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Abstract: The ongoing rise of Generative Adversarial Networks is opening the possibility to create highly-realistic, nat-
ural looking images in various fields of application. One particular example is the generation of emotional hu-
man face images that can be applied to diverse use-cases such as automated avatar generation. However, most
conditional approaches to create such emotional faces are addressing categorical emotional states, making
smooth transitions between emotions difficult. In this work, we explore the possibilities of label interpolation
in order to enhance a network that was trained on categorical emotions with the ability to generate face images
that show emotions located in a continuous valence-arousal space.

1 INTRODUCTION

With the recent progress in the field of Generative
Adversarial Learning, a broad variety of new algo-
rithms have evolved that tackle the generation of arti-
ficial image data, leading to new possibilities for au-
tomated face generation and other generative tasks
(Hong et al., 2019). State-of-the-art Generative Ad-
versarial Nets (GANs) excel in terms of image qual-
ity of the generated outputs when compared to other
generative model paradigms like Variational Autoen-
coders. However, common GAN architectures lack
the capability to generate new data in a targeted way.
Multiple modifications have been done to the origi-
nal GAN framework to allow a controlled generation
of new images. These modified architectures have
proven their ability to create avatar images, i.e., im-
ages of human faces, that can be controlled regarding
various human-interpretable features. In the context
of emotional face generation, this allows to produce
avatar images that are conditioned on a certain emo-
tion.

The majority of datasets applicable to train those
GANs are referring to a categorical emotion model,
which means they are labeled on emotions like Happy
or Sad in a discrete way. However, for many real-
life use cases like emotional virtual agents, there is
a demand for the generation of emotional faces in a
more fine-grained way in order to strengthen the cred-
ibility and anthropomorphism of human-like avatars.

Furthermore, avatars that are only capable of show-
ing discrete emotions without gradation are imprac-
tical to use in scenarios where a smooth transition
between different emotional states is required. Fur-
ther use-cases include automated creation of textures
for virtual crowd generation or data augmentation for
emotion recognition tasks. Especially in the latter
context, there is a huge demand for artificially cre-
ated data, as continuous emotion recognition relies
on non-categorical training data, whereas available
datasets that are labeled with respect to dimensional
features are rare. In all these scenarios, the use of a
dimensional emotion model would be more sufficient
to meet the posed requirements.

This work explores the possibility to train a Con-
ditional GAN (cGAN) on a dataset of categorically
labeled emotional faces and subsequently interpolate
in the label space of that pretrained model in order
to generate faces whose emotional expression can be
controlled in a continuous, dimensional way. Thus,
this paper aims to answer the question if label interpo-
lation can be a tool for overcoming the disadvantage
of categorical datasets for emotional face generation.

2 RELATED WORK

The possibility to create artificially generated images
has experienced a great upswing with GANs, that
firstly have been presented by (Goodfellow et al.,
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2014). The basic idea of those GANs is, that two
neural networks, the Generator and the Discrimina-
tor (or Critic), compete against each other in a min-
max game. Therefore, the generator learns to cre-
ate new samples that resemble a given training do-
main, whereas the discriminator learns to distinguish
between real samples and fake samples generated by
the generator. After training, the generator is able to
transform random noise vectors into artificial image
data.

In recent years, original GANs were extended in
multiple ways. (Arjovsky and Bottou, 2017), (Gulra-
jani et al., 2017) and (Arjovsky et al., 2017) refined
loss functions and training procedures in order to sta-
bilize the training of GANs. (Radford et al., 2015)
introduced Deep Convolutional GAN (DCGAN), that
replaced the fully connected layers of both generator
and discriminator networks with convolutional net-
works, resulting in the capability to create high qual-
ity image data. Further, their work presented the first
attempts to generate highly realistic images of human
faces. In their respective publication, it was also ex-
amined how the latent space of DCGAN implicitly
models certain face features like the face pose. How-
ever, it can not be controlled which features are learnt
by DCGAN as it is trained in an unsupervised set-
ting. An even more sophisticated approach that was
evaluated in the context of face-generation was pre-
sented by (Karras et al., 2017), who introduced their
Progressive Growing GANs that are able to generate
high-resolution face images.

A common problem with all those architectures is
the fact, that the output results solely from random
noise input, thus, it cannot be controlled in a human-
interpretable way. Therefore, (Mirza and Osindero,
2014) introduced the concept of Conditional GANs.
Here, the random noise vector is extended with ad-
ditional label information. That information is used
to condition the network to certain features during
training. Therefore, a successfully trained cGAN can
be used to generate new outputs in a targeted way.
Multiple approaches have been published to use those
cGANs to generate human faces that are conditioned
on specific features. For example, (Wang et al., 2018)
and (Gauthier, 2014) developed cGANs that are ca-
pable of generating images that can be controlled re-
garding different features like glasses, gender, age,
mouth openness, among others. (Yi et al., 2018) used
a cGAN to generate emotional face images to enhance
datasets for emotion recognition systems.

