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MTProto 2.0 is a suite of cryptographic protocols for instant messaging at the core of the popular Telegram

messenger application. In this paper we analyse MTProto 2.0 using the symbolic verifier ProVerif. We provide
fully automated proofs of the soundness of MTProto 2.0’s authentication, normal chat, end-to-end encrypted
chat, and rekeying mechanisms with respect to several security properties, including authentication, integrity,
secrecy and perfect forward secrecy; at the same time, we discover that the rekeying protocol is vulnerable to an
unknown key-share (UKS) attack. We proceed in an incremental way: each protocol is examined in isolation,
relying only on the guarantees provided by the previous ones and the robustness of the basic cryptographic
primitives. Our research proves the formal correctness of MTProto 2.0 w.r.t. most relevant security properties,
and it can serve as a reference for implementation and analysis of clients and servers.

1 INTRODUCTION

Telegram is a very popular instant messaging appli-
cation, with more than 500 million active users (as of
March 2021). Besides user-to-user and group com-
munication, channels are widely adopted by news-
papers, financial institutions, and even government
agencies for broadcasting official news, in particular
during emergency situations. Telegram provides also
an open API allowing third parties to offer (possibly
commercial) services by means of bots.

At the core of this ecosystem lies MTProto 2.0
(Telegram, 2021a), a suite of cryptographic protocols
designed for implementing fast, scalable, secure mes-
sage exchange without relying on the security of the
underlying transport protocol. To this end, MTProto
is composed by several (sub)protocols handling the
initial authentication of the clients with the creation
of shared keys between clients and server, the creation
of session keys between two clients for end-to-end en-
cryption in secret chats, the rekeying of secret chats,
and of course the encryption of all messages, before
being transmitted over a (possibly insecure) network.

Although MTProto 2.0 is completely open and
client’s code is open-source, Telegram’s security
model has received wide criticism. First and fore-
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most, the choice of the non-standard, ad hoc protocol
and encryption scheme has been objected, because the
lack of scrutiny could expose the system to vulnera-
bilities, potentially undermining its security (Kobeissi
et al., 2017). Moreover, all messages (even those of
“secret chats”) pass through (a cloud of) proprietary,
closed-source servers, where they can be stored for
any amount of time. This architecture is convenient
for users, who can access and synchronise their mes-
sages from several devices and send and receive mes-
sages also when the peer is not present, but from a
security perspective it means that the server must be
considered as an untrusted party.

This situation raises the need for a practical veri-
fication of the MTProto 2.0 protocol suite. However,
in spite of the criticisms above, most research has fo-
cused on the previous version MTProto 1.0, depre-
cated since December 2017. To our knowledge, no
formal, in-depth verification of MTProto 2.0 has been
carried out so far. This is the scope of this work.

In this paper we formalise and analyse MT-
Proto 2.0 using ProVerif (Blanchet, 2016), a state-of-
the-art symbolic cryptographic protocol verifier based
on the Dolev-Yao model. We provide a fully auto-
mated proof of the soundness of MTProto 2.0’s pro-
tocols for authentication, normal chat, end-to-end en-
crypted chat, and rekeying mechanisms with respect
to several security properties, including authentica-
tion, integrity, secrecy and perfect forward secrecy.
These properties are verified also in presence of mali-
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cious servers and clients. On the other hand, we dis-
cover that, in principle, the rekeying protocol is vul-
nerable to an unknown key-share (UKS) attack: a ma-
licious client E can induce two honest clients A, B to
believe they share two secret keys with E, and instead
they share the same key between themselves only.

In order to prove these results we proceed in an
incremental way. Each protocol of the suite is exam-
ined in isolation, specifying which guarantees it re-
quires from previous protocols and which ones it pro-
vides; separation between protocols is guaranteed by
the typing discipline enforced on messages: “out of
sequence” messages are simply discarded. For each
protocol we provide its formalisation in ProVerif’s
specification language (the applied m-calculus), the
formalisation of its security properties, and the results
of the formal verification.

This approach allows us to cope with the com-
plexity of the suite and to isolate the security prop-
erties required on the underlying message encryption
scheme. Namely, the only assumption we make is that
the latter is an authenticated encryption scheme, guar-
anteeing both integrity of ciphertext (INT-CTXT) and
indistinguishability of chosen plaintext (IND-CPA).
These properties are difficult to prove in a symbolic
model like ProVerif’s, but can be proved in a com-
putational model, e.g. using tools like CryptoVerif or
EasyCrypt (Blanchet, 2007; Barthe et al., 2013). This
assumption may appear strong, especially consider-
ing that Telegram has been widely criticized for its
design choices, and vulnerabilities have been found
in MTProto 1.0; however, none of these attacks have
been replicated on MTProto 2.0.

In this paper we focus on the symbolic verifica-
tion of MTProto 2.0 with respect to an unbounded
number of sessions, leaving the analysis of the en-
cryption scheme in the computational model to future
work. Proving the logical correctness of a protocol
under a fairly general threat model is very important:
if a protocol is proved to be sound at a symbolic level
then one can focus on searching vulnerabilities in the
“lower” part of the protocol stack, among the cho-
sen cryptographic functions and other implementation
choices. If a cryptographic primitive is found to be
weak, it can be substituted with a stronger one, with-
out invalidating the symbolic analysis.

Besides the relevance for Telegram’s users, our
formalisation can serve as a reference documentation
for the implementation of clients and servers.

Synopsis. In Section 2 we recall previous related
work. The security model adopted is described in
Section 3. In Section 4 we recall the structure of
MTProto 2.0, whose protocols are analyzed in the
subsequent sections: initial authorization key creation
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(Section 5), key exchange for secret chats (Section 6),
rekeying in secret chats (Section 7). Conclusions and
directions for future work are in Section 8.

