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Abstract: Considerable progress in deep learning has also lead to an increasing interest in using deep neural networks
(DNN) for state feedback in closed-loop control systems. In contrast to other purposes of DNN, it is in-
sufficient to consider them only as black box models in control, in particular, when used for safety-critical
applications. This paper provides an approach allowing to use the well-established indirect method of Lya-
punov for time-invariant continuous time nonlinear systems with neural networks as state feedback controllers
in the loop. A key element hereto is the derivation of a closed-form expression for the partial derivative of
the neural network controller with respect to its input. By using activation functions of the type of sigmoid
functions in the output layer, the consideration of box-constrained inputs is further ensured. The proposed
approach does not only allow to verify the asymptotic stability, but also to find Lyapunov functions which can
be used to search for positively invariant sets and estimates for the region of attraction.

1 INTRODUCTION

Synthesizing feedback controllers for solving regula-
tion problems for general nonlinear dynamics ẋ(t) =
f (x(t),u(t)) is still challenging, in particular if input
and state constraints have to be taken into considera-
tion. In principle, dynamic programming (DP) (Bell-
man, 1957) formulates the solution to the named
problem, but the computational complexity prevents
its application for many real-world systems. In ad-
dition, the controller is obtained typically as look-up
table rather than as functional representation, which
may be undesirable for implementation and analysis.

With the recent renewed impetus on intelligent
control, the “data-based learning” of such feedback
controllers gets again into focus: The aim there is to
establish the state feedback controller as a parametric
structure, and to learn the parameters from data pairs
of states and appropriate inputs. The state-input pairs
may originate from DP or other off-line solutions of
optimization problems for selected initial states, see
e.g. (Markolf et al., 2020). For the case that complex-
ity prevents the application of DP for data generation,
“approximate dynamic programming” (ADP) (Lewis
and Liu, 2013), also known as “adaptive dynamic
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programming” (Liu et al., 2017) and “neuro-dynamic
programming” (Bertsekas and Tsitsiklis, 1996), or
“reinforcement learning” (RL) methods provide ap-
proximate DP solutions (Sutton and Barto, 2018).
Feed-forward (deep) neural networks are widely used
as parametric structure for nonlinear function approx-
imation, motivated by universal approximation theo-
rems (Cybenko, 1989), (Hornik et al., 1989) and re-
cent success relying on “deep learning” (Goodfellow
et al., 2016). However, neural networks are generally
hard to analyze due to their nonlinear and large-scale
nature, which explains why they are mostly used as
black-box models without formal guarantees (Fazlyab
et al., 2020). The applicability of neural networks for
control, however, depends critically on the ability to
provide guarantees, especially in safety-critical appli-
cations. In order to meet this requirement, it is insuf-
ficient to treat a neural network controller as a black-
box.

1.1 Problem Statement

This paper considers time-invariant continuous-time
nonlinear dynamic systems of the form:

ẋ(t) = f (x(t),u(t)), (1)

with time t ∈ R≥0, state vector x(t) ∈ Rn, and input
vector u(t) ∈ Rm.
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Assumption 1. For the function vector f , let the fol-
lowing assumptions hold:

• f (x,u) is continuous on the domain Rn×Rm;
• [∂ f/∂x](x,u) as well as [∂ f/∂u](x,u) exist and are

both continuous on Rn×Rm;
• and f (0,0) = 0.

It is furthermore supposed that the states and in-
puts are constrained:

x(t) ∈ X ⊂ Rn, u(t) ∈U ⊂ Rm, (2)

to account for, e.g., safety restrictions and actuation
limits. For the constraints, let the following assump-
tion hold:

Assumption 2. The sets X and U are compact (i.e.
closed and bounded), nonempty and contain the ori-
gin in their interior. Further, it is assumed that the set
U is of the form U = {u |u ∈ Rm

<0,u ∈ Rm
>0 : u≤ u≤

u} ⊂ Rm, i.e. U encodes box constraints on the input
vector.

For a given state feedback controller φ : Rn→Rm,
the closed-loop system is denoted by:

ẋ(t) = f (x,φ(x)) =: fcl (x) . (3)

The problem addressed in this paper is to design
a state feedback controller φ(x) to keep the system
close to the origin, where φ(x) is established as feed-
forward neural network, named here NN controller
for simplicity. The important aspect focused on in
this paper is to ensure safety properties of the control
loop, i.e. the design task includes:

• the step of determining the NN controller to map
any admissible state into an admissible input:
φNN : X →U;

• the step of analyzing stability a-posteriori, i.e. to
check whether any state x(t) reached along the so-
lution of the initial-value problem:

ẋ(t) = fcl (x(t)) , x(0) = x0 (4)

satisfies x(t) ∈ X for any t ≥ 0.

The second step includes to verify the existence and
uniqueness of the solution of the initial-value prob-
lem. The generation of training data or the training
procedure itself are, however, not in the focus of this
work.

