object based on attributes.
However, the subject and the context in real world
examples are not free flowing, they are directly
attached to an application/transition and from our
view not a token/colour.

Another method is to include labels (function,
context, etc.) in the transitions and use a guard
function to select the correct data, as WFD-nets
(Workflow Nets with Data) do (Trčka et al., 2009).
The guard functions in WFD-nets use write, read, and
delete as data operations. WFD-nets are a specialized
form of WF-nets (Workflow-nets) (van der Aalst,
1997, 1998). WFD-nets are Petri nets with only one
start node and one end node, all other nodes have to
be located between the start and end node. The WFD-
nets is primarily designed to find data flow errors.
Our paper extends the WFD-nets to check usage
control policies.

2.2 Usage Control

In the early 2000s, Sandhu and Park introduced usage
control (UCON) as an extension of access control
(Sandhu & Park, 2003). This initial definition was
extended to UCONABC , which comprises
Authorizations, oBligations, and Conditions,
referring to attributes of subjects and objects. Lili and
Zhigang introduced a CTL logic for usage control
enforcement (Lili & Zhigang, 2019). They defined
attributes attached to the subject, object, and context

DATA 2021 - 10th International Conference on Data Science, Technology and Applications

232

to use the CTL logic for checking whether the
attributes are fulfilled for some policies. Another
approach is proposed in (Zhang et al., 2005) where UCONABC is formalized in Laport’s Temporal Logic
of Actions (TLA). Basin et al. used first-order
temporal logic to monitor usage control policies
(Basin et al., 2010; Basin et al., 2011). In (Pretschner
et al., 2009), a Linear Time Logic (LTL) dialect is
used to analyse policies. For dynamically changing
policies, (Elrakaiby & Pang, 2014)introduce an
Action Computation Tree Logic (ACTL) approach.

Zrenner et al. presented how usage control can be
used for business ecosystems, especially in the IDS
(Zrenner et al., 2019). With LUCON there is also a
framework to enforce policies in the IDS (Schütte &
Brost, 2018), the policies are described in a custom
DSL and translated into Prolog to realize enforcement
on the data flow.

3 WORKFLOW NETS WITH
DATA AND USAGE CONTROL

To model our approach, we are using workflow with
data nets (WFD-nets), which are specialized
workflow nets (WF-nets). A WF-net itself is a
specialized Petri net. Therefore, we start with a first
introduction of Petri nets. A Petri net is a graph with
two type of nodes: places and transition. The nodes
are connected with flow relations, where a flow
relation connects a place with a transition or vice
versa. The initial markers are tokens, which are
placed in places. When a transition fires, it consumes
a token from the previous place and generates a new
token behind it. A WF-net has exactly one source
place and one sink place and all nodes are on a path
from this source place to the sink place. We formalize
this in the following.

Definition 1. A WF-net is a Petri net Σ =(𝑃, 𝑇, 𝐹, 𝑀଴), where: 𝑃 ∩ 𝑇 = ∅ 𝑎𝑛𝑑 𝑃 ∪ 𝑇 ≠ ∅ (1)𝑃 is a finite set of places. (2)𝑇 is a finite set of transitions 𝑇 such that 𝑃 ∩𝑇 = ∅. (3)𝐹 ⊆ (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) is a set of directed

flow relation. (4)𝑀଴: 𝑃 → ℕ଴ is the initial marker. (5)𝑝௦ ∈ 𝑃 where 𝑝௦ is one source (start) place
such that 𝑝௦⋅ = ∅ (6)

𝑝௘ ∈ 𝑃 where 𝑝௘ is one sink (end) place such
that 𝑝௘⋅ = ∅ (7)

Each node 𝑥 ∈ 𝑃 ∪ 𝑇 is on a path from 𝑝௦ to 𝑝௘ (8)∀𝑝 ∈ 𝑃, 𝑀଴(𝑝) = 1 if 𝑝 = 𝑝௦, and otherwise 𝑀଴(𝑝) = 0. (9)

A WF-net is used to model the control flow of
different activities from a starting point to the end of
the process. Beside this control flow, a typical
workflow also consists of a data flow. Thus, a WFD-
net is a WF-net that is extended with read, write,
erase, and guard operations for data elements. For
example, a transition may read a data element.
Therefore, this data element is expected to be written
before the transition is executed. The operation write
means that the data element gets a new value. If the
data element value is already written, it is overwritten
by the write operation. Next, the erase operation
deletes the value of the data element. Finally, the
guard operation is used to check a data element before
a transition is executed. For example, the guard tests
whether a data element is present or not. Therefore, it
reads the value of the data element, whether a value
is present or not, and afterwards executes the
transition or not.

