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Abstract: Oxygen concentration quantification in the blood (SpO2) has been used as a mean to diagnose and prevent 
critical medical conditions thanks to pulse oximetry. In spite of its theoretical precision, this method suffers 
from intrinsic deviations from the components used in such monitoring devices (PVT) that can lead to SpO2 
measurement errors. In this paper, we propose a multi-domain modeling of a NIRS-based blood oxygen 
saturation monitoring system and its biological environment using SystemC(-AMS) for virtual prototyping, 
to analyze the impact of PVT variations of opto-electrical components, thanks to Monte-Carlo simulation 
correlated with transient analysis. We simulated the blood flow of the finger tissue and the dynamic 
attenuation of the red and infrared light passing through the tissue. The Monte-Carlo simulation method was 
used to analyze different PVT parameters that may cause measurement deviations separately. Finally, we 
found that the red/IR LED peak wavelength deviation and the temperature of the system have an important 
impact on the SpO2 quantification, especially red LED peak wavelength deviation. This result shows that the 
choice of the red-light source is of prime importance for accurate SpO2 quantification. 

1 INTRODUCTION 

SpO2 (oxygen saturation) index is measured to show 
the level of oxygenation in blood using an oximeter 
device. It is based on Near-InfraRed Spectroscopy 
(NIRS) and on PhotoPlethysmoGraphy (PPG) 
technologies (Webster, 1997). Typically, as shown in 
Fig.1, two colored light sources (red and infrared) are 
used on body parts, usually a finger, to detect 
volumetric changes of blood. However, deviations 
always occur when performing a measurement. 
Therefore, device calibration is indispensable to 
obtain an acceptable error rate (Maxim, 2019). 

Many well-known factors have an impact on the 
SpO2 measurement, for instance motion artifacts, 
ambient light, skin color, etc. However, so far, 
influences coming from the system itself haven’t been 
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carefully studied. We propose to contribute to this 
field through the study of the impact of PVT (Process, 
Voltage, Temperature) variations in the SpO2 
monitoring system. To do this, we intend to model 
and simulate the embedded system in association with 
the monitored biological tissue. 

Evaluating PVT variations is difficult to achieve 
through experimental methods, because it is not easy 
to vary certain parameters in the monitoring system 
(such as the peak wavelength of the red/IR LED 
spectrum, the spectral sensitivity of the photo-
detector, etc.) to evaluate their impact on SpO2 
quantification. Parasitic signals and noise might also 
influence the results. Therefore, we will add these 
features in our modeling methodology, to give us a 
better knowledge of the measurement device. 
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Figure 1: The principle of oximeter. 

We chose the SystemC and SystemC-AMS 
modeling tools to develop our models due to three 
main advantages compared to other modeling 
tools/languages, which are summarized in Table 1: 

 Multi models of computation: SystemC/ 
SystemC-AMS offer several Models of 
Computation (MoC) with Discrete Event (DE), 
Timed Data Flow (TDF), Linear Signal Flow 
(LSF) and Electrical Linear Networks (ELN). 
Each MoC operates at different abstraction 
levels and can therefore be chosen according to 
the desired precision; 

 Fast simulation: with well-chosen abstraction 
level and simulation time step, simulation run 
time can be shortened as much as possible; 

 Open source: SystemC and SystemC-AMS are 
freely distributed C++ libraries, which means 
we have access to these tools as well as all C++ 
supported functions. If necessary, it is also 
relatively easy to integrate other software in our 
model by implementing interfaces. 

Other advantages, like high data accuracy, 
lightweight installation and simplicity of usage, are 
also reasons why we chose this tool. We used 
versions 2.3.2 of SystemC and 2.1 of SystemC-AMS. 
Both of these libraries can be freely downloaded on 
Accellera's website (Accellera, n.d.). 