1.2 Overview of the Approach

The main contribution of this work is to show how
Lyapunov’s indirect method can be tailored to the NN
controller in order to show that (3) is asymptotically
stable with respect to x = 0 . Whenever the method

succeeds, the true region of attraction of the origin
can be estimated as detailed in the next section. This
is not only beneficial for the verification of safety, but
also in view of the objective to keep the state close to
the origin.

To enable the application of Lyapunov’s indirect
method for closed-loop systems with NN controller,
two fundamental steps are 1.) the derivation of the
partial derivative of the NN controller with respect to
its input in closed-form, and 2.) the manipulation of
the bias vector in the output layer of the NN controller
for ensuring that the origin is indeed an equilibrium
point of the closed-loop system.

Continuous and continuously differentiable acti-
vation functions are considered in the units of the
NN controller in order to allow the computation of
the partial derivative in each state. Sigmoid functions
with a characteristic “S”-shaped form are often used
as activation functions to meet these properties. Their
use in the units of the output layer makes it more-
over straightforward to satisfy input constraints. The
NN controller proposed in this work satisfies the input
constraints even if the same type of sigmoid function
is used in each unit of the output layer, making the
implementation easier. On the basis of the proposed
NN controller and its partial derivative with respect
to its input, it will be shown that the closed-loop sys-
tem is locally Lipschitz on the set of admissible states,
which is beneficial for the verification of the existence
and uniqueness of the solution.

For the case that the origin is asymptotically sta-
ble, Lyapunov’s indirect method provides information
for the construction of a Lyapunov function. In the
numerical examples, interval arithmetics will be used
to address the problem of determining the states for
which the derivative of the Lyapunov function along
the trajectories of the controlled system is negative.
While this procedure may fail in a small neighbor-
hood of the origin, the task of keeping the state close
to the origin can still be solved, since a theorem sim-
ilar to LaSalle’s theorem can be used to ensure that
a (desirably small) positively invariant set containing
the origin is reached in finite time.

1.3 Related Work

First of all, the use of the properties of activation func-
tions to ensure the satisfaction of input constraints
is no novelty per se. In (Fazlyab et al., 2020), for
example, rectified linear units are used for this pur-
pose, which however may not be continuously differ-
entiable. To the knowledge of the authors, work de-
scribing the constraint handling of NN controllers for
general sigmoid functions in the output layer does not
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exist so far, such that this step will be described in
detail for the sake of completeness.

Pushed by the discovery that neural networks
are vulnerable to adversarial attacks (Kurakin et al.,
2016), the analysis of the output range of neural net-
works has been addressed recently, see e.g. (Dutta
et al., 2018), (Fazlyab et al., 2019). Techniques
originating from the analysis of the output range
have found their way into the verification of closed-
loop systems with NN controllers and are used for
reachability analysis to verify safety by the over-
approximation of reachable sets (Dutta et al., 2019),
(Huang et al., 2019), (Ivanov et al., 2019), (Hu et al.,
2020).

Lyapunov’s stability theory is another established
tool for safety verification. In (Perkins and Barto,
2002), for example, safety and reliability of reinforce-
ment learning agents have been considered by switch-
ing among controllers constructed on the basis of Lya-
punov design principles. The approach of learning
Lyapunov functions has been investigated in several
works, where the use of neural networks as Lyapunov
functions can be found e.g. in (Petridis and Petridis,
2006), (Richards et al., 2018), (Chang et al., 2020),
(Grüne, 2020). In (Chang et al., 2020), it is proposed
to learn control functions and neural Lyapunov func-
tions together. The focus there is on neural Lyapunov
functions, and general parametric control functions
are considered. In contrast, the present paper con-
siders the explicit synthesis of NN controllers includ-
ing safety analysis and the consideration of input con-
straints.

The paper is organized such that Sec. 2 recalls
well-established results and concepts that are signif-
icant for the proposed approach. Section 3 intro-
duces the general architecture of feed-forward neu-
ral networks and gives an overview about their train-
ing. Moreover, a closed-form expression for the par-
tial derivative of such networks with respect to their
inputs is provided. The main results are provided in
Sec. 4, followed by application examples in Sec. 5 as
well as conclusions in Sec. 6.

2 PRELIMINARIES

This section briefly recalls well-established results
and concepts that are significant for this work, see
e.g. (Khalil, 2002), (Khalil, 2015) for more details.
The following facts will be used for verifying the ex-
istence and uniqueness of the solution for initial value
problems.

Lemma 1 ((Khalil, 2002)). Let fcl (x) and
[∂ fcl/∂x](x) be continuous on an open and con-

nected domain D ⊂ Rn, then fcl is locally Lipschitz
for any x ∈ D.