Definition 2. A WFD-net (Trčka et al., 2009) is a 10-
tuple. Σௐி஽ =(𝑃, 𝑇, 𝐹, 𝑀଴, 𝐷, 𝐺஽, 𝑅𝑒𝑎𝑑, 𝑊𝑟𝑖𝑡𝑒, 𝐷𝑒𝑠𝑡𝑟𝑜𝑦, 𝐺𝑢𝑎𝑟𝑑) ,
iff: (𝑃, 𝑇, 𝐹, 𝑀଴) is a WF-net. (1)𝐷 is a set of data elements. (2)𝐺஽ is a set of guards over 𝐷. (3)

Read: 𝑇 → 2஽ is the reading data labeling
function. (4)

Write: 𝑇 → 2஽ is the writing data labeling
function. (5)

Erase: 𝑇 → 2஽ is the erasing data labeling
function. (6)

Next, we will enhance the WFD-net with usage

policy related information. To do this, we are looking
at what additional elements we need in the WFD-net.

3.1 Usage Policies

A Usage Policy describes what a subject can do on an
object in a related context. Therefore, a policy

WFDU-net: A Workflow Notation for Sovereign Data Exchange

233

consists of four main elements defined UCON
specifications (Park & Sandhu, 2004; Sandhu & Park,
2003): subjects, actions, objects, and context. For our
use case, we limit these elements to specific elements
of our workflow. A subject is always the application
connected to a transition in our WFD-net. Actions are
related to three different categories. First, there are
subject actions that are performed by a subject, as in
our case an application that writes, reads, or erase an
object. These operations can easily be extended to
more concrete operations like transform, update, etc.
in the future. Enforcement actions are actions that
have a monitor character, e.g. updating attributes,
logging a failed access, or checking a fulfilment of an
obligation. Finally, obliged actions are actions that
must be fulfilled by the subject. In the following, we
call them Policies. In our case, the data elements are
the objects. However, the context is still missing in
the WFD-net. It describes in which environment the
application is running, e.g. inside a company or in a
cloud. The specific environment labels must be
defined before the data owner has written his or her
policies so that he or she knows the labels and can use
them.

In the following definition, we connect applications
to WFD-net and add their context to the transitions. In
addition, we add policies to the data so that a Subject
is aware of them while using data elements.

Definition 3. A WFD-usage-control-net is a 15-
tuple Σௐி஽௎ = (𝑃, 𝑇, 𝐹, 𝑀଴, 𝐷, 𝐺஽, 𝑅𝑒𝑎𝑑, 𝑊𝑟𝑖𝑡𝑒,𝐸𝑟𝑎𝑠𝑒, 𝐺𝑢𝑎𝑟𝑑, 𝐴𝑝𝑝, 𝐶, 𝐶𝑜𝑛𝑡𝑒𝑥𝑡, 𝑅, 𝑅𝑢𝑙𝑒𝑠) iff,

(𝑃, 𝑇, 𝐹, 𝑀଴, 𝐷, 𝐺஽, 𝑅𝑒𝑎𝑑, 𝑊𝑟𝑖𝑡𝑒, 𝐸𝑟𝑎𝑠𝑒, 𝐺𝑢𝑎𝑟𝑑) is a WFD-net. (1)𝐴𝑝𝑝 is a set of Applications. (2)

C is a set of Context elements. (3)𝑇 = 𝑇஺௣௣ ∩ 𝑇஼ where 𝑇஺௣௣ is an application
transition and 𝑇஼ is a control flow transition

with not data relevant acitivity.
(4)

Context: 𝑇 → 2஼ is the context labeling
function. (5)ℛ is a power set of a set of Policies. (6)

DataPolicies: 𝐷 → 2ℛ is a DataPolicies
labeling function. (7)

In the following, we will introduce a use case and

implement it in an exemplary WFDU-net to make the
approach more tangible.

4 USE CASE: METADATA
EXTRACTION FOR A DATA
CATALOG SYSTEM

Since data is an important asset, enterprises are
interested in maintaining a good overview of it. In our
case, we assume that the data consumed from the IDS
should be listed in a data catalog. The data catalog

Figure 1: WFD-net for extracting metadata.

