
Using Program Analysis to Identify the Use of Vulnerable Functions

Rasmus Hagberg1,2, Martin Hell3 and Christoph Reichenbach1

1Department of Computer Science, Lund University, Box 118 Lund, Sweden
2Debricked AB, Malmö, Sweden

3Department of Electrical and Information Technology, Lund University, Box 118 Lund, Sweden

Keywords: Software Security, Vulnerabilities, Call Graphs, Open-source Software, Vulnerability Analysis.

Abstract: Open-Source Software (OSS) is increasingly used by software applications. It allows for code reuse, but
also comes with the problem of potentially being affected by the vulnerabilities that are found in the OSS
libraries. With large numbers of OSS components and a large number of published vulnerabilities, it becomes
challenging to identify and analyze which OSS components need to be patched and updated. In addition
to matching vulnerable libraries to those used in software products, it is also necessary to analyze if the
vulnerable functionality is actually used by the software. This process is both time-consuming and error-
prone. Automating this process presents several challenges, but has the potential to significantly decrease
vulnerability exposure time. In this paper, we propose a modular framework for analyzing if software code is
using the vulnerable part of a library, by analyzing and matching the call graphs of the software with changes
resulting from security patches. Further, we provide an implementation of the framework targeting Java and
the Maven dependency management system. This allows us to identify 20% of the dependencies in our sample
projects as false positives. We also identify and discuss challenges and limitations in our approach.

1 INTRODUCTION

Vulnerabilities in third-party or open-source software
(OSS) is not a new problem, but as organizations,
society, and even our critical infrastructure become
increasingly dependent on software-based systems,
handling such vulnerabilities becomes more impor-
tant. In 2020, Synopsys reported that 99% of au-
dited codebases contained open source components
and on average 70% of the codebase was open-source
code (Synopsys, 2020).

Better understanding and efficiently reacting to
vulnerabilities is both a technical and an organiza-
tional challenge (Alomar et al., 2020; Höst et al.,
2018). From a technical perspective, the increased
use of OSS together with the high increase in reported
vulnerabilities in the last few years (NIST, 2021) re-
quire technical tools for identifying, analyzing, and
prioritizing remediation of vulnerabilities. Fully au-
tomating this process will decrease remediation time
and shrink the attack surface. However, such automa-
tion is difficult due to incompatible data formats, in-
accurate and incomplete data on e.g., NVD, and the
possibility of breaking changes when updating to new
versions (Xavier et al., 2017; Anwar et al., 2020).

Still, recent research has shown that both a compre-
hensible understanding of the problem, as well as
machine learning-based algorithms can facilitate in-
creased automation (Wåreus and Hell, 2020).

In this paper, we consider the problem of assess-
ing whether a codebase is using vulnerable function-
ality. More specifically, we present a framework for
automatically analyzing a codebase that depends on
code with a known vulnerability and determining if
the codebase can execute the vulnerable parts of that
code. Though software might use a vulnerable ver-
sion of a library, if the vulnerable functions are not
called by the software, this should be seen as a false
positive, allowing efforts to instead focus on mitigat-
ing actually exploitable vulnerabilities. Our frame-
work consists of comparing the call graph of software
to the changes made between vulnerable and non-
vulnerable versions of a library. Moreover, we imple-
ment the framework for the Java programming lan-
guage with the Maven dependency management sys-
tem. This allows us to evaluate the performance of
such an automated tool and to identify specific chal-
lenges to a successful and efficient deployment.

The paper is outlined as follows. Some back-
ground is given in Section 2. The overall framework is

Hagberg, R., Hell, M. and Reichenbach, C.
Using Program Analysis to Identify the Use of Vulnerable Functions.
DOI: 10.5220/0010548205230530
In Proceedings of the 18th International Conference on Security and Cryptography (SECRYPT 2021), pages 523-530
ISBN: 978-989-758-524-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

523



described in Section 3, our implementation is given in
Section 4 and the evaluation results are given in Sec-
tion 5. Section 6 describes limitations and scalability
considerations. We discuss related work in Section 7
and conclude in Section 8.

2 BACKGROUND

2.1 Software Vulnerabilities

Vulnerabilities can be found in several places,
including issues, advisories, and mailing lists, but
the largest public database is NVD, maintained by
NIST, with a current collection of about 150k vulner-
abilities. These are enumerated using the Common
Vulnerabilities and Exposures (CVE) scheme (The
MITRE Corporation, 2021), maintained by MITRE.
NVD adds information that is useful for analyzing
the vulnerabilities. This includes e.g., CPE (Common
Platform Enumeration) identifiers (NIST, 2011). A
CPE is a standardized representation of a software
library. It is given by a string,

cpe:2.3:a:vendor:product:version:*:*:*...