However, these systems are either trained on cate-
gorical feature data to generate new face images con-
ditioned on discrete classes, or they already use con-
tinuous label information during the training.

Another class of GANs focusses on style conver-
sion problems. In the context of face generation, the
tasks to be solved by those systems can be referred to
as Face Editing. In contrast to the use-cases tackled
by our approach, face editing does not aim to gener-
ate completely new data, but to modify existing image
data (He et al., 2019; Royer et al., 2020; Choi et al.,
2018; Liu et al., 2017; Lin et al., 2018). For example,
(Ding et al., 2018) presented a system that is capa-
ble of transforming face images of certain emotions
to other emotions in a continuous way. Although their
approach does not explicitly rely on continuously la-
beled data, the variety regarding emotion intensity has
to be represented in the training set. I.e., face im-
ages of varying emotion intensity have to be available,
even if the intensity degree itself does not have to be
known for every sample. They showed that their sys-
tem is even capable of generating random new faces
that show a certain emotion. However, they did not
investigate if those newly generated face images can
be controlled continuously. Also, they did not evalu-
ate their system with respect to common dimensional
models as the valence-arousal model, but rather ex-
plored if the intensity of the categorical emotions can
be altered by their face editing system.

To the best of our knowledge, there exists no prior
work that focuses on the generation of new emotional
faces in a continuous way while using only discrete
label data for training.

3 APPROACH

The following sections introduce our approach to use
a cGAN that was trained on discrete emotions to gen-
erate faces showing continuous degrees of valence
and arousal. We discuss differences in discrete and
continuous emotion models and why we favour the
latter approach.

3.1 Emotion Models

A categorical model subsumes emotions under
discrete categories like happiness, sadness, surprise
or anger. There is a common understanding of these
emotional labels, as terms describing the emotion
classes are taken from common language. However,
this approach may be restricting, as many blended
feelings and emotions cannot adequately be described
by the chosen categories. Selection of some particular
expressions can not be expected to cover a broad
range of emotional states and could suffer from
randomness.
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Figure 1: Russel’s 2-dimensional valence arousal circum-
plex (Russell and Barrett, 1999).

An arguably more precise way of describing emo-
tions is to attach the experienced stimuli to continu-
ous scales within dimensional models. (Mehrabian,
1995) suggests to characterize emotions along three
axes, which he defines as pleasure, arousal and dom-
inance. (Lang et al., 1997) propose arousal and va-
lence as measurements. These representations are less
intuitive but allow continuous blending between af-
fective states. They describe multiple aspects of an
emotion, the combination of stimuli’s alignments on
these scales defines single emotions. In the case of the
valence-arousal model, which is the more commonly
used dimensional model, the valence scale describes
the pleasantness of a given emotion. A positive va-
lence value indicates an enjoyable emotion such as
joy or pleasure. Negative values are associated with
unpleasant emotions like sadness and fear. This des-
ignation is complemented by the arousal scale which
measures the agitation level of an emotion (Figure 1).

Categorical as well as dimensional models are
simplified, synthetic descriptions of human emotions
and are not able to cover all of the included aspects.
They are however useful and needed to model emo-
tions as concepts to be presented to a machine. In
our generation system for expressive faces, we pre-
fer a dimensional approach over the categorical, in
order to enable a seamless transition between dis-
played emotions. However, data collections featur-
ing dimensional annotation for facial expressions are
more sparse than the ones containing categorical la-
bels (Section 4.1).

To alleviate this problem, we propose to use a
cGAN that was conditioned on categorical emotions
during training, and interpolate between those emo-
tions in order to be able to create new images. Those
newly generated face images show emotional states
that are located in the continuous dimensional space

of the valence/arousal model without having to corre-
late directly with discrete emotion categories.

3.2 Network Architecture

The network used in our experiments is largely based
on a Deep Convolutional GAN (DCGAN) by (Rad-
ford et al., 2015). A detailed description of DCGAN
can be found in their respective publication. Summa-
rized, DCGAN follows the basic principles of tradi-
tional GANs while making use of convolutional and
convolutional-transpose layers in order to improve the
quality of generated outputs.