DATA 2021 - 10th International Conference on Data Science, Technology and Applications

234

stores metadata about the data, thus providing
advanced search capabilities to find the needed data
more easily. Metadata can contain descriptive,
structural, as well as administrative information, which
is of great importance for running search queries and
finding data (Press, 2004). This can be very
heterogeneous depending on the data source. For text
files, an automatic detection of keywords may be
desirable. For images, an object recognition or
knowledge of location may be helpful. For domain-
specific data, a more specialized extraction of metadata
may be necessary. An enterprise can therefore pre-
define specific workflows and implement appropriate
analysis tasks to extract metadata for different data
types and use cases. A workflow engine located, for
example, on an enterprise server or in the cloud can
then execute these workflows.

However, there are situations where a workflow
cannot simply be executed as it is. This may be the
case, for example, if it is necessary to check in
advance whether individual steps of the workflow can
be applied to certain data. More experienced users
will then want to extend, shorten, or even completely
customize workflows for their own purposes. Even if
the workflows are customizable, the usage policies
specified by the data owner in the IDS have to be
enforced. For example, confidential management
documents should not be analyzed in a third-party
cloud application, but only within the company on
dedicated computers. Our visual notation helps users
understand, model, and validate workflows that can
support all these activities.

(Tebernum & Chabrowski, 2020) have designed
and implement an analytics network that is located
inside the boundaries of an enterprise and can be
utilized for the execution of metadata extraction
workflows. It is optimized for utilizing already
existing computing and storage resources, e.g. edge
devices. In addition, it consists of a decentralized data
management system that prevents centralized data
aggregation and allows data sovereignty to be
maintained. Due to the focus on the architectural
design, the authors did not provide a solution for a
workflow editor with build in formal validation
functionality. Workflows can only be written in the
appropriate workflow language with expert
knowledge and without further validation.

We address this shortcoming by applying the
notation presented in this paper to visualize, build,
and validate workflows for the proposed analytics
network. We also show how data sovereignty
properties can be applied.

The following example demonstrates how the
notation can be used to support users and apply usage

policies. The use case is located in the context of a
pharmaceutical enterprise. Much data is generated,
processed, bought, and sold on a regular basis. To keep
track of all this data and to make it easy searchable, a
data catalog is used. With predefined workflows, the
necessary metadata is extracted according to data type
and data domain. Figure 1 shows a shortened workflow
that calculates and extracts standard metadata from a
CSV files. For most files, the workflow can be used in
this way. Starting from the file to be processed, four
tasks are executed concurrently. Each subject action is
represented as a rectangular petri net transition with its
own read, write and erase functions. We distinguish
between rectangles with corners or rounded corners,
these represent control flow transitions or applications.
The circles represent petri net places in which the
tokens/data are located and can be consummated by
transitions, or the transitions generate the data for the
places behind them. In the figure, a sample is extracted
and statistical metrics are calculated. For the more
specific task of rule extractions, the analytics network
should perform the calculation on a computer
belonging to a high-performance group, this should be
added to the notation later.

4.1 Usage Policies

The provided data is purchased from the IDS and is
linked to some usage policies. One of these policies
specifies that only a certain number of copies of the
data may exist in the consumer company at the same
time. For our example, we assume a fictional case in
which the number is limited to a maximum of two
copies. Another term of use may specify that the data
must not pass national borders. Therefore, it must be
ensured that the data is not accidentally analyzed on
foreign computers, even if they are part of the
enterprise’s computer network structure. Due to the
terms of use, the standard workflow cannot be applied
unchanged. On the one hand, four tasks are performed
simultaneously, each holding its own copy of the file.
On the other hand, the workflow does not define any
geographic restrictions for the computers performing
the analysis tasks. Both policies are defined in the
following.

Policy 1. Data analysis only in my country: All data
processing must be done on computers in France.
Therefore, the policy ensures that the operations
using the data are only performed on transitions with
the context france. This is an authorization and
obligation rule defined by the UCON specification
which authorize a subject to use a resource and

WFDU-net: A Workflow Notation for Sovereign Data Exchange

235

determines via the obligation rule what tasks/actions
a subject must perform when a resource is used.

Policy 2. Only two copies can be used at the same
time: The policy ensures that only two copies of a data
set could be used in parallel. In fact, this means that a
maximum of only two transitions can executed at the
same time. This is a concurrency rule defined by the
UCON specification which expresses the way
multiple subjects are allowed to use a resource at the
same time.

Besides these two policies from the use case
above, we also consider generic policies that were
specified by the IDS initiative in (Eitel et al., 2019).