Lemma 2 ((Khalil, 2002)). Let fcl (x) be locally Lip-
schitz in x ∈ D ⊂ Rn. Furthermore, let W be a com-
pact subset of D, x0 ∈W , and suppose it is known
that every solution of the initial-value problem (4) lies
entirely in W . Then, a unique solution exists for the
problem and is defined for all t ≥ 0.

Suppose that fcl (x) in (3) is locally Lipschitz in
x ∈ D ⊂ Rn, and that fcl (0) = 0. Then, x = 0 is an
equilibrium point of the closed-loop system, which is
called stable if for each ε > 0 there is a δ (dependent
on ε) such that

‖x(0)‖< δ⇒‖x(t)‖< ε, for all t ≥ 0. (5)

If the origin is stable and δ can be chosen such that

‖x(0)‖< δ⇒ lim
t→∞
‖x(t)‖= 0, (6)

then the origin is called asymptotically stable. Lya-
punov’s indirect method is used to verify asymptotic
stability of the origin:

Lemma 3 ((Khalil, 2002)). Let x = 0 be an equilib-
rium point of (3) and suppose that fcl (x) is continu-
ously differentiable in x = 0. Let λ1 to λn denote the
eigenvalues of:

Acl :=
∂ fcl (x)

∂x

∣∣∣∣∣
x=0

= fx(x)+ fu(x)
∂φ(x)

∂x

∣∣∣∣∣
x=0

, (7)

where:

fx(x) :=
∂ f (x,u)

∂x

∣∣∣∣∣
u=φ(x)

, fu(x) :=
∂ f (x,u)

∂u

∣∣∣∣∣
u=φ(x)

.

(8)

Then,

1. the closed-loop system is exponentially stable
(and by that also asymptotically stable) with re-
spect to the origin if and only if Re[λi]< 0 for all
eigenvalues, i ∈ {1, . . . ,n};

2. the closed-loop system is unstable in the origin, if
Re[λi]> 0 for one or more of the eigenvalues.

A continuously differentiable function defined
over a domain N ⊂ Rn is called Lyapunov function
if it satisfies:

V (0) = 0 and V (x)> 0 for all x ∈N with x 6= 0,

(9)

V̇ (x) =
∂V (x)

∂x
fcl (x)≤ 0 for all x ∈N . (10)

For the case that Acl is Hurwitz (Re[λi]< 0 for all i), a
quadratic Lyapunov function can be found by solving
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the Lyapunov equation for a positive definite matrix
Q :

0 = PAcl +AT
clP+Q , (11)

V (x) = xT Px. (12)

If Ωc = {x∈Rn |V (x)≤ c} is a subset of N for a pos-
itive constant c and if V̇ (x)< 0 for all x ∈Ωc, then Ωc
is positively invariant (i.e., x(0)∈Ωc⇒ x(t)∈Ωc for
all t ≥ 0) and determines an inner approximation of
the true region of attraction (i.e., the set of all points
x(0)∈D for which the solution x(t) exists for all t ≥ 0
and converges to the origin as t → ∞). In fact, each
positively invariant set I ⊂ N , for which V̇ (x) < 0
for all x ∈ I , is an inner approximation estimate of
the true region of attraction. Let:

I = {x ∈ Rn |gi(x)≤ 0, i ∈ {0,1, . . . ,r}} (13)

be a convex set, then positive invariance can be veri-
fied by:

fcl (x) ∈ TI (x), for all x ∈ ∂I , (14)

where ∂I is the boundary of I , and TI (x) the tangent
cone given by:

TI (x) = {z ∈ Rn |∇gi(x)T z≤ 0, for all i ∈ Act(x)},
(15)

with

Act(x) = {i |gi(x) = 0}. (16)

(See (Blanchini and Miani, 2008) for more details.)

3 NEURAL NETWORKS

3.1 Architecture

While feed-forward neural networks are used in var-
ious types, this work focuses on networks with over-
all mapping defined by a chain structure of the
form (Goodfellow et al., 2016):

h(x) :=
(

h(L) ◦ · · · ◦h(2) ◦h(1)
)
(x), (17)

with layers h(`), ` ∈ {1, . . . ,L}. The final layer h(L) is
usually denoted as output layer, while the others are
referred to as hidden layers. Let η(`) denote the output
of layer `, and η(0) the input of the overall network:

η
(0)(x) = x, (18)

η
(`)(x) =

(
h(`) ◦ · · · ◦h(1)

)
(x). (19)

The layers are functions of the form

h(`)
(

η
(`−1)

)
:=
(

g(`) ◦µ(`)
)(

η
(`−1)

)
, (20)

where the µ(`) and g(`) constitute affine and nonlinear
transformations, respectively. Note that the hidden
layers are typically vector-to-vector functions. The
affine transformation µ(`) is defined to:

µ(`)
(

η
(`−1)

)
:=W (`)