SystemC/SystemC-AMS was proposed as an 
efficient tool for modeling complex systems, 
especially in the biomedical domain (Pecheux, et al., 
2010), but it doesn’t natively include Monte-Carlo 
(MC) statistical analysis method (Menčík, 2016). 
Indeed, this analysis is particularly relevant to 
observe the impact of key parameters on the system 
behavior. Therefore, a MC simulation method in 
SystemC-AMS must be developed. 

Nowadays, modeling and simulation analysis 
methods have been widely used in the field of 
biomedicine (e.g., bionic nervous systems modeling 
(Cacciapuoti, 2015)) and the research of medical 
device (Mundt, 2000). The interaction modeling 
between medical device and the human body also 
exists, such as the interaction between ears and 
cochlear implants (Tran, 2015), and the interaction 
simulation between the cardiac rhythm and 
pacemakers (Greenhut, 1993). 

In this context, the main objective of this article is 
to present our modeling and simulation approach of a 
highly multi-domain application with open-source 
tools, and to explore impacts of PVT variations in this 
biomedical device. 

The paper is organized as follows. In section 2, we 
present our model structure. Then, the simulation 
process and the model validation method are shown 
in section 3. PVT variation analysis is described in 
section 4. Finally, we conclude in the last section. 

2 MODEL STRUCTURE 

There are mainly two parts in our model: the 
monitoring system, with opto-electrical components 
and the biological environment. Figure 2 shows the 
model block diagram (with the MoC used for each 
sub-block), with the finger as the monitored 
biological medium. 

Table 1: SystemC/SystemC-AMS versus other modeling tools. 
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Figure 2: Model structure to emulate oximeter on finger in SystemC/SystemC-AMS. 

In this figure, Num_core block was modeled in 
SystemC, and a state machine was implemented to 
emulate a micro-controller. This block was also used 
to provide pulsed power supply for both LEDs by 
controlling a LED Driver, and to receive data from 
the ADC channel. 

2.1 LED 

A red LED (LHQ974) and an IR LED (SFH4080) 
manufactured by OSRAM were modeled in 
SystemC-AMS (note that any other type of light 
source can subsequently be modeled, as long as 
parameters describing it are available). Both LED 
models are similar, except for their optical and 
electronic parameters. The LED model is divided into 
five sub-blocks to simulate static and dynamic 
behaviors, in association with its optical 
characteristics. Sub-block TDF_R, simulates the 
static behavior described by Shockley equation (Sze, 
et al., 2006), mainly. Blue sub-blocks are 
implemented with the ELN MoC to simulate the 
dynamic behavior of the LED. Figure 3 (left) shows 
the physical equivalent circuit of both LHQ974 and 
SFH4080 sub-blocks. In this equivalent circuit, Cd 
and Cj represent the diffusion and the junction 
capacitance, respectively. iD0 is the equivalent current 
source, which takes the value of the output current of 
TDF_R and TDF_IR. The feedback sub-blocks are 
used to transfer two feedback parameters: the current 
iD and the voltage VD of the LED, from LHQ974 to 
TDF_R or from SFH4080 to TDF_IR. Figure 3 (right) 
represents the equivalent circuit of LHQ974o and 
SFH4080o, which are used to take into account the 
intrinsic opto-electrical effect of the device. iequ is 
equal to iD. The RC pole, represented by the 
resistance RRC and the capacitance CRC, designates the 
frequency characteristic of the LED (Bian, et al., 
2008). Then, the P_R and P_IR sub-blocks are used 

to convert the output current iR of LHQ974o and 
SFH4080o into luminous intensity in Watt. The 
actual spectral distribution of both LEDs is usually 
modeled by a Gaussian curve (Tsiakaka, et al., 2020) 
and the total radiant flux is the integral of the entire 
spectrum.  