Policy 3. Allow/Inhibit the data usage for a specific
operation: The policy ensures that a particular
operation is allowed or inhibited to use the data. In
our case, we can distinguish between read, write, and
delete operations. However, it is easy to extend the
WFDU-net with more specific operations that can be
allowed or inhibited.

Policy 4. Use data and delete it after: After the data is
used by an application, it must be ensured that it is
deleted.

To check the policies described, we must first
define the model checking algorithm for the WFDU-
net. The model checking can then be used to check
whether the WFDU-net follows these usage policies
or break them.

5 FORMALIZATION AND
IMPLEMENTATION

First, we unfold the WFDU-net in a similar way to the
unfolding of a WFD-net (Trčka et al., 2009). We
preprocess our WFDU-net model and split each
transition 𝑡 ∈ 𝑇 into its start 𝑡௦ and its end 𝑡௘
connected by a place 𝑝௧. The transition is executed 𝑒𝑥𝑒𝑐(𝑡) if at least one token is in 𝑝௧ . To check
whether our model and all transitions follow our
defined policies, we will define model checking
formulas. For this purpose, we will first introduce the
Kripke structure and CTL* for our WFDU-net. Then,
we will formalize our policies.

5.1 CTL*

CTL* (computation tree logic with branching time
temporal logic) is a generalization of the two logics
LTL and CTL. CTL* uses a Kripke structure to define

states and their relation to each other. In this case, the
states are marking positions in the WF-net.

Definition 4. A Kripke structure (Trčka et al., 2009)
is a 4-tuple 𝑀 = (𝑆, 𝑁, 𝐿, →) where: 𝑆 is a finite set of states. (1)𝑁 is a non-empty set of atomic propositions. (2)𝐿: 𝑆 → 2ே is a state labeling function. (3)→⊆ 𝑆𝑥𝑆 is a transition relation. (4)

An atomic proposition 𝑁 is a definition of a
marking in a state 𝑠. It is defined as 𝑁 = {𝑝 ≥ 𝑖|𝑝 ∈𝑃, 𝑖 ∈ ℕ where 𝑝 ≥ 𝑖 means that place 𝑝 holds at least 𝑖 tokens. The labels of states map the markings to the
sets of atomic propositions: ⋁௣∈௉ 𝑎𝑛𝑑 𝑖 ∈ ℕ, (𝑝 ≥𝑖) ∈ 𝐿(𝑚) iff 𝑚(𝑝) ≥ 𝑖. Therefore, 𝐿(𝑠) is the set of
atomic propositions that hold in s. 𝑠 → 𝑠′ is the relation
from one state marking to another, which is a step from
a state 𝑠 to 𝑠’. Every step is a possible fired transition
in our WF-net. A path 𝜋 is then an infinite sequence of
states 𝜋 = 𝑠଴, 𝑠ଵ, 𝑠ଶ, … such that 𝑠௞ → 𝑠௞ାଵ for all 0 ≤ 𝑘 < 𝑛, 𝑠௡ ↛ , and 𝑠௞ = 𝑠௞ାଵ for all 𝑘 ≥ 𝑛 . 𝜋௞ then denotes the path 𝑠௞, 𝑠௞ାଵ, 𝑠௞ାଶ, ….

Definition 5. (Trčka et al., 2009) We define two
classes of formulas: state Φ and path Ψ formulas.
They are defined by the syntax: 𝜙 ∷= 𝑛|¬𝜙|𝜙 ∧ 𝜙|𝐸𝜓 𝜓 ∷= 𝜙|¬𝜓|𝜓 ∧ 𝜓|𝑋𝜓|𝜓⋃𝜓

with 𝑛 ∈ 𝑁, 𝜙 ∈ Φ, and 𝜓 ∈ Ψ.

