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Abstract: Data is the main driver of the digital economy. Accordingly, companies are interested in maintaining technical 
control over the usage of their data at any given time. The International Data Spaces initiative addresses 
exactly this aspect of data sovereignty with usage control enforcement. In this paper, we introduce the so-
called Workflow with Data and Usage control network (WFDU-net) model. The data consumer can visually 
define his or her workflow using the WFDU-net model and annotate the data operations and context. With 
model checking we validate that the WFDU-net follows the usage policies defined by the data owner. 
Afterwards, the compliant WFDU-net can be executed by exporting the WFDU-net in a Petri Net Markup 
Language (PNML). We evaluated our approach by using our example WFDU-net in a data analytics use case.

1 INTRODUCTION 

Data is the main driver of the digital economy. 
Therefore, the European Union (EU) wants to provide 
users with tools to process their data and retain full 
control of their data as it flows within the EU and 
even across sectors (The European Data Strategy, 
2020). This kind of control is needed both within an 
enterprise and within a data ecosystem, when it comes 
to data sharing between enterprises. Therefore, the 
International Data Spaces Association (IDSA) 
developed a reference architecture for sovereign data 
exchange between enterprises (Otto & Jarke, 2019). 
Data sovereignty means that the data owner can 
decide what the data consumer may use the data for. 
This is a contrast to today's widespread access 
control, where only access but not use is regulated. 
Technically, in the IDS, this means that the data 
owner annotates his or her usage policies to the raw 
data, so that the systems enforce these policies. 
Therefore, the IDS use the concept of usage control 
(Eitel et al., 2019) to provide the data owner with 
control over his or her data while, at the same time, 
allowing the data processing on the consumer side. 
On the consumer side, there is often not only one 
application processing the data, but a whole chain of 

 
1 https://airflow.apache.org/ 
2 https://argoproj.github.io/projects/argo/ 
3 https://camel.apache.org/ 

applications. To link the applications with each other, 
workflow engines (Apache Airflow 1 , Argo 2 ) or 
message routers (Apache Camel3, Apache NiFi4) or 
message bus systems (Apache Kafka 5 , Apache 
ActiveMQ6) are used today. In the IDS, exemplary 
Apache Camel with ActiveMQ as well as Apache 
Airflow are used to exchange data between the 
applications. To enforce the IDS usage policies, the 
enforcement tools hooking into the message systems 
at runtime and check whether the usage policies are 
being violated and, if so, interrupt the data flow. The 
applications must also adhere to the terms of use. 

The messaging systems do not natively support 
usage control. The user of these messaging systems 
mostly have to write down configuration files and use 
programmatic APIs instead of graphical user 
interfaces.  

In this paper, we want to support the data owner 
to see what his or her data is being used for and we 
want to support the data consumer to dynamical 
create workflows for data processing with a built-in 
usage policy checking. Therefore, we present a 
visualization of the workflow, which consists of a 
control flow and a data flow. After designing the 
workflow, we use model checking to validate whether 
the workflow complies with the given usage policies. 
Finally, the workflow can be executed.  

4 https://nifi.apache.org/ 
5 https://kafka.apache.org/ 
6 https://activemq.apache.org/ 
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We will test the execution with the analytics 
network approach developed by Tebernum et al., 
which is capable of following usage policies by 
design. The overall approach allows us to validate the 
workflow even before it is executed. This provides 
the user with early feedback already during the design 
phase. Additionally, we can forward the workflow 
definition to the data owner to keep the data usage 
transparent and allow him or her to check the validity 
himself or herself. 

So, in summary, we have three requirements: 
 Graphical visualization of data flows  
 Proven validation of data flows with reference 

to usage policies at design time, so that data 
flows do not simply break off. 

 Conversion of the data flows to message 
systems 

The remainder of this paper is structured as 
follows. Section 2 focuses on related work. Section 3 
introduces WFDU-nets. In Section 4, we present a use 
case that will be realized in the following sections. In 
Section 5, we formalize the model checking rules and 
implement them. Section 6 concludes the paper and 
also provides limitations and future work.  

2 RELATED WORK 

First, we look at different modelling approaches to 
select a graphical visualisation which also can prove 
the usage policies. This will result into our research 
gap. Then we look at existing usage control solutions 
and how they enforce policies.  