We assume the reader confident with ProVerif; for
an introduction we refer to (Blanchet, 2016) and sev-
eral tutorials online. The code is available at https://
github.com/miculan/telegram-mtproto2- verification.

2 RELATED WORK

All the published research on MTProto that we are
aware of, as well as most online articles, refer to the
now deprecated MTProto v1.0 and do not directly ap-
ply to the current MTProto 2.0, deployed in Telegram
clients as of v4.6 (December 2017).

Arguably, the closest work to ours is (Kobeissi
et al., 2017), where the Signal protocol is formalised
in ProVerif and MTProto v1.0 is also briefly dis-
cussed, but not at the formal level. The Signal proto-
col has been studied rigorously in (Frosch et al., 2016;
Cohn-Gordon et al., 2017; Rosler et al., 2018).

Several issues have been pointed out in MT-
Proto v1.0. Its encryption scheme added a random
padding to the message prior to encryption but af-
ter the msg_key was computed, leading to a couple
of theoretical CCA attacks (Jakobsen and Orlandi,
2016). Earlier versions of the protocol did not pro-
vide forward secrecy, and message sequence numbers
were managed by the server, so that a malicious server
could easily perform replay attacks (Jakobsen, 2015).
Another replay attack was discovered in Android’s
Telegram client v3.13.1 (Susdnka and Kokes, 2017),
where the same message could be accepted twice
by a client after 300 more messages had been sent.
This was due to a flaw in the implementation, which
did not abide by Telegram’s Security Guidelines for
Client Developers; it was fixed in Telegram v3.16.

The above mentioned issues were addressed in
MTProto 2.0, whose developers claim to be IND-
CCA and INT-CTXT secure and to provide perfect
forward secrecy for secret chats. There is currently no
known proof of such claims, but there are no known
attacks on MTProto’s encryption, either.

A theoretical MitM attack to MTProto 1.0 has
been described in (Rad and Rizzo, 2015). As we will
see in Section 6, the DH exchange used to establish
a shared key before initiating a secret chat is not au-
thenticated by the two ends. Clients are supposed to
verify a hash of the shared secret through an external
secure channel. In MTProto v1.0, the first 128 bits
of the SHAI of the key are used as the fingerprint.
A malicious server might social engineer two clients
to both initiate a conversation with each other; since



the server forwards all the messages, it might act as a
MitM and try to find two keys whose fingerprints co-
incide, using a birthday attack and approximately 2
computations (Rad and Rizzo, 2015). In MTProto 2.0
(starting with the “layer 46 of secret chat protocol),
the fingerprint is 288 bits long (additional 160 bits are
extracted from the prefix of the SHA256 of the key),
thus making this MitM attack likely infeasible.

3 SECURITY MODEL

We model Telegram protocols in ProVerif (Blanchet,
2016), which is a symbolic cryptographic verifier.
Protocols and security properties are specified in a
variant of the applied m-calculus, a formalism de-
signed for representing cryptographic processes, and
translated into a Horn theory. Cryptographic primi-
tives are represented by means of a suitable term the-
ory, by means of constructors and reduction rules or
equations; thus, cryptographic primitives are modeled
as “perfect”; in particular, there is no way to recover
a plaintext or a key from the ciphertexts, and the ci-
phertext is not forgeable.

Following this approach, in our model we con-
sider the message encryption scheme used in MT-
Proto 2.0 essentially as an authenticated encryption
scheme, abstracting from its actual implementation.

Formally, MTProto’s symmetric encryption prim-
itive is governed by the following reduction rule:

fun senc(Bitstring, SharedKey, Nonce) : Bitstring
reduc forall m: Bitstring, k: SharedKey,n: Nonce;
sdec(senc(m, k,n),k) = m.

A detailed verification of these cryptographic func-
tions in the computational model is left to future work.

Threat Model. We adopt the classical symbolic
Dolev-Yao model (Dolev and Yao, 1983), which is the
one used by ProVerif. More specifically, we assume
that all messages are transmitted over a public net-
work, and that an active intruder can intercept, mod-
ify, forward, drop, replay or reflect any message. Be-
sides, we assume that an attacker may also exfiltrate
secret data, such as pre-shared keys, during or after
the execution of a protocol. As mentioned above, we
assume that encrypted messages are unbreakable un-
less the key becomes available to the attacker. The
model for hash functions is also quite strong, being
close to the random oracle model. Other threats, such
as timing attacks and guessing attacks, are beyond the
scope of our model.

All messages exchanged by clients pass through
Telegram’s servers. Hence, such servers can access
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the plaintext of cloud-based chats and the ciphertext
of secret chats. Servers are also responsible for choos-
ing the Diffie-Hellman parameters used to derive the
long-term authorization keys for the clients. There-
fore, a server should not be considered as trusted.

Security Goals. Each part of MTProto has different
security goals, as we will see later on. In general, we
will consider the following, informally stated, goals:

Secrecy: if a message m is exchanged in a session §
between two honest principals A and B then m is
secret (i.e., known only to A and B) unless an at-
tacker can break some cryptographic construction
or recover the encryption keys before or during S.

Forward Secrecy: secrecy of message m is pre-
served even if the attacker recovers the encryption
keys after S is completed.

Authentication: if B receives m which is supposed
to come from A, then it was really sent by A.

Integrity: if m is sent from A to B then B receives m
and not some forged m’ # m instead.

4 THE MTPROTO 2.0 PROTOCOL

In this section we give a high-level overview of MT-
Proto 2.0. For a deeper (albeit informal) description,
we refer to the official web page (Telegram, 2021a).
MTProto 2.0 is a client/server protocol suite de-
signed for accessing a (MTProto) server' from appli-
cations running on desktop computers or mobile de-
vices, through an insecure network. This suite can be
divided into three main components (see Fig. 1):

High-level API and Type Language: defines how
API queries and responses are converted to binary
messages. This component fits OSI layers 7
(application) and 6 (presentation).