For the oxygen rate calculation, since the molar 
extinction ε(λ) varies according to the wavelength, 
the attenuation for different wavelengths of light is 
calculated separately, when a beam of light passes 
through the biological tissue. Therefore, we should 
separate the luminous intensity of each wavelength in 
the LED model. Still, we cannot consider all 
wavelengths of the LED spectrum, since it would 
greatly increase the amount of calculation and, 
therefore, the simulation time. As a result, we 
approximated the LED spectrum by dividing it into 
five intervals around the peak wavelength. For the red 
LED (LHQ974), the peak wavelength is ideally 
660nm. Thus, we chose five wavelengths from  
 

 

Figure 3: Equivalent circuit of LED in dynamic mode. On 
the left is the physical equivalent circuit. The block on the 
right has no physical reality, but is used to consider the 
device intrinsic opto-electrical effect.  
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640nm to 680nm with an interval of 10nm. For the IR 
LED (SFH4080), with its peak at 880nm, the chosen 
range was 860nm to 900nm, with the same interval.  

2.2 Photo-detector 

A model of the BP104S photo-detector (PD), also 
manufactured by OSRAM, was developed. The PD 
operates in reverse bias. It provides a spectral 
sensitivity in accordance with the spectrum of the 
received light to convert the light intensity into 
electric power. The current generated by the PD 
mainly consists of two parts: 

 Iph: the photonic current generated by the light 
received from the external environment by the 
PD, which carries the detection information; 

 Idc: the parasitic dark current generated by the 
PD in the absence of wanted light. 

Sub-block BP104S in Fig.2 is used to describe the 
PD spectral sensitivity and the dark current. ELN_RC 
and ELN_2 are made to simulate the dynamic 
behavior, as in Fig.3. The PD output is sent to the 
ADC block, so that the pulsed current can be sampled, 
after amplification and voltage conversion, and data 
can be registered in Num_core. 

2.3 Biological Environment 

A model of a finger was constructed to simulate the 
oxygen concentration variation in the blood and its 
detection with lights through the tissue. In the blood, 
there are mainly two chromophores that impact the 
measurement of SpO2: HbO2 (oxy-hemoglobin) and 
HHb (deoxy-hemoglobin). The light attenuation by 
the biological tissue is given by the Beer-Lambert 
Law, shown in equation (1): 

dHHbHbO HHbHbOeII
 ])[][(

0
22)()(

  (1)

with I0(λ) the input light intensity at the wavelength λ, 
I(λ) the output light intensity passing through and 
attenuated by the biological tissue, εHbO2, εHHb the 
molar extinction of HbO2 and HHb, respectively, 
[HbO2] and [HHb] the concentration of HbO2 and 
HHb, and d the length of optical path. 

The change of blood volume according to time is 
simulated by the normalized equation (2), where f0 is 
the cardiac frequency in Hz. 

)22sin(
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3 SIMULATION PROCESS AND 
MODELS VALIDATION 

This section first introduces the simulation process. 
Then, in subsection 3.2, the accuracy of our models 
(at the device and at the system level) is evaluated by 
comparing our simulation with other experimental 
results in the existing literature. 

3.1 Simulation Process 

Once all models were implemented, basic transient 
simulation was performed to get two PPG signals that 
represent the red and IR responses generated by the 
PD after passing through the biological medium. 
Then, as shown in Figure 2, data was sampled every 
1ms by the ADC block. The result is presented in 
Figure 4, where inputs for each LED are light pulses 
of 150µs every 1ms. The simulation step was set to 
1µs, to be able to observe the devices transient 
behaviors. The heart rate was set to 10Hz (10 times 
higher than in reality), to reduce the simulation time. 
In this figure, the pink signal is the pulsed current 
generated by the PD. The top envelope corresponds 
to the IR LED, while the bottom envelope is due to 
the red LED. The red LED signal amplitude is lower 
because the luminous intensity of red light is 
relatively weaker, when the same voltage is applied 
to both LEDs. The crosses (in the zoomed block) are 
samples of LED signals. On a laptop with an Intel 
Core i5 9th Gen processor (2.4GHz, 8 CPUs) and 
8192M of RAM, it takes 29s to simulate a 0.1s 
duration.  