2.1 Petri Nets 

In computer science, there are different types of 
modelling for data in general and workflows in 
particular. For example, it is possible to use Unified 
Modeling Language (UML) (Object Management 
Group [OMG], 2017), Business Process Modeling 
Notation (BPMN) (Camunda services GmbH et al., 
2010), or Event-driven Process Chains (EPC) (Becker 
et al., 2012). All these modelling languages were 
extended over the time to fulfil different requirements. 
However, we will focus on Petri nets for our approach 
as they are mathematically well-founded and can 
therefore be better used for analysis purposes in 
addition to pure modelling (Murata, 1989; van der 
Aalst, 1998). Furthermore, they can visualize the 
workflow for the user and it can be used to visualize 
the execution of a workflow via markings. There are 
some variations of the original Petri nets (Murata, 
1989), for example Coloured Petri Nets (Jensen, 2013), 

where the colour can be used to attach information to a 
token. Also, BPMN, EPC, and UML activity diagrams 
can be translated into Petri nets.  

Some work has been done to unify data and the 
control flow in Petri nets. With Dual Workflow Nets 
(DFN), Varea et al. (Varea et al., 2006) introduced a 
Petri net model that combines control and data flows 
in one Petri net with additionally added data 
transitions. In contextual nets (Baldan et al., 2012), 
flow relation itself is used to perform data operations 
such as reading data within a Petri net. In PN-DO 
(Petri Nets with Data Operation), Xiang et al. (Xiang 
et al., 2017) customized a Petri net to generate, 
update, and write data to places using a specialized 
flow relation. Another method to add data flows to a 
Workflow net (WF-net) is proposed with the WFIO-
net, where the data is explicitly modelled using 
specific data places (Cong et al., 2014). This results 
in a redefined transition fire method, so that standard 
tools can no longer be used. (Katt et al., 2009) used 
Coloured Petri nets to define a Usage control 
Coloured Petri Net (UCPN) with colours for the three 
main elements of a usage policy: subject, object, and 
context. The UCPN is used to verify whether a 
subject is allowed to use an object based on attributes. 
However, the subject and the context in real world 
examples are not free flowing, they are directly 
attached to an application/transition and from our 
view not a token/colour. 

Another method is to include labels (function, 
context, etc.) in the transitions and use a guard 
function to select the correct data, as WFD-nets 
(Workflow Nets with Data) do (Trčka et al., 2009). 
The guard functions in WFD-nets use write, read, and 
delete as data operations. WFD-nets are a specialized 
form of WF-nets (Workflow-nets) (van der Aalst, 
1997, 1998). WFD-nets are Petri nets with only one 
start node and one end node, all other nodes have to 
be located between the start and end node. The WFD-
nets is primarily designed to find data flow errors. 
Our paper extends the WFD-nets to check usage 
control policies.  

2.2 Usage Control 

In the early 2000s, Sandhu and Park introduced usage 
control (UCON) as an extension of access control 
(Sandhu & Park, 2003). This initial definition was 
extended to UCONABC , which comprises 
Authorizations, oBligations, and Conditions, 
referring to attributes of subjects and objects. Lili and 
Zhigang introduced a CTL logic for usage control 
enforcement (Lili & Zhigang, 2019). They defined 
attributes attached to the subject, object, and context 
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to use the CTL logic for checking whether the 
attributes are fulfilled for some policies. Another 
approach is proposed in (Zhang et al., 2005) where UCONABC  is formalized in Laport’s Temporal Logic 
of Actions (TLA). Basin et al. used first-order 
temporal logic to monitor usage control policies 
(Basin et al., 2010; Basin et al., 2011). In (Pretschner 
et al., 2009), a Linear Time Logic (LTL) dialect is 
used to analyse policies. For dynamically changing 
policies, (Elrakaiby & Pang, 2014)introduce an 
Action Computation Tree Logic (ACTL) approach. 

Zrenner et al. presented how usage control can be 
used for business ecosystems, especially in the IDS 
(Zrenner et al., 2019). With LUCON there is also a 
framework to enforce policies in the IDS (Schütte & 
Brost, 2018), the policies are described in a custom 
DSL and translated into Prolog to realize enforcement 
on the data flow. 

3 WORKFLOW NETS WITH 
DATA AND USAGE CONTROL 

To model our approach, we are using workflow with 
data nets (WFD-nets), which are specialized 
workflow nets (WF-nets). A WF-net itself is a 
specialized Petri net. Therefore, we start with a first 
introduction of Petri nets. A Petri net is a graph with 
two type of nodes: places and transition. The nodes 
are connected with flow relations, where a flow 
relation connects a place with a transition or vice 
versa. The initial markers are tokens, which are 
placed in places. When a transition fires, it consumes 
a token from the previous place and generates a new 
token behind it. A WF-net has exactly one source 
place and one sink place and all nodes are on a path 
from this source place to the sink place. We formalize 
this in the following. 
 