In addition to specifying vendor, product, and ver-
sion, as above, the string supports several additional
attributes, such as update, language, target software
and hardware, etc. In order to identify the use of vul-
nerable libraries, the library version can be matched
against the CPEs for a given vulnerability. This as-
sumes that a correct CPE for a library can be deter-
mined, e.g., from the dependency management sys-
tem. The Maven dependency management system
lists the dependencies of a project in a file named
pom.xml. This XML file1 defines a dependency us-
ing three main attributes.

• groupId. This should be unique for an organiza-
tion or project.

• artifactId. This points out the specific project.

• version. This gives the version of the dependency
or a valid range of versions that Maven can down-
load and link at compilation time.

The discrepancy between CPEs, as used by e.g., NVD
and the Maven dependency data causes additional
challenges when identifying potentially vulnerable li-
braries.

1See https://maven.apache.org/pom.html for details.

2.2 Call Graphs

A call graph is a graph that describes which method
(function, subroutine, . . . ) in a program can call
which other methods (Ryder, 1979). The graph repre-
sents each method as a node and each potential call as
an edge from a caller to a (potential) callee. When a
method m1 can reach a method m2 by following a path
(a sequence of edges) in the call graph, the call graph
predicts that a call to m1 might (indirectly) result in a
call to m2.

In software security, we are mainly interested in
sound call graphs, i.e., call graphs that conservatively
approximate all possible calls. In a sound call graph,
the absence of a path from the node for method m1 to
the node for method m2 means that a call to m1 can
never result in the call to method m2.

Program analysis researchers have developed a
number of techniques for automatically extracting
call graphs from software. For example, dynamic call
graph analysis (Xie and Notkin, 2002) computes pre-
cise call graphs by running a program through a test
suite and observing which calls go to which methods;
however, the resultant dynamic call graphs lack any
edges that were not exercised in the test suite, mean-
ing that they are not (generally) sound.

Static call graph analysis, by contrast, examines
the program’s structure and produces conservative ap-
proximations. Much of the work in this area has
been on increasing precision, i.e., eliminating impos-
sible call edges (Smaragdakis et al., 2015). In a re-
cent analysis, Sui et al. provide an overview over
the main static techniques (Sui et al., 2020), but also
observe that the state of the art does not produce
sound call graphs: They report a median recall of
88.4%, or 93.5% with more expensive modeling for
dynamic language features. These algorithms can
miss call edges due to “dynamic” language features
such as reflective calls (e.g., Java’s Method::invoke)
or dynamic linking (e.g., POSIX’ dlopen), but espe-
cially due to native (e.g., Java-to-C) calls. For highly
dynamic languages such as JavaScript that heavily
rely on dynamic code loading and code generation,
static call graph construction is particularly challeng-
ing (Antal et al., 2018).

3 FRAMEWORK OVERVIEW

In this section, we describe an overall framework for
determining if a piece of software is using the vulner-
able function. An overview of the framework is given
in Figure 1.

First, we detect which libraries, and versions, are

SECRYPT 2021 - 18th International Conference on Security and Cryptography

524



Figure 1: Vulnerable Functionality Framework.

used by the software. This can be done in sev-
eral ways, e.g., through a software Bill of Materials
(BoM), scanning of the sources, or by analyzing the
dependency file used by dependency managers. It is
important to detect not only the direct dependencies
used but also all transitive dependencies, as vulnera-
bilities can be located also in these. The next step is
to detect vulnerabilities in the used libraries. Vulner-
abilities can be identified e.g., using NVD, but other
databases or sources can also be used. With a match
between a CPE and a used library, we proceed with
the library vulnerability marking and client code anal-
ysis respectively in order to detect if vulnerable func-
tionality is being used.

3.1 Library Vulnerability Marking

When a piece of software calls a library with a
known vulnerability, the software may be vulnerable.
Whether it is vulnerable depends on whether the soft-
ware calls the vulnerable portion of the library’s code
in a way that exercises the vulnerability. In general,
this property is not decidable, but we can approximate
it e.g. by checking if the client software can ever call
the vulnerable library.