Definition 6. A state formula 𝜙 is valid in a state s
(notation: 𝑠 ⊨ 𝜙) and path formula 𝜓 is valid on a
path 𝜋 (notation: 𝜋 ⊨ 𝜓) (Trčka et al., 2009) when: 𝑠 ⊨ 𝑛 iff 𝑛 ∈ 𝐿(𝑠) (1)𝑠 ⊨ ¬𝜙 iff 𝑠 ⊭ 𝜙 (2)𝑠 ⊨ 𝜙ଵ ∧ 𝜙ଶ iff 𝑠 ⊨ 𝜙ଵ 𝑎𝑛𝑑 𝑠 ⊨ 𝜙ଶ (3)𝑠 ⊨ E𝜓 iff there exists a path 𝜋 from 𝑠 such that 𝜋 ⊨ 𝜓 (4)𝜋 ⊨ 𝜙 iff 𝑠 is the first state of 𝜋 and 𝑠 ⊨ 𝜙 (5)𝜋 ⊨ ¬𝜓 iff 𝜋 ⊭ 𝜓 (6)𝜋 ⊨ 𝜓ଵ ∧ 𝜓ଶ iff 𝜋 ⊨ 𝜓ଵand 𝜋 ⊨ 𝜓ଶ (7)𝜋 ⊨ X𝜓 iff 𝜋ଵ ⊨ 𝜓 (8)𝜋 ⊨ 𝜓U𝜓ᇱiff there exists a 𝑗 ≥ 0 such that 𝜋௝⊨ 𝜓ᇱ, and 𝜋௞ ⊨ 𝜓 for all 0≤ 𝑘 < 𝑗. (9)

DATA 2021 - 10th International Conference on Data Science, Technology and Applications

236

The above definitions are used to notate some
informal definition (Trčka et al., 2009): A𝜓 is
“𝜓 ℎ𝑜𝑙𝑑𝑠 along all paths”; E𝜓 is “𝜓 ℎ𝑜𝑙𝑑𝑠 along at
least one path”; F𝜓 is “𝜓 ℎ𝑜𝑙𝑑𝑠 in future”; EF𝜓 is
“𝜓 ℎ𝑜𝑙𝑑𝑠 in some future state”; 𝜓U𝜓’ is “𝜓 ℎ𝑜𝑙𝑑𝑠
until 𝜓′ holds”.

To define our policies as formula, we need to
define the atomic proposition. Therefore, we create
some abbreviations. To formulate that the transition 𝑡
is now executed and write the data element 𝑑 ∈ 𝐷, we
define 𝑤(𝑑) = ⋁௧:ௗ∈௪௥௜௧௘(௧)𝑒𝑥𝑒𝑐(𝑡) . For read and
erase, the definition is 𝑟(𝑑) = ⋁௧:ௗ∈௥௘௔ௗ(௧)𝑒𝑥𝑒𝑐(𝑡)
and 𝑒(𝑑) = ⋁௧:௘∈௘௥௔௦௘(௧)𝑒𝑥𝑒𝑐(𝑡). To formulate that
the transition is executed in a special context 𝑐 ∈ 𝐶,
we define 𝑐𝑜𝑛(𝑐) = ⋁௧:௖∈௖௢௡௧௘௫௧(௧)𝑒𝑥𝑒𝑐(𝑡). We also
define 𝑐ℎ𝑎𝑛𝑔𝑒(𝑡) for the set {𝑑|𝑑 ∈ 𝑤𝑟𝑖𝑡𝑒(𝑡) ∪𝑒𝑟𝑎𝑠𝑒(𝑡) } and 𝑢𝑠𝑒(𝑡) for the set {𝑑|𝑑 ∈ 𝑟𝑒𝑎𝑑(𝑡) ∪𝑤𝑟𝑖𝑡𝑒(𝑡) ∪ 𝑒𝑟𝑎𝑠𝑒(𝑡)ሽ . The final state of the
workflow is denoted term, defined by 𝑒𝑛𝑑 = 1 ∧⋀௣∈௉{௘௡ௗሽ(𝑝 = 0).

5.2 Model Checking Formulas

First, we have to check if the underlying WFD-net is
valid. The data operations are only labeled to the
transitions, so we have to use the formalized anti-
patterns from (Trčka et al., 2009), especially to check

missing data (is data read before it is written?) and
inconsistent data (is data written or erased while it is
being used in parallel?). Only if no data is missing and
no inconsistent data is possible, we can ensure that the
policies can be enforced. Missing data is defined as E[ቀ¬𝑤(𝑑)U൫𝑟(𝑑) ∨ 𝑒(𝑑)൯ቁ ∨ F ቂ𝑒(𝑑) ∧ቀ¬𝑤(𝑑)U൫𝑟(𝑑) ∨ 𝑒(𝑑)൯ቁቃ] . In the first half, the
formula states that there is a path where no writing to 𝑑 happens until reading 𝑑 or erasing 𝑑 takes place.
The second part states that 𝑑 is erased and not written
again until it is read or erased. Inconsistent data is
defined as ⋁௧∈்:ௗ∈௖௛௔௡௚௘(௧)EF[(𝑒𝑥𝑒𝑐(𝑡) ∧⋁௧ᇲஷ௧:ௗ∈௨௦௘൫௧ᇲ൯𝑒𝑥𝑒𝑐(𝑡ᇱ)) ∨ 𝑝௧ ≥ 2]. This means for a
transition 𝑡 where 𝑑 is changed during execution,
there is at least one more transition 𝑡’ where data is
used. The last part of the formula captures the fact that
a changing transition can be executed more than once
in parallel. Our policies are defined as follows.