Definition 1. A WF-net is a Petri net  Σ =(𝑃, 𝑇, 𝐹, 𝑀଴), where: 𝑃 ∩ 𝑇 =  ∅ 𝑎𝑛𝑑 𝑃 ∪ 𝑇 ≠ ∅ (1)𝑃 is a finite set of places. (2)𝑇 is a finite set of transitions 𝑇 such that 𝑃 ∩𝑇 = ∅. (3)𝐹 ⊆ (𝑃 × 𝑇) ∪ (𝑇 × 𝑃) is a set of directed 

flow relation. (4)𝑀଴: 𝑃 → ℕ଴ is the initial marker. (5)𝑝௦ ∈ 𝑃 where 𝑝௦ is one source (start) place 
such that 𝑝௦⋅ = ∅ (6)

𝑝௘ ∈ 𝑃 where 𝑝௘ is one sink (end) place such 
that 𝑝௘⋅ = ∅ (7)

Each node 𝑥 ∈ 𝑃 ∪ 𝑇 is on a path from 𝑝௦ to 𝑝௘ (8)∀𝑝 ∈ 𝑃, 𝑀଴(𝑝) = 1 if 𝑝 = 𝑝௦, and otherwise 𝑀଴(𝑝) = 0. (9)
 

A WF-net is used to model the control flow of 
different activities from a starting point to the end of 
the process. Beside this control flow, a typical 
workflow also consists of a data flow. Thus, a WFD-
net is a WF-net that is extended with read, write, 
erase, and guard operations for data elements. For 
example, a transition may read a data element. 
Therefore, this data element is expected to be written 
before the transition is executed. The operation write 
means that the data element gets a new value. If the 
data element value is already written, it is overwritten 
by the write operation. Next, the erase operation 
deletes the value of the data element. Finally, the 
guard operation is used to check a data element before 
a transition is executed. For example, the guard tests 
whether a data element is present or not. Therefore, it 
reads the value of the data element, whether a value 
is present or not, and afterwards executes the 
transition or not. 
 
Definition 2. A WFD-net (Trčka et al., 2009) is a 10-
tuple.  Σௐி஽ =(𝑃, 𝑇, 𝐹, 𝑀଴, 𝐷, 𝐺஽, 𝑅𝑒𝑎𝑑, 𝑊𝑟𝑖𝑡𝑒, 𝐷𝑒𝑠𝑡𝑟𝑜𝑦, 𝐺𝑢𝑎𝑟𝑑) , 
iff: (𝑃, 𝑇, 𝐹, 𝑀଴) is a WF-net. (1)𝐷 is a set of data elements. (2)𝐺஽ is a set of guards over 𝐷. (3)

Read: 𝑇 → 2஽ is the reading data labeling 
function. (4)

Write: 𝑇 → 2஽ is the writing data labeling 
function. (5)

Erase: 𝑇 → 2஽ is the erasing data labeling 
function. (6)

 
Next, we will enhance the WFD-net with usage 

policy related information. To do this, we are looking 
at what additional elements we need in the WFD-net. 

3.1 Usage Policies 

A Usage Policy describes what a subject can do on an 
object in a related context. Therefore, a policy 

WFDU-net: A Workflow Notation for Sovereign Data Exchange

233



consists of four main elements defined UCON 
specifications (Park & Sandhu, 2004; Sandhu & Park, 
2003): subjects, actions, objects, and context. For our 
use case, we limit these elements to specific elements 
of our workflow. A subject is always the application 
connected to a transition in our WFD-net. Actions are 
related to three different categories. First, there are 
subject actions that are performed by a subject, as in 
our case an application that writes, reads, or erase an 
object. These operations can easily be extended to 
more concrete operations like transform, update, etc. 
in the future. Enforcement actions are actions that 
have a monitor character, e.g. updating attributes, 
logging a failed access, or checking a fulfilment of an 
obligation. Finally, obliged actions are actions that 
must be fulfilled by the subject. In the following, we 
call them Policies. In our case, the data elements are 
the objects. However, the context is still missing in 
the WFD-net. It describes in which environment the 
application is running, e.g. inside a company or in a 
cloud. The specific environment labels must be 
defined before the data owner has written his or her 
policies so that he or she knows the labels and can use 
them. 

In the following definition, we connect applications 
to WFD-net and add their context to the transitions. In 
addition, we add policies to the data so that a Subject 
is aware of them while using data elements. 