In our framework, we use a more precise tech-
nique, in which we mark library vulnerabilities at the
method level; i.e., we identify which methods may
trigger the vulnerability. Our technique relies on two
versions of the same library: one (referenced by the
client software) with a known vulnerability, and an-
other, later version in which the developers have fixed
that vulnerability. These versions may be different re-
leases of the same library or different commits to the
library’s revision control system. We extract the mod-
ified code by computing the difference between these
two versions and conservatively mark all methods that
have been changed as vulnerable. The result is a set
of potentially vulnerable methods. We then compute
uniquely identifying signatures for these methods and
store these signatures in a database. It can be noted
that this information is independent of the client code
and can be re-used for any number of clients.

Table 1: Language features that interfere with sound call
graph construction for a selection of popular languages.
The below is approximate, due to language extensions (e.g.,
inline assembly for C/C++ adds “Native Calls”-like com-
plexity) and special run-time features (e.g., the POSIX sig-
nal handling facility adds “External Callbacks”-like chal-
lenges).

C/C++ Java Python JavaScript

Not Memory Safe X

eval() X X

Dynamic Code Loading X X X X

Native Calls X X

External Callbacks VM Browser
Reflection X X X

Prototype Based X

3.2 Client Code Analysis

To check if a piece of client code may exercise a
known vulnerability, we link the code against its
libraries and compute the code’s call graph. We
then extract all methods that are reachable from the
client code’s entry points, compute the correspond-
ing signatures, and compare them against our signa-
ture database with library vulnerabilities. If there is a
match, we report that the client code is affected by a
vulnerability.

Our database can also track which vulnerabilities
are related to which methods, and how precise we be-
lieve our vulnerability markings to be for this library
(e.g., whether we were able to compute method-level
information at all), to improve reporting.

4 IMPLEMENTATION

Instantiating the framework requires choices and so-
lutions to a set of challenges. In this section, we de-
scribe our implementation and design decisions.

4.1 Language Support

Our techniques depend intrinsically on each program-
ming language’s semantics. Many languages have
features for indirect calls, including calls to dynam-
ically loaded or synthesized code. For example,
C/C++ support function pointers, and the lack of type
safety in C/C++ allows programmers to hide function
pointers in arbitrarily complex encodings. Dynamic
languages (JavaScript, Python etc.) provide eval()
functions (McCarthy, 1960) that execute string values
as code. All these features complicate analysis.

Table 1 provides an overview of likely challenges
in static call graph generation for several popular lan-

Using Program Analysis to Identify the Use of Vulnerable Functions

525



guages. “Dynamic Code Loading”, “Native Calls”
and “External Callbacks” allow calls to or from code
that the static analysis may not be able to see. “Re-
flection” is a weakened form of eval() that allows
e.g. instantiating a class from a string that provides
the class name. “Prototype Based” refers to a dy-
namic form of inheritance that is incompatible with
most static call graph analysis techniques.

While specialized techniques can improve call
graph precision to some degree (Ko et al., 2015),
sound call graph construction may still identify a
very high number of false positives, and practical call
graph construction algorithms may choose to relax
soundness in favor of higher precision. If the extent
of this relaxation is clearly specified, we refer to the
relaxed analysis as “soundy” (Livshits et al., 2015).
A productionized version of our approach could com-
bine soundy call graph analysis with a sound detector
for all sources of unsoundness, for manual inspection.

Our implementation targets Java, due to the ma-
turity of Java tooling. Java is memory safe and has
no built-in eval(), but supports dynamic loading and
reflection (Li et al., 2019).

4.2 Library and Vulnerability Detection

To favor simplicity and ease of use, as much of the
process as possible should be automated. Thus, an
implementation should be integrated with a devel-
oper’s existing toolchain. In modern development,
delivering and deploying new software versions and
services is automated through Continuous Integration
and Continuous Deployment (CI/CD). The CI/CD
flow automates the software development flow, from
design to testing and deployment, enabling incremen-
tal roll-out of new software. This allows e.g., vulner-
able libraries to be updated without waiting for other
code to finish. Assuming such a modern, and agile,
development process, we use information that is al-
ready being submitted to the CI/CD pipeline and in-
tegrate our analysis framework with the version man-
agement system. This way, we parse the same files
that the version management system does, ensuring
that the user only needs to supply files readily avail-
able and that are anyway uploaded to version manage-
ment and CI/CD systems. This has the additional ad-
vantage of ensuring that the vulnerability filter fetches
exactly the same libraries that the code normally uses,
eliminating a potential source of error. In particu-
lar, we implement support for the Maven dependency
management system. Maven is a popular dependency
management system for Java, used for dependency
resolution, including transitive dependencies, as well
as some version management.