Cryptographic and Authorization Components:
defines how applications are authenticated with
the server, and messages are encrypted before
being transmitted through the transport protocol.
These components fit OSI layers 5 (session) and
4 (transport).

Transport Component: defines how the client and
the server actually exchange messages, via exist-
ing transport protocol such as UDP, TCP, HTTP,
HTTPS, Websocket, etc.. Note that also insecure,
connectionless protocols are supported.

! Actually, Telegram employs a network (a “cloud”) of
servers in multiple data centers, spread worldwide for scal-
ability and availability. However, for our aims, we can con-
sider this network as a single server.
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Figure 1: The MTProto 2.0 suite. The subject of the present
work is the “Cryptography and Authorization” (C&A) com-
ponent. AK (yellow key) is the Authorization Key, estab-
lished once at the first run. SK (blue key) is the Secret Chat
Session Key, established at the beginning of each secret chat
(and changed often). Cloud messages are encrypted only
from client to server (and vice versa), with the AK. Secret
messages are encrypted twice: with the SK, and then with
the AK. In this picture the Message Encryption module is
duplicated, but actually it is the same, with different keys.

We focus on the component handling cryptographic
transformations and authorization. This component
can be divided further into the following modules:

Authorization: this module provides the functional-
ities for the initial client authorization and server
authentication. It is called on the first run of
the application, for deriving the authorization key
(AK), a long-term “master” secret shared with the
server only. In order to establish the authorization
key, this module executes a cryptographic proto-
col (basically a DH exchange) with the server. We
will analyse this protocol in Section 5.

Secret Chat Key Exchange and Rekeying: this
module provides the functionalities for establish-
ing a session shared secret key (SK) between two
clients. It is executed once at the beginning of
a secret chat and after 100 exchanged messages
between the two parties (or over a week) for
installing a new key. In both cases, this module
executes a a Diffie-Hellman exchange with the
peer client (through the server). We will analyse
this protocol in Sections 6 and 7.

Message Encryption: All messages between client
and server are encrypted with a symmetric ci-
pher, using an ephemeral key derived from the
AK. Messages in secret chats are encrypted also
with an ephemeral key derived from the SK. The
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Figure 2: MTProto 2.0’s Authorization Protocol.

encryption scheme is the same, but it is use twice
(with different keys) for messages in secret chats.

We stress that peer clients never communicate di-
rectly: messages always go through a server, where
they are stored to permit later retrieval by the recipi-
ent. Cloud chat messages are kept in clear text, while
secret chat messages are encrypted with the peers’
session key, which should be unknown to the server.

S AUTHORIZATION KEYS

On its first run, each Telegram client A must nego-
tiate a long-term secret with a Telegram server S.
Such an authorization key is created through a Diffie-
Hellman (DH) exchange, it is never transmitted over
the network, it is used for all subsequent communica-
tion between A and S, and it is almost never changed
(basically, only when the client application is unin-
stalled and installed again).

5.1 Informal Description

The protocol consists of three rounds (Fig. 2):



Round 1. A and S exchange a pair of randomly gen-
erated nonces n, and ng, which are sent along with
all subsequent messages, both in plaintext and in the
encrypted part of each message. Such pair is used to
identify a run of the protocol.

1. A sends a nonce n. to S.

2. S replies with a message that contains n., a fresh
nonce n, generated by S, a challenge gr < 293
(to prevent DoS attacks against Telegram servers),
which is the product of two primes g and r, and a
list fpél), e ,fpy), with ¢ > 0, of the fingerprints
of the public keys accepted by S (computed as the
64 lower bits of the SHA-1 of the keys).

Round 2. A decomposes gr into its factors ¢ and r,
and retrieves® the public key pk§l> corresponding to

some fingerprint fp@. It also generates a new 256-bit
random secret nonce ny, which, together with the pub-
lic ng, is used by both parties to derive an ephemeral
symmetric key k and initialization vector iv by hash-
ing some substrings of ng and ng. These data are used

for encrypting the subsequent messages.
3. A serializes (gr,q,r,n.,ns,n;) and encrypts

with pkgi) both this serialized data and its hash;

then, it sends nc,ns,q,r,fpﬁl)

encrypted payload to S.

along with the

4. S chooses DH parameters g and p and computes
gqa = &“ mod p for some random 2048-bit num-
ber a. Then, S serializes (n.,ny, g, p,8a,t), where
t is the server’s current time, and encrypts both
the serialized data and its hash using a temporary
symmetric key k derived from n; and n. It then
sends n.,ng along with the encrypted payload to A.

Round 3. After deriving (k,iv) using the same algo-
rithm as the server, A decrypts the received message
and checks that the received DH parameters are safe
(see below). Then A computes g, = g” mod p for
some random 2048-bit number b and derives the au-
thorization key k45 = g,” mod p.

5. A serializes (n.,ng, retry_id, g,), where retry_id is
0 at the first attempt to send this message, and it
is equal to a hash of the previous authorization
key if the server later asks to renegotiate the key
within the same session by generating a new b (the
server might ask the client to do this for the failure
of the uniqueness check performed at the end of
the protocol—see next paragraph). A hashes the
serialized data and encrypts both the hash and the

%It is assumed that the server’s public keys are known to
the clients. In practice, they are usually embedded in Tele-
gram’s client apps. Of course, it is possible that a malicious
client embeds a different key without the user to notice.
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data with (k,iv). It then sends n.,n, along with
the encrypted payload to S.

6. S derives the shared key k45 = g,* mod p, then
verifies that k45 is unique by comparing a hash of
kas to the hashes of all authorization keys known
to the server. If the hash is unique, S sends an ac-
knowledgment (n.,ng,hash(ng)) to A, otherwise
S sends an error message.