 
Definition 3. A WFD-usage-control-net is a 15-
tuple  Σௐி஽௎ = (𝑃, 𝑇, 𝐹, 𝑀଴, 𝐷, 𝐺஽, 𝑅𝑒𝑎𝑑, 𝑊𝑟𝑖𝑡𝑒,𝐸𝑟𝑎𝑠𝑒, 𝐺𝑢𝑎𝑟𝑑, 𝐴𝑝𝑝, 𝐶, 𝐶𝑜𝑛𝑡𝑒𝑥𝑡, 𝑅, 𝑅𝑢𝑙𝑒𝑠) iff, 

(𝑃, 𝑇, 𝐹, 𝑀଴, 𝐷, 𝐺஽, 𝑅𝑒𝑎𝑑, 𝑊𝑟𝑖𝑡𝑒,  𝐸𝑟𝑎𝑠𝑒, 𝐺𝑢𝑎𝑟𝑑) is a WFD-net. (1)𝐴𝑝𝑝 is a set of Applications. (2)

C is a set of Context elements. (3)𝑇 = 𝑇஺௣௣ ∩ 𝑇஼ where 𝑇஺௣௣ is an application 
transition and 𝑇஼ is a control flow transition 

with not data relevant acitivity. 
(4)

Context: 𝑇 → 2஼ is the context labeling 
function. (5)ℛ is a power set of a set of Policies. (6)

DataPolicies: 𝐷 → 2ℛ is a DataPolicies 
labeling function. (7)

 
In the following, we will introduce a use case and 

implement it in an exemplary WFDU-net to make the 
approach more tangible. 

4 USE CASE: METADATA 
EXTRACTION FOR A DATA 
CATALOG SYSTEM 

Since data is an important asset, enterprises are 
interested in maintaining a good overview of it. In our 
case, we assume that the data consumed from the IDS 
should  be  listed  in  a  data  catalog.  The data catalog  

 
Figure 1: WFD-net for extracting metadata. 
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stores metadata about the data, thus providing 
advanced search capabilities to find the needed data 
more easily. Metadata can contain descriptive, 
structural, as well as administrative information, which 
is of great importance for running search queries and 
finding data (Press, 2004). This can be very 
heterogeneous depending on the data source. For text 
files, an automatic detection of keywords may be 
desirable. For images, an object recognition or 
knowledge of location may be helpful. For domain-
specific data, a more specialized extraction of metadata 
may be necessary. An enterprise can therefore pre-
define specific workflows and implement appropriate 
analysis tasks to extract metadata for different data 
types and use cases. A workflow engine located, for 
example, on an enterprise server or in the cloud can 
then execute these workflows. 

However, there are situations where a workflow 
cannot simply be executed as it is. This may be the 
case, for example, if it is necessary to check in 
advance whether individual steps of the workflow can 
be applied to certain data. More experienced users 
will then want to extend, shorten, or even completely 
customize workflows for their own purposes. Even if 
the workflows are customizable, the usage policies 
specified by the data owner in the IDS have to be 
enforced. For example, confidential management 
documents should not be analyzed in a third-party 
cloud application, but only within the company on 
dedicated computers. Our visual notation helps users 
understand, model, and validate workflows that can 
support all these activities. 

(Tebernum & Chabrowski, 2020) have designed 
and implement an analytics network that is located 
inside the boundaries of an enterprise and can be 
utilized for the execution of metadata extraction 
workflows. It is optimized for utilizing already 
existing computing and storage resources, e.g. edge 
devices. In addition, it consists of a decentralized data 
management system that prevents centralized data 
aggregation and allows data sovereignty to be 
maintained. Due to the focus on the architectural 
design, the authors did not provide a solution for a 
workflow editor with build in formal validation 
functionality. Workflows can only be written in the 
appropriate workflow language with expert 
knowledge and without further validation.  

We address this shortcoming by applying the 
notation presented in this paper to visualize, build, 
and validate workflows for the proposed analytics 
network. We also show how data sovereignty 
properties can be applied. 

The following example demonstrates how the 
notation can be used to support users and apply usage 

policies. The use case is located in the context of a 
pharmaceutical enterprise. Much data is generated, 
processed, bought, and sold on a regular basis. To keep 
track of all this data and to make it easy searchable, a 
data catalog is used. With predefined workflows, the 
necessary metadata is extracted according to data type 
and data domain. Figure 1 shows a shortened workflow 
that calculates and extracts standard metadata from a 
CSV files. For most files, the workflow can be used in 
this way. Starting from the file to be processed, four 
tasks are executed concurrently. Each subject action is 
represented as a rectangular petri net transition with its 
own read, write and erase functions. We distinguish 
between rectangles with corners or rounded corners, 
these represent control flow transitions or applications. 
The circles represent petri net places in which the 
tokens/data are located and can be consummated by 
transitions, or the transitions generate the data for the 
places behind them. In the figure, a sample is extracted 
and statistical metrics are calculated. For the more 
specific task of rule extractions, the analytics network 
should perform the calculation on a computer 
belonging to a high-performance group, this should be 
added to the notation later. 