η
(`−1)+b(`), (21)

and is affected by the choice of the weight matrix W (`)

and the bias vector b(`). Each layer can be understood
to consist of parallel acting units, where each unit de-
fines a vector-to-scalar function: Let S(`) be an integer
describing the number of units in layer `. The vector-
to-scalar function of unit i in layer ` is then the i-th
component of h(`):

h(`)i (η(`−1)) = g(`)i

(
µ(`)i

)
, (22)

where:

µ(`)i =

(
S(`−1)

∑
j=1

W (`)
i, j η

(`−1)
j

)
+b(`)i . (23)

The function g(`)i is typically denoted as activation
function. Rectified linear units or sigmoid functions
are often chosen as activation functions in the units of
the hidden layers. On the other hand, it is common to
use the identity function as activation function in the
output layer.

This work focuses on activation functions which
are continuous and continuously differentiable every-
where, such as activation functions of the form:

g(`)i

(
µ(`)i

)
= σ

(
µ(`)i ,α

(`)
i ,β

(`)
i

)
, (24)

with α
(`)
i ∈ (0,∞), β

(`)
i ∈ (−∞,∞), and:

σ(µ,α,β) =
α

1+ e−αµ −β. (25)

Such functions belong to the family of sigmoid func-
tions with a characteristic “S”-shaped form bounded
by:

inf
µ∈R

σ(µ,α,β) = lim
µ→−∞

σ(µ,α,β) =−β, (26)

sup
µ∈R

σ(µ,α,β) = lim
µ→∞

σ(µ,α,β) =−β+α. (27)

Common choices are the logistic function
Γ(µ) = σ(µ,1,0), or the hyperbolic tangent function
tanh(µ) = σ(µ,2,1). The use of sigmoid functions
in the output layer is motivated by the fact that
input constraints as considered here can be encoded
straightforwardly if the feedback controller is es-
tablished as neural network of the form (17) with
g(L)i (µ) = σ(µ,ui − ui,−ui). In Thm. 1 (Sec. 4),
however, a more general approach will be estab-
lished, allowing to use the same sigmoid function as
activation function in each unit.
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3.2 Derivative

The use of continuously differentiable activation
functions enables one to compute [∂g(`)/∂µ(`)](µ(`)).
According to (22), [∂g(`)/∂µ(`)](µ(`)) is a diagonal
matrix:

∂g(`)
(

µ(`)
)

∂µ(`)
= diag

[
∂g(`)i

(
µ(`)i

)
∂µ(`)i

]S(`)

i=1
, (28)

since [∂g(`)i /∂µ(`)j ](µ(`)i ) = 0 for i 6= j. For sigmoid
functions, it follows from (25) that:

∂σ(µ,α,β)
∂µ

= (σ(µ,α,β)+β)(α− (σ(µ,α,β)+β)) .

(29)

If g(`)i (µ(`)i ) = tanh(µ(`)i ) = σ(µ(`)i ,2,1), for instance,
then [∂g(`)i /∂µ(`)i ](µ(`)i ) = 1− tanh2(µ(`)i ). Of course,
if the identity function is used as activation func-
tion, i.e. g(`)i (µ(`)i ) = µ(`)i , then [∂g(`)i /∂µ(`)i ](µ(`)i ) = 1
holds.

By use of (21), one obtains:

∂µ(`)
(

η(`−1)
)

∂η(`−1) =W (`), (30)

such that the partial derivative of the mapping h(`) of
layer ` with respect to its input vector η(`−1) follows
in closed-form by applying the chain rule:

∂h(`)
(

η(`−1)
)

∂η(`−1) =

∂g(`)
(

µ(`)
(

η(`−1)
))

∂µ(`)
∂µ(`)

(
η(`−1)

)
∂η(`−1) .

(31)

Finally, the chain rule can be used again to derive
a closed-form expression of the overall mapping h of
the neural network with respect to its input vector:

∂h(x)
∂x

=
L−1

∏
i=0

∂h(L−i)(η(L−(i+1))(x))
∂η(L−(i+1)) . (32)

3.3 Training

The neural network (17) is a parametric architecture
h(x;r) with parameter vector r, which contains the
components of the weight matrices and the bias vec-
tors:

r =
[
W (1)

1,1 . . . W (L)
S(L),S(L−1) b(1)1 . . . b(L)

S(L)

]T
.

(33)

Hence, the shape of the overall mapping h of the neu-
ral network can be affected by the choice of the pa-
rameter vector r.

In this work, the neural networks are used for re-
gression tasks, i.e. the function h is used to predict y
given some input x. Suppose that a data set (xs,ys),
s ∈ {1, . . . ,q} is available, where each ys is a regres-
sion target providing an approximated value y for the
corresponding example input xs. The training proce-
dure aims at adapting the parameter vector in order to
improve the approximation performance by learning
from the data set. Here, the mean squared error is con-
sidered as performance measure. The challenge is to
perform well also for new, previously unseen inputs
x. Hence, the training procedure is not only a pure
optimization task searching for a parameter vector by
minimizing the mean squared error for the known data
set. It involves also the determination of a function
which interpolates (or even extrapolates) to new data.
A detailed discussion is out of the scope of this paper,
but can be found in (Goodfellow et al., 2016).