Policy 1. Data Analysis Only in My Country. In our
case, the transitions with the context france are in the
country. To violate the policy, we have to check if there
is at least one path with read data and not 𝑐 = 𝑓𝑟𝑎𝑛𝑐𝑒
until the data is overwritten or erased or the workflow
terminates. This results in the formula EF[𝑤(𝑑) ∧(𝑟(𝑑) ∧ ¬𝑐𝑜𝑛(𝑐)U(𝑤(𝑑) ∨ 𝑒(𝑑) ∨ 𝑡𝑒𝑟𝑚).

Figure 2: Policy compliant WFDU-net example for metadata extraction.

WFDU-net: A Workflow Notation for Sovereign Data Exchange

237

Policy 2. Only Two Copies Can be used at the
Same Time. With the purchased data set, only two
transition should be executed at the same time.
Therefore, we reformulate the policy to “Only two
reads in parallel are allowed”. To violate the policy,
there has to be a path where the data is read three
times in parallel.
 Read the data once: 𝐸𝐹[𝑤(𝑑) ∧ 𝑟(𝑑)] . Since

we check missing data in advance, we do not
have to check the write operation, as the
previous check would have already failed.
Therefore, the formula is:

EF[r(d)] = ⋁௧:ௗ∈௥௘௔ௗ(௧)EF[𝑒𝑥𝑒𝑐(𝑡)].
 Read the data twice: ⋁௧:ௗ∈௥௘௔ௗ(௧)EF[(𝑒𝑥𝑒𝑐(𝑡) ∧⋁௧ஷ௧:ௗ∈௥௘௔ௗ(௧)𝑒𝑥𝑒𝑐(𝑡)) ∨ 𝑝௧ ≥ 2].
 Read the data three times: ⋁௧:ௗ∈௥௘௔ௗ(௧)EF[(𝑒𝑥𝑒𝑐(𝑡) ∧⋁௧ᇲஷ௧:ௗ∈௥௘௔ௗ൫௧ᇲ൯𝑒𝑥𝑒𝑐(𝑡′) ∧⋁௧ᇲᇲஷ௧∧௧ᇲᇲஷ௧ᇲ:ௗ∈௥௘௔ௗ(௧ᇱ)𝑒𝑥𝑒𝑐(𝑡′′)) ∨ 𝑝௧ ≥ 3].

The formula for n times is similar to the previous
approaches.

Policy 3. Allow/Inhibit the Data Usage for a
Specific Operation. Firstly, we focus on inhibit the
read operation. To violate this policy, there is a path
where the data is read: EF[𝑟(𝑑)]. The formula for
writing or erasing data is built the same way. For the
validation that an operation is allowed, nothing needs
to be done, because it does not matter if the data is
used or not.

Policy 4. Use Data and Delete it After. The policy
is violated if there is a path where the data is read
(EF[𝑟(𝑑) ∧ …]) such that, in all possible
continuations of this path, no reading takes place until
the data gets erased, overwritten, or the workflow
terminates (A[¬𝑟(𝑑)U(ቀ൫𝑒(𝑑) ∨ 𝑤(𝑑)൯ ∧ ¬𝑟(𝑑)ቁ ∨𝑡𝑒𝑟𝑚)]). As we assume that the operations are
executed in the order read, write, and erase, we have
to ensure, that the data is not read in a task before it is
erased or overwritten. The result formula is: EF[𝑟(𝑑) ∧ A[¬𝑟(𝑑)U(ቀ൫𝑒(𝑑) ∨ 𝑤(𝑑)൯ ∧ ¬𝑟(𝑑)ቁ ∨𝑡𝑒𝑟𝑚)]].