All the encrypted messages include a SHA1 hash
of the content. According to Telegram’s “Advanced
FAQ” (Telegram, 2021b), such hashes are “irrelevant
for security”, so they are presumably used only an ad-
ditional sanity check for the implementation, and not
as a means of implementing an AEAD (authenticated
encryption with additional data) scheme.

The client is required to check that both p and (p —
1)/2 are prime, that 22047 < p < 22048 and that g gen-
erates a cyclic subgroup of prime order (p — 1)/2.
Both parties must also verify that 1 < g,g,,8» <p—1.
Telegram also recommends that both the client and
server check that 2204864 < o o < p—02048-64
Such checks should prevent the use of small sub-
groups and malicious primes, but it has already been
noted that they could be made optional if Telegram
used standardized values (Kobeissi et al., 2017).

5.2 Formalisation in ProVerif

In the formalization of the protocol we made a few
simplifications: we ignored fime (relevant only to cor-
rectly generate message identifiers in later communi-
cation, which we do not model because we consider
messages abstractly), retry_id (thus modeling explic-
itly only a successful path of execution—failures are
implicitly taken account of by running an unbounded
number of sessions, some of which may not com-
plete), the proof-of-work decomposition of gr (be-
cause DoS attacks are not in our threat model) and,
more importantly, the SHA1 hashes inside the en-
crypted messages. Including such aspects into a sym-
bolic model would significantly increase the compu-
tation times required for the automated verification,
but it would most likely not allow us to discover more
vulnerabilities. The latter simplification, in particu-
lar, does not affect ProVerif’s results (but it improves
verification times), because in the symbolic model en-
cryption is already authenticated, so adding a MAC is
not really needed; besides, that aligns with Telegram’s
statement of “irrelevance” of such tags for security.
For this protocol, public-key encryption is mod-
elled in the standard way using a reduction of the
form adec(aenc(x,pk(k)),k) = x, where aenc() is the
encryption function, adec() is the decryption func-
tion and pk(k) is the public key corresponding to pri-
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vate key k. Thus, the message encryption scheme
is assumed to be a secure authentication encryption
scheme. We assume that honest parties behave as
mandated by the protocol, except for the following
misbehaviour: a client may fail to verify that the re-
ceived DH parameters are good, as explained in Sec-
tion 5.1; and the server is allowed to reuse the same
nonce #n; in different sessions. Misbehaving processes
are executed in parallel with correct processes.

Weak DH parameters are modelled as in (Bharga-
van et al., 2017). The generation of (possibly weak)
DH parameters is delegated to two parallel processes
as explained below. A weak calculation always re-
turns the same element, thus conservatively modeling
subgroups of size 1. Each computation involving a
weak group or a bad element is reduced to the same
bad value. It is worth stressing that other equalities
that hold in groups are not modelled, although this
model is stronger than the Diffie-Hellman assump-
tion, in the sense that is impossible to compute g
given only generator g, g* and g”.

Process macros are interleaved with event mark-
ers (“event P(X)” for some predicate P(X)), which can
be used to check whether a certain point in a pro-
cess is reachable—hence, whether a certain event has
happened. That allows us to specify some stringent
correspondences (see Section 5.3). Events are also
used to signal when a secret is compromised. Leaking
information is modelled via several short processes
that run in parallel with the clients and the server.
For instance, compromising the server’s private key
is achieved by running a process that receives the
server’s private key from the server through a private
channel cp,;, and makes it accessible to the attacker
through the public channel ¢, recording the event:

let LeakRSAKey() =
in(cpriv, k= PrivKey);
event CompromisedRSAKey (k);
out(c,k).
Similar parallel processes are executed to perform the
following functions and emit the corresponding event:

» CompromisedNonce(ny):  leaking the secret
nonce n; generated by the client during a session;

* PostCompromisedNonce(ny): revealing ny after
the protocol is completed;

* PostCompromisedRSAKey(k): revealing the ser-
ver’s private key k after the protocol is completed;

* PostCompromisedAuthKey(k): revealing the au-
thorization key k after the protocol is completed
(to test forward secrecy);
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* ForgedServerldentity(S): associating the server’s
identity S to a private key chosen by the attacker.

Other four parallel processes are responsible for gen-
erating a random or fixed server nonce ng, respec-
tively, and for generating good or bad DH parame-
ters, respectively, on behalf of the server (by commu-
nicating with the server through private channels). In
general, we found that using a higher number of rel-
atively simple processes rather than a smaller number
of parametrized processes with a more complex logic
allows ProVerif to perform much better, and gives the
user more flexibility in expressing queries.

5.3 Security Properties Verification

Authentication. The protocol for generating an au-
thorization key does not prevent an intruder to act as a
MitM during a registration session between a client A
and a server S and impersonate A in subsequent ex-
changes with S. In other words, the protocol does
not guarantee the authentication of the client to the
server—which is expected, as the server is willing to
run the protocol with any entity. This is formalized
with the following query:

query n.: Nonce,ns: Nonce;
event(ServerAcceptsClient(n.,ny))
= event(ClientRequestsDHParameters(n,, ny)),

for which ProVerif can find a counterexample even
when the protocol is run correctly and without any
information leak. The query asserts that, if the server
accepts a client in a session identified by (n.,ny), then
it was that client who started session (7., n;) —which
may not be the case, because an attacker can take over
after the first round and replace the legitimate client.