4 MAIN RESULTS

4.1 Neural Network Controller

The following definition introduces the type of con-
troller considered in this work and establishes it as
neural network.

Definition 1. Given vectors u,u of lower and upper
bounds of the m-dimensional input vector u accord-
ing to Asm. 2, the NN controller is a state feedback
controller:

φNN (x;r) = diag
[ ui−ui

α
(L)
i

]m

i=1

(
h(x;r)+β

(L)
)
+u,

(34)

with a feed-forward neural network h as defined by
(17) with L layers and the parameter vector r as in
(33) obtained from training. The activation functions
in the layers of the neural network are assumed to be
continuous and continuously differentiable. The acti-
vation functions in the output layer L are chosen as
sigmoid functions according to (25) with α

(`)
i ∈ (0,∞)

and β
(`)
i ∈ (−∞,∞).

Training of the NN controller with a data set
(xs,us), s ∈ {1, . . . ,q} is here understood as adapting
the parameters of h in (17) with the transformed data
set (xs,ηs), s ∈ {1, . . . ,q}, where:

η
s (us) = diag

[
α
(L)
i

ui−ui

]m

i=1
(us−u)−β

(L). (35)
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The following theorem shows that the NN con-
troller meets the input constraints defined in Def. 1.
Theorem 1. The NN controller φNN (x) according to
Def. 1 maps each state x ∈ X into the input set U,
independently of the choice of the parameter vector r
of the neural network h.

Proof. The i-th output of the overall neural network
h is equal to the i-th output of the final layer h(L),
which in turn is the output of the activation function
g(L)i in unit i of the output layer L, see (17) and (22).
Since this activation function is required to be of the
form (25), the properties (26) - (27) hold. Hence:

inf
x∈Rn

hi(x;r)≥ inf
µ∈R

g(L)i (µ) =−β
(L)
i , (36)

sup
x∈Rn

hi(x;r)≤ sup
µ∈R

g(L)i (µ) =−β
(L)
i +α

(L)
i . (37)

Due to the linear dependency of :

φNN,i(x) =
ui−ui

α
(L)
i

hi(x;r)+
β
(L)
i

α
(L)
i

(ui−ui)+ui (38)

on hi(x;r), and since the term (ui−ui)/α
(L)
i is greater

than zero according to the definitions of its parame-
ters, it follows that:

inf
x∈Rn

φNN,i(x) =
ui−ui

α
(L)
i

inf
x∈Rn

hi(x;r)+
β
(L)
i

α
(L)
i

(ui−ui)+ui

≥ ui−ui

α
(L)
i

inf
µ∈R

g(L)i (µ)+
β
(L)
i

α
(L)
i

(ui−ui)+ui

= ui,
(39)

and:

sup
x∈Rn

φNN,i(x) =
ui−ui

α
(L)
i

sup
x∈Rn

hi(x;r)+
β
(L)
i

α
(L)
i

(ui−ui)+ui

≤ ui−ui

α
(L)
i

sup
µ∈R

g(L)
i (µ)+

β
(L)
i

α
(L)
i

(ui−ui)+ui

= ui.
(40)

Obviously, there is no x∈X ⊂Rn for which φNN(x)>
ui or φNN(x) < ui. This result is obviously indepen-
dent of the choice of the parameter vector r of the
neural network.

On the basis of (32), the properties of the NN con-
troller allow to derive a closed-form expression for
the partial derivative of the NN controller φNN with
respect to its input x:

∂φNN (x)
∂x

= diag
[ ui−ui

α
(L)
i

]m

i=1

∂h(x)
∂x

. (41)

4.2 Existence and Uniqueness

In Sec. 2, it has been shown that the Lipschitz continu-
ity of the closed-loop system is beneficial not only for
verifying the existence and uniqueness of the solution
of the initial-value problem, but also for the verifica-
tion of stability aspects.

Lemma 4. For the NN controller u = φNN (x) of type
(34) with the properties defined in Def. 1, let the
Asm. 1 and Asm. 2 hold for the closed-loop system
ẋ(t) = f (x,φNN (x)) =: fcl,NN(x) formulated for (1).
Then, the closed-loop dynamics fcl,NN is locally Lips-
chitz in any x ∈ X .

Proof. According to Lemma 1, the function fcl,NN(x)
is locally Lipschitz in any x ∈ X , if fcl,NN(x) and the
partial derivatives [∂ fcl,NN,i/∂x j](x) for any pair i, j ∈
{1, . . . ,n} are continuous on X .