5.3 Implementation

We used CPN Tools to model our WFDU-net and
check the patterns and policies from the previous
section. Since the given use case is not yet following
any policies, the model checking will fail. Figure 2
presents the redesigned compliant WFDU-net of
Figure 1. Please note that there are also other ways

than the proposed one to model the WFDU-net
compliant to the policies. We insert the labels to
annotate that the application is running inside the
company in France. First, an initial step named Init
was inserted. This allows a control flow before the
data flow, both to fetch the data exactly once (Get
Data) and to control that each subject action (Extract
Sample, Calc. Mean, Calc. Median, Calc A-Priori
Rules) is executed exactly once (see places to the left
of the subject actions). When initializing, two control
flow tokens are also created at the bottom left to
create exactly two copies of the data set. In the
process, the consummated data set is always created
again to the place above the Copy Data Transition
itself. The two resulting data copies are each used by
one of the subject action transitions. After completion
of the action, these again generate a new copy control
flow token to enable another copy of the data set. This
is done until each subject action is executed exactly
once, see control flow tokens from the very beginning
(to the left of the subject actions). This ensures that
there are always a maximum of two data sets for
simultaneous processing.

After the model is created and checked, we export
the Petri net to the Petri Net Markup Language
(PNML) which is an XML-based format. By
transpiling this into native workflow languages like
Argo or Airflow, the workflow can then be executed.
We tested this using the analytics network from
(Tebernum & Chabrowski, 2020).

6 CONCLUSIONS

We presented an approach to model the data flow for
data with usage policies. With this approach we tackle
our three requirements: (1) Graphical visualisation of
data flows; (2) Proven validation of data flows with
reference to usage policies at design time, so that data
flows do not simply break off; (3) Conversion of the
data flows to message systems. Therefore, we
developed a Workflow with Data and Usage control
network (WFDU-net) based on the WFD-net
approach (Trčka et al., 2009), so that also usage
policies can be validated, next to data flow errors.

To test our approach, we presented a use case
which is based on a real-life case of a pharmaceutical
company that buys data from the International Data
Spaces and has to enforce the given usage policies.
These policies where converted to CTL* logic and
then executed in CPN-Tools. We redesign the given
workflow of the underlying analytics network to be
compliant with the given policies, so that the model
checking is valid. Afterwards, existing workflow

DATA 2021 - 10th International Conference on Data Science, Technology and Applications

238

engines and analytic networks can use the model. In
this context, we have shown that the approach can test
both context-based and parallel events. For this
purpose, all possible actions are calculated,
transferred into a Kripke structure and then checked.

One limitation is that the approach cannot test
temporal obligations at design time. Another
limitation of our approach is that only the whole petri
net can be validated with the given usage policies.
Checking partial sections, for example if the policy is
changed during the data flow, is not possible. We can
circumvent this fact by dividing the data flow into
appropriate sections.

In the future, we will provide more policy
definitions. In addition, we will introduce our own
tooling to read the IDS policies and automatically
generate the CTL* formulas for the model checking.

ACKNOWLEDGEMENTS

This work was funded by the German Federal
Ministry of Education and Research (BMBF) in
context of the InDaSpacePlus project (no.
01IS17031) and by the Fraunhofer-Cluster of
Excellence »Cognitive Internet Technologies«.

REFERENCES

Baldan, P., Bruni, A., Corradini, A., König, B., Rodríguez,
C., & Schwoon, S. (2012). Efficient unfolding of
contextual Petri nets. Theoretical Computer Science,
449, 2–22.

Basin, D., Harvan, M., Klaedtke, F., & Zălinescu, E. (2011).
MONPOLY: Monitoring usage-control policies. In
International conference on runtime verification (pp.
360–364). Springer.

Basin, D., Klaedtke, F., & Müller, S. (2010). Policy
monitoring in first-order temporal logic. In
International Conference on Computer Aided
Verification (pp. 1–18). Springer.

Becker, J., Probandt, W., & Vering, O. (2012).
Modellierungssprachen. In J. Becker, W. Probandt, &
O. Vering (Eds.), Grundsätze ordnungsmäßiger
Modellierung (pp. 4–30). Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-30412-5_2

Camunda services GmbH, IBM Corp., OMG, I., PNA
Group, SAP AG, & Trisotech, I. (June 2010). BPMN
2.0 by Example: Version 1.0. https://www.omg.org/cgi-
bin/doc?dtc/10-06-02

Cong, L. I., ZENG, Q., & Hua, D. (2014). Formulating the
data-flow modeling and verification for workflow: A
Petri net based approach. International Journal of
Science and Engineering Applications, 3, 107–112.

Eitel, A., Jung, C., Kühnle, C., Bruckner, F., Brost, G.,
Birnstill, P., Nagel, R., Bader, S., & Steinbuß, S. (2019).
Usage Control in the International Data Space:
Position Paper [Version 2.0]. https://www.interna
tionaldataspaces.org/wp-content/uploads/2020/06/
IDSA-Position-Paper-Usage-Control-in-IDS-2.0.pdf

Elrakaiby, Y., & Pang, J. (2014). Dynamic analysis of
usage control policies. In 2014 11th International
Conference on Security and Cryptography (SECRYPT)
(pp. 1–13). IEEE.