 

Figure 4: Red signal (bottom), IR signal (top) generated by 
photo-detector and the samples of the signals (crosses on 
the top and on the bottom). 

Then, after detecting the peak and valley of the 
red/IR signals by signal processing (filtering and 
extremum detection, mainly), we can calculate the 
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ROS (Ratio-of-ratio) value with the following 
equation (Webster, 1997): 
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Here, RL, RH are the valley and peak value of the red 
signal, respectively, and IRL, IRH correspond to the 
valley and peak value of the IR signal. 

SpO2 value was set before simulation run-time, by 
setting [HbO2] and [HHb] in the biological 
environment, according to equation (4) (Webster, 
1997). We set [HbO2] + [HHb] = 0.3mM, which is an 
approximate value for the human body (Dash, et al., 
2010). In any case, in the simulation, the value of 
SpO2 can be easily and dynamically changed by 
modifying the ratio of [HbO2] and [HHb]. 
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With a single period of both PPG (red and IR 
responses), only one ROS value can be obtained for 
one specific SpO2 value. However, to obtain a 
quadratic SpO2-ROS curve (Maxim, 2019), we need to 
vary this SpO2 value. In our simulation, we varied this 
parameter from 90% to 100% (a below 90% SpO2 
value means the person is in a danger state). Figure 5 
shows several simulation periods. Red lines 
correspond to PPG due to the red source for three 
different SpO2 settings (90%, 95%, and 100%). For 
IR responses (blue curves), a shift of the peak 
wavelength has also been taken into account, to 
illustrate PVT variation, albeit in a basic manner. We 
chose four values above and four values below the 
880nm nominal value, each with a 5nm step 
increment, to constitute nine peak wavelength values 
in the [860nm; 900nm] interval. Combined with the 
 

 
Figure 5: PPG obtained with red and IR sources for three 
SpO2 value. IR LED curves (in blue) also feature variation 
of the peak wavelength. 

three different SpO2 parameter values, we were able 
to simulate twenty-seven configurations. Section 4 
will present a more thorough approach to evaluate the 
influence of PVT variations.  

3.2 Models Validation 

There are two steps to validate our models. First, we 
individually validate each component (i.e., both 
LEDs and PD) by comparing the simulation output 
data with key-parameters in the datasheets. These 
results are summarized in Table 2 (obtained by time 
domain simulation). Only the optical parameters 
weren’t modeled very well, but with acceptable errors 
according to datasheets. We assume that it was due to 
approximations made to model certain 
characterizations and also to the fact that we had the 
influence of the other parameters. In any case, we can 
calibrate this error rate by ourselves in the modeling, to be 
closer to the datasheet value.  

Table 2: Models key-parameters compared to datasheets. 

 

The second step is to validate the whole system by 
comparing our simulation data with previous results 
(Tsiakaka, et al., 2020), where authors used six 
different pairs of red/IR LED to plot six SpO2-ROS 
curves. We were able to measure these LEDs optical 
and electrical characteristics, in order to simulate 
these devices with our developed model. For the PD, 
a model of the BP104S was used. As for the 
biological medium, we applied the same finger model. 
Results are presented in Figure 6.a. It shows the “110-
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25ROS” curve, as it is a widely used reference to 
basically estimate SpO2. We then compared our 
simulations to Figure 9.b in (Tsiakaka, et al., 2020), 
with the only difference being the used PD (BP104S 
for us and FDS100 for the previous work). Figure 6.b 
shows the SpO2 deviation curves between our models 
and the previous results, for all six red/IR LED pairs. 
We can notice that the absolute value of ΔSpO2 is 
always less than 1%. Then, we also calculated the 
SpO2 Root-Mean-Square Deviation (RMSD) for each 
pair of SpO2-ROS curves in both works. It ranges from 
0.22% to 0.77%, which proves that our simulation 
results correlate well with the previous results. In this 
way, our whole system model is validated.  