(a): According to Asm. 1, f (x,u) is continuous on
the domain X ×U. Hence, fcl,NN(x) = f (x,φNN (x))
is continuous on X , if φNN (x) is continuous on X ,
where the latter follows from the choice of continuous
activation functions according to Def. 1.

(b): The partial derivative of fcl,NN with respect to
x is:

∂ fcl,NN(x)
∂x

= fx(x)+ fu(x)
∂φNN (x)

∂x
, (42)

with [∂φNN/∂x](x) denoting the partial derivative of
the NN controller with respect to the states as defined
in (41), while fx(x) and fu(x) are the functions de-
fined in (8). According to Asm. 2, [∂ f/∂x](x,u) as
well as [∂ f/∂u](x,u) exist and are both continuous on
X ×U. Hence, the derivatives [∂ fcl,NN,i/∂x j](x) are
continuous on X if φNN (x) and [∂φNN/∂x](x) are con-
tinuous on X . It remains to check that [∂φNN/∂x](x) is
continuous – this holds, since continuously differen-
tiable activation functions are to be chosen according
to Def. 1.

The following theorem states the existence and
uniqueness of a solution for the initial-value problem
formulated for the closed-loop system:

Theorem 2. Consider the NN controller φNN of
type (1) with the properties specified in Def. 1, and
let Asm. 1 and Asm. 2 hold for the closed-loop system
ẋ(t) = fcl,NN (x) := f (x,φNN (x)) formulated for (1).
Let I ⊆ X be a compact and positively invariant set.
Then, a unique solution of ẋ(t) = fcl,NN (x) exists for
any x(0) ∈ I , and this solution stays in I for all t ≥ 0.

Proof. Due to the assumption that I is positively in-
variant, each solution x(t) of the closed-loop system
with x(0) ∈ I lies entirely in I for all t ≥ 0. Since the
closed-loop system is locally Lipschitz in any x ∈ X
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(Lemma 4) and because I ⊆ X is a compact subset of
X , Lemma 2 implies that the solution is unique.

4.3 Stability Analysis

The following fact provides insight into how to select
b(L) in order to obtain the origin as an equilibrium
point of the closed-loop system.

Lemma 5. Given the system (1), let Asm. 3 hold, and
let φNN (x) again be an NN controller (34) with the
properties as in Def. 1, thus forming the closed-loop
system ẋ(t) = fcl,NN (x). If each element of the bias
vector b(L) satisfies:

b(L)i =−

((
S(L−1)

∑
j=1

W (L)
i, j η

(L−1)
j (0)

)

+
1

α
(L)
i

ln
(
−ui

ui

))
,

(43)

then x = 0 is an equilibrium point of the closed-loop
system, i.e. fcl,NN (0) = 0.

Proof. According to Asm. 3, f (0,0) = 0 and hence
x = 0 is an equilibrium point of the closed-loop sys-
tem if φNN,i (0) = 0 for any i ∈ {1, . . . ,m}. Con-
sidering the NN controller (34), the requirement
φNN,i (0)

!
= 0 is obviously equivalent to:

hi(0)
!
=

α
(L)
i ui

ui−ui
−β

(L)
i . (44)

It is shown next that this requirement is fulfilled, if
any element of b(L) satisfies (43): recall that the i-
th output of the neural network h is equal to the i-th
output of the final layer h(L), being equal to the output
of the activation function g(L)i in unit i of the output
layer L, see (17) and (22). Due to Def. 1, g(L)i is a
sigmoid function (25), implying that:

hi(0) = σ

(
µ(L)i

(
η
(L−1)(0)

)
,α

(L)
i ,β

(L)
i

)
. (45)

If an element of the bias vector satisfies (43), then it
follows from (23) that:

µ(L)i

(
η
(L−1)(0)

)
=− 1

α
(L)
i

ln
(
−ui

ui

)
. (46)

Recall that ui < 0 and ui > 0 per definition, as well as
α
(L)
i ∈ (0,∞). By inserting (46) into (45), it follows

that (44) is fulfilled.

So far, it has been shown that fcl,NN (x) is lo-
cally Lipschitz on X , that a closed-form expres-
sion for [∂φNN/∂x](x) exists, and that the bias vec-
tor of the output layer can be modified to ensure

that fcl,NN (0) = 0, such that the problem of verify-
ing asymptotic stability of the origin can be addressed
with Lyapunov’s indirect method.
Theorem 3. Given that the system (1) satisfies the
Asm.s 1-3, let again φNN (x) be an NN controller (34)
as in Def. 1, forming the closed-loop system ẋ(t) =
fcl,NN (x). If then any component of the bias vector
satisfies (43) and if:

Acl,NN :=
∂ fcl,NN(x)

∂x

∣∣∣∣∣
x=0

=
∂ f (x,u)

∂x

∣∣∣∣∣
x=0,u=0

+
∂ f (x,u)

∂u
∂φNN (x)

∂x

∣∣∣∣∣
x=0,u=0

(47)

has only eigenvalues with negative real parts, then (3)
is stabilized exponentially on a neighborhood N of
the origin 0 ∈N .