Failing authentication should not adversely affect
the outcome of a session (except that A must possibly
restart the protocol in a new session). The only result
the intruder could achieve is a negotiation of an au-
thorization key with S, unrelated to A. Vice versa, it
is important that A knows with certainty that she has
engaged with S and not with an attacker. Authentica-
tion of the server to the client is proved by ProVerif;
the relevant query is the following:

query sky: PrivKey, n.,ng,ni: Nonce, g,8,: G
inj-event(ClientReceivesDHParameters(n, ng, ny, 8, 84))
= inj-event(ServerSendsDHParameters(n.,ng, ni, g, 84))
V event(CompromisedRSAKey(sk))
V event(CompromisedNonce(rny))
V event(ForgedServerldentity()).
The query is interpreted as follows: unless S’s private

key sk, is compromised before or during the session
identified by (n.,ny), or the secret nonce ny is leaked



during the session, or the server’s identity is forged to
begin with (e.g., the client embeds a spoofed public
key), if A accepts Diffie-Hellman parameters (g,g,)
in session (n.,n;) after sending n then A is sure that
it was the server who accepted n; and sent (g,g,) in
session (n.,ny). This holds even if the server reuses
ng in different sessions, because only S can decrypt ny
and derive the ephemeral key with which DH param-
eters are transmitted. Note that, since authentication
events are registered before A verifies the values re-
ceived from S, for authentication it does not mat-
ter whether the client checks that DH parameters are
strong or weak. The last disjunct reflects the fact that
Telegram, as is common for current messenger apps,
is based on a Trust-On-First-Use (TOFU) authentica-
tion infrastructure.

Secrecy and Forward Secrecy. The authorization
protocol provides secrecy for so called “cloud mes-
sages”, i.e, the messages subsequently exchanged be-
tween the client and the server, which are encrypted
using the shared authorization key. Namely, ProVerif
proves the following query:

query sks: PrivKey, k: SharedKey, n; : Nonce,m: Msg;
attacker(m)
= event(CompromisedRSAKey (sks))
V event(ForgedServerldentity())
V event(CompromisedNonce (1))
V event(ChecksDHParameters(.L))
V event(PostCompromisedAuthKey(k)).

In words, under the assumptions of our model, the
secrecy of message m is guaranteed unless:

1. the server’s private key is compromised or its
identity is forged before or during the session that
establishes the shared authorization key, or

2. the secret nonce n; generated by the client is
leaked during such a session (in particular, if the
attacker learns ny before the fourth message then
it can compute (k,iv) and act as a MitM to estab-
lish two distinct authorization keys with the client
and the server, respectively), or

3. the client fails to validate the DH parameters re-
ceived from the server, or

4. the authorization key is compromised at any later
time.

This result holds even if the server reuses the same
nonce n; in multiple sessions with different clients.
Besides, the result is strict, in the sense that remov-
ing any event from the query above leads to a coun-
terexample. Since in our formalization the private
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key of the server and the secret nonce n; are always
leaked in a separate phase following the completion of
the authorization protocol (so that the impact of such
leakage of information can be formally assessed), we
may also conclude that leaking the server’s key or
the secret nonce after a session has been completed
does not violate the secrecy of subsequent client-
server communication encrypted with the authoriza-
tion key. Intuitively, this holds because, even if such
post-compromise allows an attacker to decrypt all the
messages exchanged during the definition of the au-
thorization key, she cannot compute the authorization
key knowing only g, m, g4, g» (assuming that the DH
problem is hard). Note also that case 4 above means
that there is no guarantee of forward secrecy for mes-
sages encrypted with an authorization key.

After two clients have negotiated their authoriza-
tion keys with a server, they may start to exchange
messages within so-called cloud-based chats. Ev-
ery such message is encrypted by the sender using
the sender’s authorization key and forwarded to the
server, who deciphers it and re-encrypts it with the re-
cipient’s authorization key. In this context, the server
can trivially read (and even modify) every message.
The previous result shows that, under the hypothesis
that the server is trusted, communication can at least
be kept secret against an external attacker. Cloud-
based chats do not provide forward secrecy, though:
if, at any time, the authorization key of one of the
clients is leaked then all the messages exchanged by
that client can be deciphered.

Integrity. Key agreement, a basic property of
Diffie-Hellman, can be proved by ProVerif, using the
following query:
query ng,ng,ny . Nonce, k, k' : SharedKey, sk; : PrivKey;
event(ServerAcceptsAuthKey(n., ng, k))
A event(ClientAcceptsAuthKey (n., ng, k')
=k=K
V event(ClientChecksDHParameters(_L))
V event(ForgedServerldentity())
V event(CompromisedNonce(ry))
V event(CompromisedRSAKey(sk)).

If client and server generate authorization keys k
and k' during the same session identified by (n.,n;),
then they compute the same key, unless the client fails
to validate the DH parameters, the server’s identity is
forged, or some secret is leaked during the session.

Conversely, if client and server end a run of the
protocol agreeing on the same key in their respective
sessions, then such sessions coincide, unless the client
skips its mandatory checks. That is, the following
query is proved by ProVerif:
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query ne,n.,ng, nl: Nonce, k: SharedKey;
event(ServerAcceptsAuthKey (n.,ng, k))
A event(ClientAcceptsAuthKey ()., n}, k))
= (n. =nl. Ang =nl)
V event(ClientChecksDHParameters(_L )).

The last disjunct accounts for the fact that, if the
server sends the same bad DH parameters to a client
and to the attacker (acting as a malicious client) in two
separate sessions and the honest client does not reject
them, then the client, the attacker and the server may
end up with the same key.

6 SECRET CHATS

An end-to-end encrypted chat between two clients
A and B can be established after negotiating a ses-
sion key k through a Diffie-Hellman exchange using
server S as a forwarder. Each message exchanged be-
tween A and B is encrypted with k by the sender, then
the resulting ciphertext c is in turn encrypted with the
sender’s long-term authorization key (see Section 5)
and sent to S. Both layers use a similar encryption
scheme, which we treat symbolically as a crypto-
graphic primitive. Upon receiving a message, S uses
the sender’s authorization key, identified by 64-bit key
fingerprint prepended to the message, to decipher the
encrypted payload and recover the ciphertext ¢, which
is then encrypted again with the receiver’s authoriza-
tion key and forwarded to the receiver.