 

Figure 6: a) Simulation result with our models for the six 
different red/IR LED pairs; b) SpO2 deviation curves 
between our works and (Tsiakaka, et al., 2020). 

4 PVT VARIATION ANALYSIS 

The dispersion of the IR LED peak wavelength, as 
simulated in Figure 5, relies on a deterministic 
approach. For a more in-depth analysis of the impact 
of PVT variations, it is necessary to introduce a 
randomness factor. As a result, we performed a MC 
analysis on our system, based on the variation of 
selected parameters. As their impact on SpO2 
quantification can be rather unpredictable, a Corner 
simulation will not necessarily give us enough 
information. Therefore, MC analysis will allow us to 
get a more complete view of the system behavior. 

 

4.1 MC Simulation in SystemC-AMS 

In this analysis, we varied selected parameters in a 
reasonable range, with a chosen Probability Density 
Function (PDF) of amplitude centered in a specific 
value. Since this feature isn’t natively included in 
SystemC-AMS, we had to develop our own code. 
Firstly, we wrote a function to generate a set of 
numbers varying within a certain range in a specific 
distribution around 1. In this article, we used a 
Gaussian distribution. However, other PDF are 
possible (e.g., uniform). Then, these numbers were 
multiplied by the nominal value of the parameter to 
be varied. It constituted a set of input values. Then, 
we assigned these input values to a SystemC signal 
and connected it to the systemC-AMS input port of 
the target parameter. A loop was then implemented in 
the top file, where we assigned the random input 
values to the SystemC signal, one by one, to do 
repeated simulations. Finally, we generated a .dat file 
to save the output data.  

4.2 Introduction of Different PVT 
Parameters in the System 

PVT considers the variation of selected parameters in 
an electronic system: Process (P) dispersion due to 
manufacturing, mainly, supply Voltage (V) of the 
various system components, and the operating 
Temperature (T) of the device. The parameters we 
took into account are presented in Table 3, with their 
typical values and variation ranges. 

T-variation in the device is mainly due to self-
heating during operation and also to the light sources 
during emission. Note that a variation of more than 
4K is generally unacceptable in a medical device. 

A device power supply voltage is often affected 
by many factors causing instability and fluctuations 
(IR-drop due to current draw, crosstalk because of 
electromagnetic interference, etc.). Moreover, in an 
embedded system with battery, the voltage supply 
decreases with the battery usage. Such instability may 
impact the accuracy of our SpO2 measure. In this 
study, we focused on the power supply of both LEDs 
and of the PD, knowing that the VREF for the ADC 
doesn’t result in any error at all. 

Table 3: PVT parameters to be varied and analyzed in the system. 
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P-variation is the deviation of component 
attributes during fabrication. For both LEDs, n is the 
ideality factor, a key parameter describing the diode 
junction and a solar cell’s electrical behavior (Hadj, 
et al., 2018). n can slightly vary during fabrication. As 
shown in equation (5), it has an influence on the 
forward current I, which is directly proportional to the 
optical power of the light source. VF, the threshold 
voltage of the LED is also affected by manufacturing 
dispersion. Both parameters can be concatenated in a 
same Gaussian PDF. 

)1( 
 T

F

Vn

V

S eII  (5)

In equation (5), IS is the saturation current, and VT 

the thermal voltage. We found in the datasheets that 
the maximal VF for the red and IR LED is 2.5V and 
1.8V, respectively. From simulations, we estimated 
the maximal value of n for both LEDs. It is 2.55 and 
1.64, respectively, and can’t be less than 1 (Sze, et al., 
2006). So, we varied n from 1 to 2.55 for the red LED 
and from 1 to 1.64 for the IR LED. 