4.1 Usage Policies 

The provided data is purchased from the IDS and is 
linked to some usage policies. One of these policies 
specifies that only a certain number of copies of the 
data may exist in the consumer company at the same 
time. For our example, we assume a fictional case in 
which the number is limited to a maximum of two 
copies. Another term of use may specify that the data 
must not pass national borders. Therefore, it must be 
ensured that the data is not accidentally analyzed on 
foreign computers, even if they are part of the 
enterprise’s computer network structure. Due to the 
terms of use, the standard workflow cannot be applied 
unchanged. On the one hand, four tasks are performed 
simultaneously, each holding its own copy of the file. 
On the other hand, the workflow does not define any 
geographic restrictions for the computers performing 
the analysis tasks. Both policies are defined in the 
following. 
 
Policy 1. Data analysis only in my country: All data 
processing must be done on computers in France. 
Therefore, the policy ensures that the operations 
using the data are only performed on transitions with 
the context france. This is an authorization and 
obligation rule defined by the UCON specification 
which authorize a subject to use a resource and 
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determines via the obligation rule what tasks/actions 
a subject must perform when a resource is used. 
 
Policy 2. Only two copies can be used at the same 
time: The policy ensures that only two copies of a data 
set could be used in parallel. In fact, this means that a 
maximum of only two transitions can executed at the 
same time. This is a concurrency rule defined by the 
UCON specification which expresses the way 
multiple subjects are allowed to use a resource at the 
same time. 
 

Besides these two policies from the use case 
above, we also consider generic policies that were 
specified by the IDS initiative in (Eitel et al., 2019).  
 
Policy 3. Allow/Inhibit the data usage for a specific 
operation: The policy ensures that a particular 
operation is allowed or inhibited to use the data. In 
our case, we can distinguish between read, write, and 
delete operations. However, it is easy to extend the 
WFDU-net with more specific operations that can be 
allowed or inhibited. 
 
Policy 4. Use data and delete it after: After the data is 
used by an application, it must be ensured that it is 
deleted.   
 

To check the policies described, we must first 
define the model checking algorithm for the WFDU-
net. The model checking can then be used to check 
whether the WFDU-net follows these usage policies 
or break them. 

5 FORMALIZATION AND 
IMPLEMENTATION 

First, we unfold the WFDU-net in a similar way to the 
unfolding of a WFD-net (Trčka et al., 2009). We 
preprocess our WFDU-net model and split each 
transition 𝑡 ∈ 𝑇 into its start 𝑡௦  and its end 𝑡௘ 
connected by a place 𝑝௧. The transition is executed 𝑒𝑥𝑒𝑐(𝑡)  if at least one token is in 𝑝௧ . To check 
whether our model and all transitions follow our 
defined policies, we will define model checking 
formulas.  For this purpose, we will first introduce the 
Kripke structure and CTL* for our WFDU-net. Then, 
we will formalize our policies. 

5.1 CTL* 

CTL* (computation tree logic with branching time 
temporal logic) is a generalization of the two logics 
LTL and CTL. CTL* uses a Kripke structure to define 

states and their relation to each other. In this case, the 
states are marking positions in the WF-net. 

 
Definition 4. A Kripke structure (Trčka et al., 2009) 
is a 4-tuple 𝑀 =  (𝑆, 𝑁, 𝐿, →) where: 𝑆 is a finite set of states. (1)𝑁 is a non-empty set of atomic propositions. (2)𝐿: 𝑆 → 2ே is a state labeling function. (3)→⊆ 𝑆𝑥𝑆 is a transition relation. (4)
 