6.1 Informal Description

The protocol, shown in Fig. 3, is as follows:

1. initiator A obtains DH parameters (g, p) from S,
generates a random session identifier id and a
half-key g,, and requests to start an encrypted chat
with B, including id and g, in the message;

2. after B has accepted the request, B receives the
DH parameters from S and computes a half-
key gp, the session key k and a 64-bit finger-
print hash(k) of the key. The values g, and
hash(k) are then sent to A, who can compute k as
well. The fingerprint hash(k) is not cryptograph-
ically strong: its stated purpose is only to prevent
certain bugs in software implementations, espe-
cially during development.

This exchange is unauthenticated, so it is trivial for
the server to act as a MitM and establish two different
keys with A and B, respectively. To detect such at-
tacks, after the DH exchange is completed, the clients
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Figure 3: MTProto 2.0’s protocol for secret chats.

are required to compare their respective key finger-
prints’ using a secure authenticated out-of-band chan-
nel. Under this assumption, the protocol should guar-
antee the secrecy of the messages subsequently ex-
changed by A and B, encrypted with k. The clients
are also supposed to perform suitable checks on the
DH parameters, as described in Section 5. Note that,
in actual implementations, the out-of-band check is
left to users, i.e., it is not done automatically.

6.2 Formalisation in ProVerif

Each (honest) client involved in the secret chat pro-
tocol is modelled as a distinct process (an initiator A
and a responder B), and communication happens via
a common public channel (without encrypting mes-
sages with authorization keys), which allows us to
treat the server as an adversary equipped with the
same knowledge as the server (essentially, all the au-
thorization keys) and implicitly performing message
forwarding. That allows the attacker to receive, ma-
nipulate, and resend the exchanged messages in the
same way as the server could do, or impersonate a

3These are different from hash(k); in MTProto 2.0, they
are 288-bit hashes that are typically displayed both as hex-
adecimal strings and QR-codes, suitable for visual compar-
ison, by Telegram clients.



client if the clients do not perform the required checks
on the received parameters or on the generated key.

As the server controls the DH configuration used
by the clients to derive their shared key, if the clients
do not validate the obtained values then the server
might be able to force both clients to use an easily
guessable key. For instance, if the server sends a sub-
group generator equal to 1 and the clients do not per-
form any check, the derived session key will be 1 and
the server will easily decrypt all the messages.

To model the out-of-band verification that users
are asked to perform on a newly generated session
key, we use a separate secure channel ¢ available
only to A, to B, and to two auxiliary processes, one
performing the required validation on behalf of the
clients, and one skipping it:

let PerformOutOfBandKeyComparison() =
in(¢,QR(X,Y,k));
in(¢,QR(=Y,=X,=k));
event OutOfBandKeyComparisonSucceeded(X, Y, k);
event OutOfBandKeyComparisonSucceeded(Y, X, k);
out(&,QRok (X, Y,k));
out(é, QRok (Y, X, k)).

let SkipOutOfBandKeyComparison() =
in(¢,QR(X,Y,k));
event OutOfBandKeyComparisonSkipped (X, k);
OUt(f,QROK(X,Y, k))
Each client X wishing to validate a session key ne-
gotiated with Y sends a private message QR(X,Y,k)
via ¢ and waits for QRox(X,Y, k) as a confirmation.
The first of the two processes above waits for a QR()
message from a client and then expects a matching
message from the other client. Only when the sec-
ond message arrives, the process proceeds by record-
ing the event and sending out the confirmation mes-
sages. The second process simply acknowledges a
QR() message and records the corresponding event,
without doing anything else. Note that, in our model,
out-of-band key validation implies mutual authentica-
tion. How such channel is to be established in the real
world, however, is not specified by the protocol.
Finally, we assume that honest clients behave as
per the protocol, except for the following deviations:
a client may fail to verify its DH parameters, as in the
authorization protocol (Section 5.2), and a client may
skip the out-of-band validation of the session key.

6.3 Security Properties Verification
Secrecy. The main requirement of an end-to-end

encrypted chat is, obviously, secrecy: messages ex-
changed by A and B must be known only to A and B.

Automated Symbolic Verification of Telegram’s MTProto 2.0

MTProto’s secret chats guarantee secrecy conditional
to the strong assumption that clients do validate their
keys through a separate private channel. Formally, the
secrecy query, which ProVerif is able to prove, can be
formulated as follows:

query X : Principal,k: SessionKey,m: Msg;
attacker(m)
= event(OutOfBandKeyComparisonSkipped(X, k))
V event(ClientChecksDHConfig(X, L)).

In words, under the assumptions of our model, mes-
sage m exchanged between two clients is kept secret
unless one of the clients does not perform the manda-
tory checks of DH parameters or the clients omit the
“manual” authentication of the shared key via an ex-
ternal secure channel.* Note that secrecy does not
rely on the privacy of the authorization keys, i.e., the
above query is true even if the authorization keys of
the parties involved are leaked before the secret chat
protocol starts. Secrecy, however, crucially relies on
a step that requires active human interaction, at least
in the current implementations.

As for the confidentiality of the session key k, note
that although in a correct run of the protocol k remains
secret (otherwise the attacker could obtain m), k is not
indistinguishable from a random key: by comparing
choice[k, r| (i.e., one between the real key k and a ran-
dom value r) with the hash from the last message of
the protocol, the server can tell apart £ from r with
high probability. Accordingly, ProVerif cannot prove
the corresponding observational equivalence.

Integrity and Authentication. The integrity and
authenticity of a message exchanged by two clients
during a secret chat session is preserved if the clients
abide by the rules—in particular, if they perform the
required out-of-band key validation in a way that im-
plies mutual authentication. But, even under such as-
sumptions, the protocol remains vulnerable to a lim-
ited cross-session attack. The strongest result we
could prove in ProVerif is the following:

query i,i': ChatID, X,Y,I,R: Principal,

k: SessionKey, m: Message;
inj-event(ReceivesSecretChatMsg(X,i,1,R, k,m))
= inj-event(SendsSecretChatMsg(Y,i’, I, R, k,m))
V inj-event(SendsSecretChatMsg(Y,i’, R, 1, k,m))
V (event(OutOfBandKeyComparisonSkipped(X , k))

A event(OutOfBandKeyComparisonSkipped(Y, k)))
4Note that in our formalization (see Section 6.2), it is

not possible for one client to validate the session key and
for the other to skip the validation.
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V (event(ClientChecksDHConfig(X, L))
A event(ClientChecksDHConfig(Y, 1))).