The European data strategy: Shaping Europe's digital
future. (2020). https://ec.europa.eu/commission/
presscorner/api/files/attachment/862109/European_dat
a_strategy_en.pdf.pdf

Jensen, K. (2013). Coloured Petri nets: basic concepts,
analysis methods and practical use (Vol. 1). Springer
Science & Business Media.

Katt, B., Zhang, X., & Hafner, M. (2009). Towards a usage
control policy specification with Petri nets. In OTM
Confederated International Conferences" On the Move
to Meaningful Internet Systems. Symposium conducted
at the meeting of Springer.

Lili, X., & Zhigang, Z. (2019). Formal Specification of
Concurrent Enforcement UCON Model with CTL
Logic. In International Conference on Artificial
Intelligence and Security (pp. 627–641). Springer.

Murata, T. (1989). Petri nets: Properties, analysis and
applications. Proceedings of the IEEE, 77(4), 541–580.

Object Management Group. (December 2017). OMG®
Unified Modeling Language® (OMG UML®): Version
2.5.1. https://www.omg.org/spec/UML/2.5.1/PDF

Otto, B., & Jarke, M. (2019). Designing a multi-sided data
platform: findings from the International Data Spaces
case. Electronic Markets, 29(4), 561–580.

Park, J., & Sandhu, R. (2004). The UCONABC usage
control model. ACM Transactions on Information and
System Security (TISSEC), 7(1), 128–174.

Press, N. (2004). Understanding metadata. National
Information Standards Organization. ISBN1-880124-
62-9. Available at: www. niso. org/standards/resources

Pretschner, A., Rüesch, J., Schaefer, C., & Walter, T.
(2009). Formal analyses of usage control policies. In
2009 International Conference on Availability,
Reliability and Security (pp. 98–105). IEEE.

Sandhu, R., & Park, J. (2003). Usage control: A vision for
next generation access control. In International
Workshop on Mathematical Methods, Models, and
Architectures for Computer Network Security.
Symposium conducted at the meeting of Springer.

Schütte, J., & Brost, G. S. (2018). LUCON: Data flow
control for message-based IoT systems. In 2018 17th
IEEE International Conference On Trust, Security And
Privacy In Computing And Communications/12th IEEE
International Conference On Big Data Science And
Engineering (TrustCom/BigDataSE). Symposium
conducted at the meeting of IEEE.

Tebernum, D., & Chabrowski, D. (2020). A Conceptual
Framework for a Flexible Data Analytics Network.
Proceedings of the 9th International Conference on
Data Science, Technology and Applications(Volume 1).

WFDU-net: A Workflow Notation for Sovereign Data Exchange

239

Trčka, N., van der Aalst, W. M. P., & Sidorova, N. (2009).
Data-flow anti-patterns: Discovering data-flow errors
in workflows. In International Conference on
Advanced Information Systems Engineering.
Symposium conducted at the meeting of Springer.

van der Aalst, W. M. P. (1997). Verification of workflow
nets. In International Conference on Application and
Theory of Petri Nets. Symposium conducted at the
meeting of Springer.

van der Aalst, W. M. P. (1998). Three good reasons for
using a Petri-net-based workflow management system.
In Information and Process Integration in Enterprises
(pp. 161–182). Springer.

Varea, M., Al-Hashimi, B. M., Cortés, L. A., Eles, P., &
Peng, Z. (2006). Dual Flow Nets: Modeling the
control/data-flow relation in embedded systems. ACM
Transactions on Embedded Computing Systems (TECS),
5(1), 54–81.

Xiang, D., Liu, G., Yan, C., & Jiang, C. (2017). Detecting
data-flow errors based on Petri nets with data operations.
IEEE/CAA Journal of Automatica Sinica, 5(1), 251–
260.

Zhang, X., Parisi-Presicce, F., Sandhu, R., & Park, J. (2005).
Formal model and policy specification of usage control.
ACM Transactions on Information and System Security
(TISSEC), 8(4), 351–387.

Zrenner, J., Möller, F. O., Jung, C., Eitel, A., & Otto, B.
(2019). Usage control architecture options for data
sovereignty in business ecosystems. Journal of
Enterprise Information Management.

DATA 2021 - 10th International Conference on Data Science, Technology and Applications

240