In order to allow for the targeted generation of
images, the DCGAN was extended with the princi-
ples of a cGAN. In contrast to conventional GANs,
cGANs add a conditioning component to the input
vector. That vector is used to condition the genera-
tor network to certain features that shall be shown in
the output images. Thus, during training, those fea-
ture information has to be fed as labels. All in all,
the input to a cGAN consists of a random noise part z
and a conditioning vector v. After a successful train-
ing procedure, the generator has learned to transform
the random noise input to images that resemble the
training domain, whereas the conditioning informa-
tion is taken into account to direct those outputs to
show the desired features. In the context of emotional
face generation, the random noise part is responsible
for the face itself, whereas the conditioning informa-
tion leads to certain emotions of the face. Thus, two
identical noises conditioned with different feature in-
formation should result in the same face showing dif-
ferent emotions.

In our implementation, the conditioning informa-
tion is given to the network as one-hot encoded label
vector, where each element represents a certain emo-
tion. As described in Section 4.1, the emotions Neu-
tral, Sad, Disgust, Fear, Angry and Happy were used
during training. Thus, the one-hot label vector v has
the following form:

v = (v1,v2, ...,v6) = {0,1}6 (1)

with
6

∑
i=1

vi = 1 (2)

3.3 Interpolation

During inference, we change the definition of the con-
ditioning vector in order to allow a continuous inter-
polation between discrete emotional states. As intro-
duced in Section 3.1, we derive the mapping between
discrete emotions and continuous emotional states
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(i.e., valence-arousal space) from the idea of Russel’s
emotion system. Thus, the valence-arousal of a face
image I can be represented by a tuple VA(I) = (v,a),
where v refers to the valence value and a to the arousal
value. According to Russel’s emotion system, an
image x with VA(x) = (0,0), thus, representing the
center of the emotion space, would show a neutral
emotion. Certain emotions, like Happy, are repre-
sented by valence/arousal states that show quite ex-
treme values. Therefore, to generate images with cer-
tain degrees of arousal or valence, we interpolate be-
tween those extreme emotions and the neutral emo-
tion. With the term extreme emotions, we refer to all
of the used categorical emotions except Neutral. By
applying the interpolation technique, we do not use
strictly one-hot encoded label vectors as conditioning
information during inference, but interpolated label
vectors that do not have to be of a binary structure. In
order to do so, we have to redefine the conditioning
vector v so that the single conditioning elements are
not forced to a binary structure, but can take values in
the interval [0,1]:

v = (v1,v2, ...,v6) = [0,1]6 (3)

In order to keep the output of the conditioning layer
consistent to the training, we found that retaining the
restriction formulated in Equation 2 leads to better
quality of the interpolated results than choosing the
conditioning elements arbitrarily in the given inter-
vals. In our experiments, we have adhered to perform
interpolations between Neutral and a certain other
emotion to maintain comparability between the emo-
tions. It should be noted that the approach could eas-
ily be extended to interpolate between two extreme
emotions. However, as we only use one extreme emo-
tion and Neutral at once, the following constraint has
to be added:

∃i∈[2,6] : v1 + vi = 1 (4)

where v1 represents the condition for Neutral. To
generate an image that shall show a certain degree
of valence v or arousal a, where 0 ≤ a,v ≤ 1, we
use the one-hot element of the an emotion that max-
imizes the specific value, for example Happy when
dealing with valence, and decrease it to the desired
degree, while simultaneously increasing the one-hot
element that refers to Neutral to the same extent. Our
hypothesis is, that due to the differentiable function
that is approximated by the cGAN model during the
training, those non-binary conditioning vectors lead
to image outputs which are perceived as showing non-
extreme emotions, thus, emotions that have can have
valence/arousal values located anywhere in Russel’s
emotion system instead of just showing those values
that are given during the training.

4 EXPERIMENTS & RESULTS

To evaluate, if label interpolation in the conditioning
space is a valid approach to generate images with con-
trollable valence-arousal values, we trained a cGAN
model described in the previous chapter.

4.1 Dataset & Training

Figure 2: Exemplary data from FACES showing neutral,
sad, disgust, fear, anger and happiness from left to right
varying the age group.