In this query, I denotes the chat initiator and R is the
responder. If the clients behave correctly, whenever
an honest party X (which, by the definition of the
events, may be only / or R) receives a message m en-
crypted with the session key k in a chat session ini-
tiated by I with intended partner R, exactly one mes-
sage m encrypted with k has indeed been sent by Y
(which, again, can only be / or R) in a session started
by I with R or in a parallel session started by R with /.
The latter is due to the possibility that the server S im-
personates the responder in two distinct sessions, one
started by X with Y, and another started by ¥ with X,
performing the following exchange:

Session1 X — S: g*
Session2 Y — S: g7
Session2 S —Y: g*
Session1 S — X: g¥

The server impersonating Y in Session 1 and X in Ses-
sion 2 gets X and Y to compute the same key g in
both sessions. The server is then free to forward mes-
sages across such sessions: they are accepted because
they are encrypted with a valid key. Note that this at-
tack is limited to the same two parties X and Y as long
as the clients validate their keys.

In the query above we cannot require i = i’, be-
cause the server might forward X and Y different
chat id’s. This does not seem to pose security risks,
though: it is rather a correctness issue related to ses-
sion management. Anyway, a similar result addition-
ally requiring i = i’ can be proved if the clients also
compare their respective id’s during the out-of-band
confirmation step, i.e., if QR(i,X,Y, k) is sent instead
of just QR(X, Y, k).

If the message is not sent by Y, then X and Y
did not validate k, or both clients skipped the needed
checks on the DH parameters. The former enables
the server to perform the classical MitM attack on
Diffie-Hellman. The latter allows the server to mount
a MitM attack similar to the one described in the last
paragraph of Section 5.3. Besides, it is necessary to
assume that out-of-band validation really implies mu-
tual authentication: that is the case in our model, but
depending on how such validation is carried out in
practice, such an assumption may be too strong. For
instance, a malicious client E could “social-engineer”
two honest clients A and B to make them believe that
their key k match E’s (who does not have k), e.g., E
might get the key fingerprint from B and hand it to A
when asked by A to compare their keys.
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Figure 4: The rekeying protocol.

7 REKEYING

Keys used in secret chats are replaced every 100 mes-
sages or every week (if at least one message has been
sent) using the protocol shown in Fig. 4. Old keys
should be destroyed and never reused. The exchange
uses the same DH parameters obtained when the se-
cret chat was first established (Section 6). Messages
are transmitted through the secret channel already in
place between the clients, so the server, who acts as a
forwarder, can observe only the ciphertexts.

7.1 Informal Description

The rekeying protocol is essentially a standard Diffie-
Hellman exchange over a secure channel. The claim
that the channel is secure is only relative to the as-
sumptions and results of Section 6.3. Both clients
possess the DH parameters (g, p) from their initial run
of the secret chat protocol and a shared key k. The
new shared key is derived as follows (see Fig. 4):

1. Client A generates a random session id and a ran-
dom a € Z,, computes a half-key g, and sends the
pair (id, g,) to B.

2. Client B generates a random b € Z, and com-
putes its half-key g; and the new shared key ggp.
The half-key and a fingerprint of the shared key
(64 bits of the SHA1 of the key) are sent to A.

3. Client A computes g,p, checks that the fingerprint
of g,» matches the received fingerprint, and sends
the fingerprint back to B as an acknowledgment.

The old key is no longer needed and can be deleted.



7.2 Formalisation in ProVerif

The formalisation of the rekeying protocol is similar
to the formalization of the secret chat protocol, us-
ing a process for the initiator and one for the respon-
der, while the server is untrusted and included in the
attacker. The computed fingerprints are not crypto-
graphically strong and do not play any security role,
but are meant only as a sanity check for the imple-
mentations. The only important difference compared
to a standard Diffie-Hellman exchange is that all the
messages exchanged during rekeying are end-to-end
encrypted with the current session key k, which is as-
sumed to be known only to the clients.

7.3 Security Properties Verification

Secrecy and Forward Secrecy. Assuming that the
current k is strong and secret, secrecy after rekeying
is preserved even if the authorization keys of both par-
ties are compromised before the rekeying protocol is
executed. This can be proved in ProVerif by running
the rekeying protocol without encrypting the mes-
sages with the authorization keys so that they are ac-
cessible to the adversary (which models the untrusted
server), then letting A and B exchange a message m
encrypted with the new key, and finally verifying that
the attacker cannot obtain m:

query attacker(m).

Forward secrecy and future secrecy are guaranteed by
the periodic rotation of the keys. If a session key is
recovered by an attacker, it can be used to decrypt
at most 100 messages or a week worth of messages.
While older or newer messages cannot be deciphered,
in some circumstances such window of compromise
might still be considered excessively wide. Given the
above, leaking an authorization key at any time does
not compromise the secrecy of any message.

Authentication. If A,B run the rekeying protocol
negotiating a new key k, then both A and B, and only
them, should know k. Unfortunately, the rekeying
protocol fails to provide implicit key confirmation (the
guarantee to A that B can compute k, and vice versa)
and implicit key authentication (the guarantee to A
that no one but B knows k, and vice versa) (Blake-
Wilson and Menezes, 1999). A rogue client E, who
has already completed the secret chat protocol with A
and B, may unfold the following attack:

* A starts rekeying with E and sends its half-key g,;
* F starts a parallel session with B, sending g, to B;
* B sends E its half-key gp;
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e E sends A the half-key g; obtained from B.