An atomic proposition 𝑁  is a definition of a 
marking in a state 𝑠. It is defined as 𝑁 = {𝑝 ≥ 𝑖|𝑝 ∈𝑃, 𝑖 ∈ ℕ where 𝑝 ≥ 𝑖 means that place 𝑝 holds at least 𝑖 tokens. The labels of states map the markings to the 
sets of atomic propositions: ⋁௣∈௉ 𝑎𝑛𝑑 𝑖 ∈ ℕ, (𝑝 ≥𝑖) ∈ 𝐿(𝑚) iff 𝑚(𝑝) ≥ 𝑖. Therefore, 𝐿(𝑠) is the set of 
atomic propositions that hold in s. 𝑠 → 𝑠′ is the relation 
from one state marking to another, which is a step from 
a state 𝑠 to 𝑠’. Every step is a possible fired transition 
in our WF-net. A path 𝜋 is then an infinite sequence of 
states 𝜋 =  𝑠଴, 𝑠ଵ, 𝑠ଶ, …  such that 𝑠௞ → 𝑠௞ାଵ  for all 0 ≤ 𝑘 < 𝑛, 𝑠௡ ↛ , and 𝑠௞ = 𝑠௞ାଵ  for all 𝑘 ≥ 𝑛 . 𝜋௞ then denotes the path 𝑠௞, 𝑠௞ାଵ, 𝑠௞ାଶ, …. 
 
Definition 5. (Trčka et al., 2009) We define two 
classes of formulas: state Φ  and path  Ψ  formulas. 
They are defined by the syntax: 𝜙 ∷= 𝑛|¬𝜙|𝜙 ∧ 𝜙|𝐸𝜓 𝜓 ∷=  𝜙|¬𝜓|𝜓 ∧ 𝜓|𝑋𝜓|𝜓⋃𝜓  

with  𝑛 ∈ 𝑁, 𝜙 ∈ Φ, and 𝜓 ∈ Ψ. 
 
Definition 6. A state formula 𝜙 is valid in a state s 
(notation: 𝑠 ⊨ 𝜙) and path formula 𝜓 is valid on a 
path 𝜋 (notation: 𝜋 ⊨ 𝜓) (Trčka et al., 2009) when: 𝑠 ⊨ 𝑛 iff 𝑛 ∈ 𝐿(𝑠) (1)𝑠 ⊨ ¬𝜙 iff 𝑠 ⊭ 𝜙 (2)𝑠 ⊨ 𝜙ଵ ∧ 𝜙ଶ iff 𝑠 ⊨ 𝜙ଵ 𝑎𝑛𝑑 𝑠 ⊨ 𝜙ଶ (3)𝑠 ⊨ E𝜓 iff there exists a path 𝜋  from 𝑠 such that 𝜋 ⊨ 𝜓 (4)𝜋 ⊨ 𝜙 iff 𝑠 is the first state of 𝜋 and 𝑠 ⊨ 𝜙 (5)𝜋 ⊨ ¬𝜓 iff 𝜋 ⊭ 𝜓 (6)𝜋 ⊨ 𝜓ଵ ∧ 𝜓ଶ iff 𝜋 ⊨ 𝜓ଵand 𝜋 ⊨ 𝜓ଶ (7)𝜋 ⊨ X𝜓 iff 𝜋ଵ ⊨ 𝜓 (8)𝜋 ⊨ 𝜓U𝜓ᇱiff there exists a 𝑗 ≥ 0 such that 𝜋௝⊨ 𝜓ᇱ, and 𝜋௞ ⊨ 𝜓 for all 0≤ 𝑘 < 𝑗. (9)
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The above definitions are used to notate some 
informal definition (Trčka et al., 2009): A𝜓  is 
“𝜓 ℎ𝑜𝑙𝑑𝑠 along all paths”;  E𝜓 is “𝜓 ℎ𝑜𝑙𝑑𝑠 along at 
least one path”;  F𝜓  is “𝜓 ℎ𝑜𝑙𝑑𝑠 in future”; EF𝜓  is 
“𝜓 ℎ𝑜𝑙𝑑𝑠 in some future state”; 𝜓U𝜓’ is “𝜓 ℎ𝑜𝑙𝑑𝑠 
until 𝜓′ holds”. 

To define our policies as formula, we need to 
define the atomic proposition. Therefore, we create 
some abbreviations. To formulate that the transition 𝑡 
is now executed and write the data element 𝑑 ∈ 𝐷, we 
define 𝑤(𝑑) =  ⋁௧:ௗ∈௪௥௜௧௘(௧)𝑒𝑥𝑒𝑐(𝑡) . For read and 
erase, the definition is 𝑟(𝑑) =  ⋁௧:ௗ∈௥௘௔ௗ(௧)𝑒𝑥𝑒𝑐(𝑡) 
and 𝑒(𝑑) =  ⋁௧:௘∈௘௥௔௦௘(௧)𝑒𝑥𝑒𝑐(𝑡). To formulate that 
the transition is executed in a special context 𝑐 ∈ 𝐶, 
we define 𝑐𝑜𝑛(𝑐) = ⋁௧:௖∈௖௢௡௧௘௫௧(௧)𝑒𝑥𝑒𝑐(𝑡). We also 
define 𝑐ℎ𝑎𝑛𝑔𝑒(𝑡)  for the set {𝑑|𝑑 ∈ 𝑤𝑟𝑖𝑡𝑒(𝑡) ∪𝑒𝑟𝑎𝑠𝑒(𝑡) } and 𝑢𝑠𝑒(𝑡) for the set {𝑑|𝑑 ∈ 𝑟𝑒𝑎𝑑(𝑡) ∪𝑤𝑟𝑖𝑡𝑒(𝑡) ∪ 𝑒𝑟𝑎𝑠𝑒(𝑡)ሽ . The final state of the 
workflow is denoted term, defined by 𝑒𝑛𝑑 = 1 ∧⋀௣∈௉{௘௡ௗሽ(𝑝 = 0). 