As described in Section 1, datasets that are labeled
with respect to dimensional emotional models are
rare. Further, those few datasets that contain those
continuous label information (like AffectNet by (Mol-
lahosseini et al., 2019) or AFEW-VA by (Kossaifi
et al., 2017)) are recorded in the wild. Usually, vari-
ability in data is an advantage for deep learning tasks,
however, for many generative tasks that focus on
modeling specific feature dimensions like emotions,
variety in data leads to inconsistent and unnatural re-
sults. Thus, for our usecase, a uniformly recorded
dataset with low variability outside the facial emo-
tion is required. To address the lack of continuously
labeled and consistently recorded datasets meeting
these requirements for emotional face generation, we
explore the use of label interpolation to overcome the
disadvantages of categorical labeled datasets. Such
datasets containing discrete emotion labels are widely
available. A dataset fitting our purpose particularly
well is the FACES dataset (Ebner et al., 2010). The
FACES dataset contains 2052 images showing emo-
tional facial expressions from 171 men and women of
different ages (58 young, 56 middle-aged and 57 old).
Each participant shows two versions of the emotions
Neutral, Sadness, Disgust, Fear, Anger and Happi-
ness. Despite the relatively small size of the dataset,
the consistency of the images in terms of lighting,
background, and viewing angle makes it stand out as
a training dataset and an adequate choice for training
GANs. For instance, all images in the dataset have
the same blank background and the subjects wear the
same plain grey top as depicted in Figure 2. All im-
ages were resized to the target size of 256x256 pixels
prior to training. No further preprocessing was neces-
sary.

The model was trained for 10,000 epochs on all
2052 images of the FACES dataset using Adam opti-
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Figure 3: Example outputs of the trained cGAN model.

mizer with a learning rate of 0.0001. Example outputs
of the trained model, conditioned on one-hot vectors
of all 6 used emotions, are shown in Fig. 3.

Our evaluation process is two-folded. First, we
wanted to evaluate whether extreme emotions can
be generated by the cGAN without interpolation and
whether this output is recognized as the correct emo-
tion by real humans. Secondly, we decided to perform
a more fine-grained analysis on the continuously gen-
erated outputs by the use of our approach. In order
to do so, we decided to perform an evaluation using a
pretrained valence-arousal regression model. As the
focus of this paper is the exploration of the possibility
to interpolate between discrete label information, the
absolute numerical values of such a regression model
are not a good metric for our purposes. Instead, we
want to explore if the interpolation mechanism is able
to model the full bandwidth of valence and arousal
values that can occur between a neutral emotion and
certain extreme emotions. Thus, in the first step, we
conducted a tiny user study to evaluate if the trained
model itself is capable of generating those extreme
emotions that it was trained on. The second evalu-
ation step was designed as a computational evalua-
tion of the interpolation mechanism to explore if the
trained cGAN is capable of modeling a smooth transi-
tion between the emotional states in terms of valence
and arousal.

4.2 User Evaluation of cGAN Model

In our user study, we evaluated the capabilities of the
cGAN to create images of discrete emotions that were
generated using the corresponding one-hot vector en-
coding. In total, 20 participants of ages ranging from
22 to 31 years (M = 25.8, SD = 2,46, 40% male, 60%
female) took part in the survey.

The survey consisted of 36 images, half of which
were selected out of the FACES dataset, while the
other half was generated by our trained cGAN. In to-
tal, 6 images were shown for each emotion, 3 from
the FACES dataset and 3 generated faces. The images

that were taken from the FACES dataset were resized
to 256x256 pixels in order to keep consistency with
the artificially created images. For every image and
emotion, the participants were asked how much they
agreed with the image showing a certain emotion by
the use of a 5-point Likert scale (1 = strongly agree, 5
= strongly disagree).

The results are shown in Fig. 4. As can be seen,
the artificially generated images were perceived in a
convincingly similar way as the original images from
the FACES dataset. For every emotion, it becomes
clearly visible that the emotion is predominantly rec-
ognized correctly by the participants. The emotion
Sadness stands out, as here, generated images were
recognized even better than the original ones, as sad
images from the FACES dataset more often were con-
fused with Disgust. Thus, the trained cGAN model
turns out to be a suitable base for further interpola-
tion.

4.3 Computational Evaluation of the
Interpolation Mechanism

As was shown in the user study, the cGAN is able
to model discrete emotions when conditioned on one-
hot vectors. To verify if our approach based on inter-
polating in that label space is enhancing the network
with the ability to generate images with varying, con-
tinuous degrees of valence and arousal, we performed
a computational evaluation. In order to do so, we fed
5,000 random noise vectors into the cGAN, 1,000 for
each emotion. The conditioning vector was initially
conditioned on a neutral emotion. Additionally, for
each noise vector, interpolation steps towards the re-
spective extreme emotion were conducted. Therefore,
10 interpolation steps in intervals of 0.1 were done per
noise vector, so that the last interpolation step equals a
one-hot vector that is conditioned on the correspond-
ing extreme emotion. Each of the resulting images
was then evaluated with a pre-trained valence/arousal-
assessment model. Example outputs of various in-
terpolation steps between Neutral and the other five
emotions are depicted in Fig. 5.