Deviation of the LED peak wavelength is another 
relevant parameter. Even for the same type of LED, 
the peak wavelength of the optical spectrum is subject 
to deviation due to the fabrication process. We found 
a typical range of ±20nm for the peak wavelength of 
both LEDs in their datasheets. 

The FWHM (Full Width at Half Maximum) 
parameter of the optical spectrum can also be 
impacted by process dispersion. Based on 
experimental results found in (Filippo, et al., 2017), 
we chose a range of ±10% of the typical value. 

Finally, the PD spectral sensitivity is also affected 
by an offset due to process variation. Thus, we studied 
the impact of this factor by shifting the PD optical 
response spectrum vertically and laterally. 

4.3 Simulation Results 

To get an idea of the influence of each of the 
parameters presented above, we first performed the 
MC simulation (consisting of 200 runs), varying only 
one single parameter. We were then able to calculate 
for this parameter the maximal SpO2 RMSD for its 
two extreme values. These results are presented in the 
last line of Table 3. We found that the main factors 
that impact the SpO2 quantification come from the 
deviation of both LED peak wavelengths (RMSD is 
11.31% for the red LED and 1.79% for the IR LED) 
and from temperature (RMSD is 3.19%). The gap 
between both LED RMSD values can be explained by 
the fact that around the red-light band (660nm), the 

slope of molar extinction curves of HbO2 and HHb is 
greater than around the IR light band (880nm). The 
impact of other parameters is negligible. 

After that, we investigated the combined 
influence of several parameters dispersion on the 
quantification of SpO2. Figure 7 presents the result of 
the MC simulation correlated with the transient 
analysis. We varied three key parameters (both LED 
peak wavelengths and T). We performed 400 runs 
(i.e., different configurations) to obtain 400 SpO2-ROS 
curves, as in Figure 7.a. To get these results, the 
simulation time was around 11h. Figure 7.b shows the 
distribution of SpO2 when ROS is equal to 0.4. The 
RMSD of SpO2 for the two extreme cases is 9.32% in 
the critical 90–100% saturation window, which is 
close to the dispersion value associated to the red 
LED peak wavelength variation. Consequently, it 
could be said that the red LED peak wavelength 
variation has the greatest impact. 

We can conclude from the above results that in the 
oximeter manufacturing process, it is necessary to 
tightly control the peak wavelength deviation of the 
light source, to avoid an otherwise necessary 
calibration. At the same time, the device operating 
temperature influence on the SpO2 measurement 
accuracy cannot be ignored. For other parameters of 
our discussion, there is no strict requirement.  

 
Figure 7: Simulation result of the variation of three key 
factors at the same time. 

5 CONCLUSIONS 

In this paper, the process to quantify SpO2 on the 
finger with an oximeter is simulated with an opto-
electronic model built in SystemC/SystemC-AMS. 
Then, the impact of PVT variations in the device on 
the SpO2 quantification is explored, through a MC 
method combined with transient simulation, 
performed on the developed models. We found that 
the main influence parameters of PVT variations on 
the quantification of SpO2 were the red/IR LED peak 

90 91 92 93 94 95 96 97 98 99 100

SpO
2

(%)

0.2

0.4

0.6

0.8

R
O

S

a)

b)

93 94 95 96 97 98 99

SpO
2

(%)

0

10

20

30

40

n
u

m
b

er

110-25R
OS

Multi-domain Modeling and Simulation of an Oximeter: PVT Variations Impact of Opto-electronic Devices on the SpO2 Quantification

309



wavelength deviation and temperature. Other factors 
seem to have a negligible impact individually. 

This modeling method in SystemC/SystemC-
AMS, which associates the monitoring system, 
including its opto-electronic components, and the 
biological environment, is proved fast, accurate and 
flexible. This methodology can be employed for any 
cyber-physical system to estimate its performances, 
to optimize the design phase, and to help the 
understanding of measurement data (e.g., reproduce 
results close to the experimental measurements in the 
simulation and vary certain parameters to understand 
their impacts). 
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