Proof. Since the controller satisfies (43), the origin is
an equilibrium point of the closed-loop system, see
Lemma 5. It follows from the proof of Lemma 4
that the closed-loop system is continuously differen-
tiable in a neighborhood of the origin. Consequently,
Lemma 3 can be applied to the closed-loop system.
Then, for the case that Acl has only eigenvalues with
negative real parts, Lemma 3 implies exponential sta-
bility of (3) with respect to the origin.

As mentioned in Sec. 1, interval arithmetics can
be used to determine the regions in X for which
the derivative of the Lyapunov function V (x) = xT Px
along the trajectories of the closed-loop system is neg-
ative. In here, P is obtained by solving the Lyapunov
equation 0= PAcl,NN+AT

cl,NNP+Q for a positive def-
inite matrix Q . However, it was found in numeric
studies that the analysis by interval arithmetics may
fail in a very small neighborhood of the origin for nu-
meric reasons. The next theorem shows that it is still
possible to verify that a (desirably small) invariant set
containing the origin is reached in finite time. This
theorem and its proof bears similarities to LaSalle’s
invariance theorem, see e.g. (Khalil, 2002).
Theorem 4. Let ẋ(t) = fcl,NN(x) be the closed-loop
dynamics of system (1) with the NN controller (34)
following Def. 1. Suppose that I1 ⊂ X and I2 ⊆ X
are compact, nonempty, and positively invariant sets
satisfying I1 ⊂ I2. Let Λ be the relative complement
of the interior I o

1 of I1 to I2, i.e., Λ := I2 \ I o
1 . Fur-

thermore, let V (x) be a continuous and continuously
differentiable function defined over I2 for which the
derivative V̇ (x) along the trajectories of ẋ = fcl,NN(x)
satisfies:

V̇ (x) =
∂V (x)

∂x
fcl,NN(x)< 0 for all x ∈ Λ. (48)
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Then every solution starting in I2 enters I1 in finite
time and stays therein for all future times.

Proof. Let x(t) be the solution of (3) for an initial
state x(0) ∈ I2. First, suppose that x(0) ∈ I1. Since
I1 is positively invariant, the solution x(t) must stay
within I1 for all t ≥ 0. Now suppose that x(0) is not
an element of I1, which implies that x(0) ∈ Λ. Next,
it is shown by contradiction that x(t) must leave Λ in
finite time: assume that x(t) stays within Λ for an in-
finite time. Since V̇ (x) < 0 for all x ∈ Λ, V (x(t)) is
a monotonically decreasing function over t as long as
x(t) ∈ Λ, such that V (x(t)) is unbounded from below.
Note that Λ is also compact. Since V (x) is continu-
ous on the compact set Λ, it must be bounded from
below, which is a contradiction. Hence x(t) cannot
stay within Λ for an infinite time and there exists a
finite time at which x(t) leaves this set. Since I2 is
positively invariant, x(t) can only enter the positively
invariant set I1 when it leaves Λ, where it must stay
for all future times.

5 EXAMPLES

This section demonstrates the proposed approach for
three benchmark problems. Benchmark 1 and Bench-
mark 2 originate from (Huang et al., 2019), where
reachability analysis based on over-approximation
has been used to verify if a goal set is reached start-
ing from a specified initial set. The results there have
also been compared with those obtained from the ap-
proaches proposed in (Dutta et al., 2019) and (Ivanov
et al., 2019). On the other hand, Benchmark 3 is taken
from (Liu et al., 2017), containing simulation studies
for the demonstration of a proposed ADP technique.
The right-hand sides of the three nonlinear dynamics
and the associated input constraints to be considered
for regulation problems are as follows:
Benchmark 1: U = {u ∈ R | −1.5≤ u≤ 1.5},

f (x,u) =
[

x2− x3
1

u

]
.

Benchmark 2: U = {u ∈ R | −2≤ u≤ 2},

f (x,u) =

 −x1

(
0.1+(x1 + x2)

2
)

(u+ x1)
(

0.1+(x1 + x2)
2
) .

Benchmark 3: U = {u ∈ R | −2≤ u≤ 2},

f (x,u) =
[

−x1 + x2

−0.5x1−0.5x2 +0.5x2 (cos(2x1)+2)2

]
+

[
0

cos(2x1)+2

]
u.