5.2 Model Checking Formulas 

First, we have to check if the underlying WFD-net is 
valid. The data operations are only labeled to the 
transitions, so we have to use the formalized anti-
patterns from (Trčka et al., 2009), especially to check 

missing data (is data read before it is written?) and 
inconsistent data (is data written or erased while it is 
being used in parallel?). Only if no data is missing and 
no inconsistent data is possible, we can ensure that the 
policies can be enforced. Missing data is defined as E[ቀ¬𝑤(𝑑)U൫𝑟(𝑑) ∨ 𝑒(𝑑)൯ቁ ∨ F ቂ𝑒(𝑑) ∧ቀ¬𝑤(𝑑)U൫𝑟(𝑑) ∨ 𝑒(𝑑)൯ቁቃ] . In the first half, the 
formula states that there is a path where no writing to 𝑑  happens until reading 𝑑  or erasing 𝑑  takes place. 
The second part states that 𝑑 is erased and not written 
again until it is read or erased. Inconsistent data is 
defined as ⋁௧∈்:ௗ∈௖௛௔௡௚௘(௧)EF[(𝑒𝑥𝑒𝑐(𝑡) ∧⋁௧ᇲஷ௧:ௗ∈௨௦௘൫௧ᇲ൯𝑒𝑥𝑒𝑐(𝑡ᇱ)) ∨ 𝑝௧ ≥ 2]. This means for a 
transition 𝑡  where 𝑑  is changed during execution, 
there is at least one more transition 𝑡’ where data is 
used. The last part of the formula captures the fact that 
a changing transition can be executed more than once 
in parallel. Our policies are defined as follows. 
 
Policy 1. Data Analysis Only in My Country. In our 
case, the transitions with the context france are in the 
country. To violate the policy, we have to check if there 
is at least one path with read data and not 𝑐 = 𝑓𝑟𝑎𝑛𝑐𝑒 
until the data is overwritten or erased or the workflow 
terminates. This results in the formula EF[𝑤(𝑑) ∧(𝑟(𝑑) ∧ ¬𝑐𝑜𝑛(𝑐)U(𝑤(𝑑) ∨ 𝑒(𝑑) ∨ 𝑡𝑒𝑟𝑚).  

 
Figure 2: Policy compliant WFDU-net example for metadata extraction. 
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Policy 2. Only Two Copies Can be used at the 
Same Time. With the purchased data set, only two 
transition should be executed at the same time. 
Therefore, we reformulate the policy to “Only two 
reads in parallel are allowed”. To violate the policy, 
there has to be a path where the data is read three 
times in parallel.  
 Read the data once: 𝐸𝐹[𝑤(𝑑) ∧ 𝑟(𝑑)] . Since 

we check missing data in advance, we do not 
have to check the write operation, as the 
previous check would have already failed. 
Therefore, the formula is:  

EF[r(d)] = ⋁௧:ௗ∈௥௘௔ௗ(௧)EF[𝑒𝑥𝑒𝑐(𝑡)]. 
 Read the data twice: ⋁௧:ௗ∈௥௘௔ௗ(௧)EF[(𝑒𝑥𝑒𝑐(𝑡) ∧⋁௧ஷ௧:ௗ∈௥௘௔ௗ(௧)𝑒𝑥𝑒𝑐(𝑡)) ∨ 𝑝௧ ≥ 2]. 
 Read the data three times: ⋁௧:ௗ∈௥௘௔ௗ(௧)EF[(𝑒𝑥𝑒𝑐(𝑡) ∧⋁௧ᇲஷ௧:ௗ∈௥௘௔ௗ൫௧ᇲ൯𝑒𝑥𝑒𝑐(𝑡′) ∧⋁௧ᇲᇲஷ௧∧௧ᇲᇲஷ௧ᇲ:ௗ∈௥௘௔ௗ(௧ᇱ)𝑒𝑥𝑒𝑐(𝑡′′)) ∨ 𝑝௧ ≥ 3]. 