We use NVD for finding vulnerabilities that affect
the libraries in use. If the CPE information for a given
vulnerability matches the library version given by the
Maven dependency management system, then this li-
brary will be subject to our library analysis.

4.3 Implementing Library Analysis

With a known vulnerability, we also know the latest
vulnerable version from the CPE list on NVD. Us-
ing Maven, we fetch the first non-vulnerable version
and compare these two. The comparison is done in
two steps. First, we use the java-diff-utils2 li-
brary to produce the diff between the versions, and
the list of line numbers that are changed, added, or
removed, as well as if any new files are added to the
library. Then we use ExtendJ (Ekman and Hedin,
2007) to translate this list of files and lines into a list
of Java classes and methods. Then, these classes and
methods are converted into unique signatures. These
signatures uniquely identify a method or class, and so
we are able to know which methods and classes have
changed between the vulnerable and fixed versions.
This list is stored in a database for later use.

This process of library analysis is fully automated,
from determining the non-vulnerable version to pro-
ducing the output with signatures. However, automa-
tion here comes with a cost. Versions susceptible to a
vulnerability (and by the method of elimination which
versions are not) are available from the vulnerability
database. Which specific commit includes the fix is
however not available. Because of this, we limit our-
selves to analyzing released versions, possibly intro-
ducing some false positives when the releases include
more updates than just the vulnerability patch.

4.4 Implementing Client Code Analysis

For client code analysis, we construct a call graph of
the client code. As we detail in Section 5, test cover-
age is very low for many projects. Thus, we choose
the static approach over a dynamic one.

We create the call graph using the Soot (Vallée-
Rai et al., 1999) static analyzer, using the Class Hier-
archy Analysis algorithm (Dean et al., 1995). Soot is
a framework for Java code analysis, transformation,
and optimization, but we use it only for its ability to
generate call graphs of Java programs.

Once we have constructed a call graph over the
client code (with the included library code) we can
check this to see if it contains any of the vulnerable
signatures that we found in the library analysis phase.
Here, the Soot output is used to create signatures that

2https://java-diff-utils.github.io/java-diff-utils/

SECRYPT 2021 - 18th International Conference on Security and Cryptography

526



can be matched with those computed in the library
analysis. If there is a match, we have shown that the
client is using the part of a library that changed be-
tween a vulnerable and a fixed version. Thus, they are
not only using a vulnerable library but likely the spe-
cific vulnerable part of that library. We also present
the execution path to the code to inform the user
which part or parts of their codebase that is affected.
This is useful in case the library is not updated, but
the vulnerability is mitigated in another way, e.g., if
the update introduces breaking changes.

5 RESULTS

Projects using Maven were selected by searching
GitHub for projects with a pom.xml file in the root
directory of the repository and sorting by the time
GitHub indexed them. This produces a reasonably
random result and we chose 200 programs to analyze.

In the following, a “project” is a repository cloned
from GitHub, and a “dependency” is one version of
an artifact in Maven used by a project, either directly
or transitively.

We first remove projects that are not interesting
or even possible to analyze. Out of the 200 projects,
50 failed to compile, 9 had no code to analyze, and
an additional 11 had to be excluded due to having er-
roneous or no longer working Maven configurations.
This leaves us with a total of 130 projects that can
potentially be analyzed.

5.1 Analyzable Projects

The version of Soot we use can only analyze Java ver-
sion 8 or lower code. Thus, 15 projects had to be ex-
cluded due to Soot not being able to analyze them.

One program was manually excluded since the
repository supposedly containing many of the depen-
dencies of the said program no longer did so. This left
us with a total of 114 projects that compiled, had code
to analyze, and that Soot was capable of analyzing.

5.2 Dependencies with Matching
Vulnerabilities

Of the 114 projects that we could analyze, 111 had
third-party dependencies, while 3 did not. Further,
102 projects were analyzed to have at least one depen-
dency with a CVE listed against the version in use.
In other words, 89% of the projects used dependen-
cies with known vulnerabilities, while 11% (12 out of
114) did not have any dependencies with known vul-
nerabilities (CVEs).

Table 2: Test coverage for the sampled projects.