At this point, A and B compute the same key, and each
one mistakenly believes that the key is shared with E.
The following query is disproved by ProVerif, even
assuming that the DH parameters are good:

query i: SessionlD, I,I’,R,R': Principal,k: SessionKey;
event(InitiatorNegotiatesNewKey (i, 1, R, k))
A event(ResponderNegotiatesNewKey (i, I', R’ k))
=I=I'VI=RVR=I'VR=R.

If the initiator I accepts k from R and responder R/
accepts k from I’, ideally only two parties should be
involved (the query is even weaker than that, asking
only that at least one entity appears in both events).
As an example of how such a vulnerability could
be exploited, consider the following game of spies:
Alice and Eve are agents from Eurasia, and Bob is
an agent from Eastasia. Alice trusts Eve and would
never communicate with Bob, but Eve has been paid
by Bob to perform the above attack. After the rekey-
ing exchange described above, Bob would be able to
transmit misleading information to Alice, who would
accept it as coming from Eve. The main advantage
compared to having Eve act as a forwarder is that Bob
does not need to rely on Eve in subsequent communi-
cation; it is also a less risky strategy for Eve (she could
eventually claim that her device has been hacked).
Telegram’s documentation recommends that
clients do not start two rekeying instances con-
currently. But the query above generates a trace
involving four parties A, B, and two cooperating
malicious clients E,E’, in which A runs rekeying
with E, and E’ runs rekeying with B. Each client
runs a single instance of the protocol. So, the above
recommendation is not a mitigation for this attack.

8 CONCLUSIONS

We have presented the formalisation of the MT-
Proto 2.0 protocol suite in the applied m-calculus,
and its analysis using the protocol verifier ProVerif.
This approach adopts the symbolic Dolev-Yao threat
model: an active intruder can intercept, modify, for-
ward, drop, replay or reflect any message. Within this
model, we have provided a fully automated proof of
the soundness of MTProto 2.0’s protocols for first au-
thentication, normal chat, end-to-end encrypted chat,
and rekeying mechanisms with respect to several se-
curity properties, including authentication, integrity,
secrecy and perfect forward secrecy, also in the pres-
ence of malicious servers and clients. Moreover, we
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have discovered that the rekeying protocol is vulner-
able to a theoretical unknown key-share (UKS) at-
tack (Blake-Wilson and Menezes, 1999): a malicious
client B, with the help of another client E, can induce
a client A to believe that she (still) shares a secret key
with E, and instead A shares the key with B. The prac-
tical exploitability of this attack in actual implemen-
tations is still to be investigated. Our formalization
covers also the behaviour of the users, when relevant;
e.g., if the users do not check the fingerprints of their
shared keys, a MitM attack is possible.

Vulnerabilities may arise also from the cryp-
tographic primitives, from implementation flaws
(e.g. insufficient checks), from side-channels exfiltra-
tion (such as timing or traffic analysis), or from in-
correct user behaviour. Hence, these aspects deserve
further investigation and particular care in the imple-
mentation and use of this protocol.

In this work, the basic encryption primitive of
MTProto 2.0 has been modeled as a perfect authen-
ticated encryption scheme. Although no attack on
this scheme is known to date, in order to deem MT-
Proto 2.0 secure we need to prove properties such as
IND-CCA and INT-CTXT. This proof cannot be done
in a symbolic model like ProVerif’s, but it can be
achieved in a computational model, using tools like
CryptoVerif or EasyCrypt (Blanchet, 2007; Barthe
et al., 2013)—which we leave to future work. How-
ever, even if a flaw were found in the current encryp-
tion scheme, the results in this paper would still be
valid: the encryption scheme could be replaced with a
stronger one, and no other changes would be required.

Besides automatic tools like ProVerif and Cryp-
toVerif, one may analyse (cryptographic) protocols in
semi-automatic, interactive tools. A prominent exam-
ple is EasyCrypt mentioned above, but there are also
formalisations of the applied m-calculus or even gen-
eral temporal logics in proof assistants like Coq or
Isabelle/HOL (see, e.g. (Kahsai and Miculan, 2008;
Miculan, 2001; Honsell and Miculan, 1995)). In prin-
ciple, these interactive tools allow us to formalize and
prove any properties which can be proved “on the pa-
per”, but the burden on the user is greater than that
induced by automatic tools.

Concerning implementation flaws, our formalisa-
tion can be used as a reference for the correct im-
plementation of MTProto 2.0 clients (and servers).
Tools like Spi2Java or FS2PV can be useful to this end
(Bhargavan et al., 2010; Pozza et al., 2004). Also, par-
ticular attention must be paid to side-channel attacks,
such as on timing or traffic analysis. Another issue
concerning the correct implementation of clients is
that a server can craft malicious DH parameters, e.g.,
choosing generators that make discrete logarithms
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significantly easier to compute (Kobeissi et al., 2017)
or choosing non-primes that pass the 15-round Miller-
Rabin test. To prevent the first attack, MTProto pre-
scribes that clients verify that the values received from
the server are valid (see Section 5.3). However, as
far as we can see, MTProto 2.0 still suffers from the
latter vulnerability. A possible improvement is to re-
quire clients to check the proposed primes by means
of deterministic primality algorithms (Agrawal et al.,
2004; Lenstra Jr and Pomerance, 2019).

Correct user behaviour is crucial in order to pre-
vent MitM attacks in secret chats. As we have seen,
users must check the fingerprint of their authorization
keys through an external safe channel; actually, this
issue concerns not only MTProto 2.0 but any protocol
whose keys are defined by means of an insecure
DH exchange. In practice, such checks are likely
often ignored, or performed through the very same
(supposedly secure) chat. Hence, users seriously
concerned about privacy must be educated about the
correct procedure to follow.
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