The formula for n times is similar to the previous 
approaches. 
 
Policy 3. Allow/Inhibit the Data Usage for a 
Specific Operation. Firstly, we focus on inhibit the 
read operation. To violate this policy, there is a path 
where the data is read: EF[𝑟(𝑑)]. The formula for 
writing or erasing data is built the same way. For the 
validation that an operation is allowed, nothing needs 
to be done, because it does not matter if the data is 
used or not. 
 
Policy 4. Use Data and Delete it After. The policy 
is violated if there is a path where the data is read 
( EF[𝑟(𝑑) ∧ … ])  such that, in all possible 
continuations of this path, no reading takes place until 
the data gets erased, overwritten, or the workflow 
terminates (A[¬𝑟(𝑑)U(ቀ൫𝑒(𝑑) ∨ 𝑤(𝑑)൯ ∧ ¬𝑟(𝑑)ቁ ∨𝑡𝑒𝑟𝑚 )]). As we assume that the operations are 
executed in the order read, write, and erase, we have 
to ensure, that the data is not read in a task before it is 
erased or overwritten. The result formula is: EF[𝑟(𝑑) ∧ A[¬𝑟(𝑑)U(ቀ൫𝑒(𝑑) ∨ 𝑤(𝑑)൯ ∧ ¬𝑟(𝑑)ቁ ∨𝑡𝑒𝑟𝑚)]]. 

5.3 Implementation 

We used CPN Tools to model our WFDU-net and 
check the patterns and policies from the previous 
section. Since the given use case is not yet following 
any policies, the model checking will fail. Figure 2 
presents the redesigned compliant WFDU-net of 
Figure 1. Please note that there are also other ways 

than the proposed one to model the WFDU-net 
compliant to the policies. We insert the labels to 
annotate that the application is running inside the 
company in France. First, an initial step named Init 
was inserted. This allows a control flow before the 
data flow, both to fetch the data exactly once (Get 
Data) and to control that each subject action (Extract 
Sample, Calc. Mean, Calc. Median, Calc A-Priori 
Rules) is executed exactly once (see places to the left 
of the subject actions). When initializing, two control 
flow tokens are also created at the bottom left to 
create exactly two copies of the data set.  In the 
process, the consummated data set is always created 
again to the place above the Copy Data Transition 
itself. The two resulting data copies are each used by 
one of the subject action transitions. After completion 
of the action, these again generate a new copy control 
flow token to enable another copy of the data set. This 
is done until each subject action is executed exactly 
once, see control flow tokens from the very beginning 
(to the left of the subject actions). This ensures that 
there are always a maximum of two data sets for 
simultaneous processing. 

After the model is created and checked, we export 
the Petri net to the Petri Net Markup Language 
(PNML) which is an XML-based format. By 
transpiling this into native workflow languages like 
Argo or Airflow, the workflow can then be executed. 
We tested this using the analytics network from 
(Tebernum & Chabrowski, 2020). 

6 CONCLUSIONS 

We presented an approach to model the data flow for 
data with usage policies. With this approach we tackle 
our three requirements: (1) Graphical visualisation of 
data flows; (2) Proven validation of data flows with 
reference to usage policies at design time, so that data 
flows do not simply break off; (3) Conversion of the 
data flows to message systems. Therefore, we 
developed a Workflow with Data and Usage control 
network (WFDU-net) based on the WFD-net 
approach (Trčka et al., 2009), so that also usage 
policies can be validated, next to data flow errors. 

To test our approach, we presented a use case 
which is based on a real-life case of a pharmaceutical 
company that buys data from the International Data 
Spaces and has to enforce the given usage policies. 
These policies where converted to CTL* logic and 
then executed in CPN-Tools. We redesign the given 
workflow of the underlying analytics network to be 
compliant with the given policies, so that the model 
checking is valid. Afterwards, existing workflow 
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engines and analytic networks can use the model. In 
this context, we have shown that the approach can test 
both context-based and parallel events. For this 
purpose, all possible actions are calculated, 
transferred into a Kripke structure and then checked. 

One limitation is that the approach cannot test 
temporal obligations at design time. Another 
limitation of our approach is that only the whole petri 
net can be validated with the given usage policies. 
Checking partial sections, for example if the policy is 
changed during the data flow, is not possible. We can 
circumvent this fact by dividing the data flow into 
appropriate sections. 

In the future, we will provide more policy 
definitions. In addition, we will introduce our own 
tooling to read the IDS policies and automatically 
generate the CTL* formulas for the model checking.  
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