For each of the problems, a number of q= 104 equally
spaced grid points xs in X = {x ∈ R2 | −1 ≤ xi ≤ 1}
were chosen to obtain a training data set (xs,us), s ∈
{0, . . . ,q}. This was accomplished by solving a finite-
horizon optimization problem:

min
u(t)

10
(
x2

1 + x2
2
)
+

∫ 10

0

(
x2

1 + x2
2
)
·dt (49)

subject to: ẋ(t) = f (x(t),u(t)) , x(0) = xs, (50)
x(t) ∈ X , u(t) ∈U (51)

for any xs, leading to the optimal input us to be applied
in xs. The optimization problems were solved with the
software tool GPOPS− II (Patterson and Rao, 2014).

For each NN controller, a structure with one hid-
den layer consisting of 30 units has been found to
be appropriate, and the hyperbolic tangent tanh(µ) =
σ(µ,2,1) was used as activation function in all units.
The neural networks were trained using Matlab’s deep
learning toolbox with the Levenberg-Marquardt train-
ing algorithm (Hagan and Menhaj, 1994).

For Benchmark 1, the NN controller had origi-
nally a bias b(L) = 1.5865 after training. The adaption
of b(L) according to (43) led to b(L) = 1.5860. After
adaption, the NN controller led to the closed-loop sys-
tem with matrix:

Acl,NN =

[
0 1

−1.7419 −2.2852

]
according to (47). Since Re[λ1] = Re[λ2]≈−1.1426
are the real parts of the eigenvalues of Acl,NN, Thm. 3
implies that the origin is an exponentially stable equi-
librium point. The matrix Acl,NN has been used to ob-
tain a quadratic Lyapunov function V (x) by solving
the Lyapunov equation for Q chosen as identity ma-
trix. Subsequently, INTLAB (Rump, 1999) (a Mat-
lab toolbox for reliable computing) has been used to
search for intervals in which V̇ (x) is definitely nega-
tive. Intervals with states for which V̇ (x) is or could
be greater than zero are shown in Fig. 1 as filled
boxes. The subsets I2 and I1 of X in Fig. 1 are posi-
tively invariant, such that Thm. 4 guarantees that each
solution starting in I2 stays therein (hence does not
violate the state constraints) and gets into I1 after a fi-
nite time, in which it remains for all future time. The
set I1 is a level set Ωc = {x ∈ Rn |V (x) ≤ c}. On the
other hand, I2 is a polytope, for which INTLAB has
verified the condition (14).

The same procedure was applied analogously to
Benchmark 2 and 3, leading also to the result that the
respective synthesized controllers stabilize the sys-
tems to the origin. While the results for Benchmark 1
are illustrated in the left column of Fig. 1, the corre-
sponding ones for Benchmark 2 and 3 are illustrated
in the middle and right column, respectively.
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Figure 1: The figure shows the results obtained for the three benchmark problems, where the i-th column refers to Benchmark
i. The first row illustrates the phase portraits of the closed-loop systems with the NN controllers. For each benchmark problem,
the boundary of X is illustrated by a dashed line, while a solid line is used to illustrate the boundary of I2, the set verified to
be positively invariant. Filled boxes show very small areas in which the derivative of the Lyapunov functions (determined by
use of Thm. 3) along the trajectories of the closed-loop systems could not be verified to be negative by interval arithmetics.
An enlarged version of the neighborhood of the origin is shown in the second row of figures: the boundary of the positively
invariant set I1 ⊂ I2 is illustrated for each benchmark problem by a solid line. Since the Lyapunov function determined for
Benchmark i is strictly decreasing along the trajectories within Λ = I2 \ I o

1 , each state trajectory starting in I2 reaches I1 in
finite time, where it remains forever. This is shown for exemplary state trajectories, as well as for the corresponding input
trajectories in the third row of figures, showing that the input constraints (dashed lines) are satisfied.

6 CONCLUSION

This work has proposed a scheme for synthesizing
nonlinear controllers for nonlinear plants, such that
stabilization to an equilibrium point as well as the sat-
isfaction of input constraints is guaranteed. The con-
troller is established as NN controller with continu-
ous and continuously differentiable activation func-
tions in the units of its layers. By using sigmoid
functions as activation functions in the output layer,
the satisfaction of input constraints is ensured, even
if the same sigmoid functions are used in each unit.
A closed-form expression for the partial derivative of
the NN controller with respect to its input was de-
rived. Furthermore, insight was provided in how to
modify the bias vector in the output layer in order to
ensure that the origin is indeed an equilibrium point
of the closed-loop system. These aspects allow for
the use of Lyapunov’s indirect method in order to ver-
ify that the controlled system is asymptotically stable
with respect to the equilibrium point. For the case that
the verification of asymptotic stability is successful, a

quadratic Lyapunov function can be found by solving
the Lyapunov equation for a selected positive definite
matrix. This has been used in the numerical examples
in order to verify safety and performance properties
with a software for reliable computations on the basis
of interval arithmetics. Future work addresses neces-
sary modifications for higher-dimensional spaces as
well as the investigation of other candidate Lyapunov
functions.
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