The structure of that model was based on the Mo-
bileNetV2 architecture (Sandler et al., 2018), which
was adapted for multi-task learning of the following
two tasks: recognition of continuous valence/arousal
values and detection of eight discrete emotion classes
(Neutral, Happy, Sad, Surprise, Fear, Disgust, Anger
and Contempt). We selected this architecture because
it achieves similar results to Inception- or ResNet-
based models but can be trained more quickly. The
network was trained for both tasks simultaneously on
the AffectNet dataset (Mollahosseini et al., 2019) us-
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Figure 4: Results of the user study. Blue graphs show the perceived emotion of real images from the FACES dataset, while
orange graphs show the perceived emotion of outputs of the cGAN conditioned on one-hot vectors. The y-axis represents the
degree of the participant’s agreement with the corresponding emotions that are represented by the x-axis.

Figure 5: Example outputs of the interpolation mechanism. Each row shows a set of interpolation steps, where in each step,
the emotion portion e was increased by 0.1, whereas the neutral portion was decreased by the same amount.

ing an Adam optimizer with a learning rate of 0.001
for 100 epochs. After training, the secondary model
head for discrete emotion detection was removed and
only the valence/arousal head was used to evaluate the
cGAN model.

We assessed the valence/arousal values for every
output image of the interpolated cGAN and averaged
them over the 1,000 samples per emotion. The results
are shown in Fig. 6.

5 DISCUSSION

As can be derived from the plots depicted in Fig. 6,
the interpolation mechanism is able to condition
the cGAN to produce face images of various va-

lence/arousal values. Further, those values that are
taken during the interpolation procedure are mainly
located in the intervals defined by the respective start
and end points of the corresponding interpolation, i.e.,
the samples that are conditioned with a binary one-hot
vector.

However, it can be seen that in the cases of Sad-
ness and Disgust, during interpolation, the valence
first takes slightly higher values than the respective
valence values at the starting sample, before finally
descending to the level of the interpolation end point.
For Anger, both valence and arousal values are going
up and down until finally arriving at a similar level
as where they started. It should be noted, that the
plots are showing only the valence and arousal val-
ues that were tracked by the valence/arousal assess-
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Figure 6: Computational Evaluation of our interpolation ap-
proach. Red graphs show valence, while green graphs show
arousal. The x-axis represents the interpolation steps. Each
interpolation step was performed by increasing the corre-
sponding emotion vector element by 0.1, while decreasing
the neutral vector element by 0.1.

ment model described in the previous section. That
model seems to attribute similar valence/arousal val-
ues to generated angry faces as to generated neutral

faces when conditioned with a binary one-hot vector,
although the user study has shown that both of those
emotions were perceived in a correct way. As can
be seen in Fig. 1, Anger should show substantially
different valence and notably different arousal than a
neutral emotion according to Russel’s emotion model.
Thus, we assume that the valence/arousal assessment
model has its flaws when it comes to dealing with cer-
tain emotional states. The fact, that the valence val-
ues of neutral faces already are located notably be-
low zero, as well as the observation that images that
are showing Fear are averaging in a higher valence
than neutral images, although also being perceived
correctly in our user study, strengthens this assump-
tion. However, the values are predominantly evolving
into the right direction during the whole interpolation
procedure and modeling the whole range in the de-
sired valence and arousal intervals between the dis-
crete emotions. Thus, the interpolation mechanism
can indeed be used to generate face images of contin-
uous emotional states, generating a variety of samples
in the dimensional valence-arousal model. The fact,
that the values are not evolving in a linear way, i.e.,
the plots appear rather as curves than as straight lines,
does not take away much from the results, as for a
more even interpolation, the single interpolation step
intervals can easily be modified, e.g., instead of using
the same step interval for every single interpolation
step, higher intervals can be used in ranges where the
target features are changing slower.

6 CONCLUSION & OUTLOOK

In this work, we have explored the capabilities of
a continuous interpolation through a discrete condi-
tioning space of a cGAN. We strived for a possibil-
ity to generate images of emotional faces, where the
emotions are not restricted to categorical structures,
but can transition freely in the valence-arousal space.
Our experiments showed that our interpolation mech-
anism is able to achieve that goal, although the per-
formance of the approach is heavily dependent on the
emotion that is used for the interpolation. All in all,
the approach shows great potential to be applied as a
tool for continuous emotional face generation. In fu-
ture work, we plan to extend our work by applying it
to more complex cGAN architectures in order to op-
timize the quality of generated images. Further, we
plan to examine the applicability of label interpola-
tion by the use of other datasets that show a higher
diversity.
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