Category Projects Can calc. Test
coverage coverage

Total projects 200 23 26.8%
Static analysis 114 20 27.2%
Vuln. dependency 76 14 16.4%

Looking at the 111 projects with dependencies, there
were in total 8701 usages of 3117 unique dependen-
cies and versions. Of the 8701 usages, 2741 were of a
dependency with a CVE listed against it, meaning that
about 32% of the time a dependency was included that
dependency had a CVE listed against it. These usages
of vulnerable dependencies represented in total 299
unique dependencies and versions.

5.3 Analyzable Dependencies

Of these 2741 usages of dependencies with CVEs
listed against them, we were not able to analyze 514
of them (19%). Out of the 2227 that we were able to
analyze, 1682 used the dependency in such a way as
to expose the vulnerable parts of the dependency. The
other 545 uses were analyzed not to use the vulnerable
functionality. This means that about 20% (545 out of
2741) of dependencies with a matching vulnerability
(CVE) were not vulnerable since the vulnerable func-
tionality was not used. If we exclude dependencies
that we could not analyze, 24% (545 out of 2227) did
not use the vulnerable functionality.

5.4 Test Coverage

Our choice of static analysis for creating the call
graph is motivated by the test coverage for the ana-
lyzed projects. To measure the test coverage, the Ja-
CoCo Maven plugin was used. Of the 200 projects,
only 32 had tests that passed and 23 of these produced
valid test coverage with JaCoCo, with an average of
26.8% reported coverage. For projects with vulnera-
ble dependencies, we found that the test coverage was
only 16.4% on average, see Table 2. This shows the
importance of using static call graph generation as op-
posed to a dynamic approach.

6 LIMITATIONS AND
SCALABILITY

In this section, we identify why some (514 out of
2741) of the dependency usages with a listed CVE

Using Program Analysis to Identify the Use of Vulnerable Functions

527



Table 3: Dependency usages that could not be analyzed for
some packages.

Project Usages that could not be analyzed

postgresql 190
jetty 75
javax mail 50
dom4j 25
apache poi 20
other 154

Total 514

Table 4: Most common reasons for why a vulnerable de-
pendency could not be analyzed.

Reason Vuln. that could
not be analyzed

Version not available 82
Versioning Scheme Mismatch 81
Dependency moved 73
Program limitations 67
No end version 26
Modifier changed 12
Other 11

Total 352

could not be analyzed. Then, we also analyze the scal-
ability of our approach.

6.1 Dependencies That Could Not Be
Analyzed

We see that a small number of dependencies that are
listed in many CVEs are responsible for a large share
of these. For example, PostgreSQL alone is responsi-
ble for over a third of the vulnerability usages we are
unable to analyze, 190 of the 514. Table 3 summa-
rizes the dependencies that caused most problems.

Many of these 514 dependency usages refer to the
same 299 vulnerable dependencies, but possibly to
different vulnerabilities. We, therefore, combine ref-
erences to the same vulnerabilities in our summary in
Table 4, for a total of 352 references to different vul-
nerabilities that we could not analyze.

In 82 cases the specific version that we need for
the analysis is not available in the Maven repository,
i.e., a version referenced in NVD is not listed by
Maven at all. Similarly, we found 81 cases where
there was a versioning scheme mismatch between
NVD and Maven. This case was specific to Post-
greSQL. In some cases, we noticed that the groupId
or artifactId changed between two software versions.
Such changes in the dependency naming occurred in

73 cases. We identified 67 cases that we attribute
to limitations in the software, e.g., handling of ad-
ditional qualifiers and build dates in version informa-
tion. In 26 cases, NVD does not have any information
about in which version a vulnerability is fixed, i.e., no
end version CPE is provided for the vulnerable soft-
ware. Finally, in 12 cases we found that a modifier
changed between versions. A modifier is the part of
the version string that is not dot-separated numbers.
For example, we want to compare 24.2-jre with 24.3-
jre, not with 24.3-android.

6.2 General Limitations

False positives can be introduced when computing the
diff between the last vulnerable and first fixed ver-
sion of a library, either due to more being marked
as changed than actually is changed or more being
changed than is required to fix the vulnerability.

Sometimes, there is a discrepancy between the
naming schemes in the vulnerability database and the
dependency management system. This can lead to
both false negatives and false positives when names
are interpreted and matched. An example of a poten-
tial error is the spring framework. In Maven, Spring
implementations are distributed as separate packages
with the org.springframework group ID and with
artifact IDs like spring-web, spring-orm etc. In
NVD, however, no such distinction is made and CVEs
are just filed against “spring framework”. Any call
graph of reasonable precision for a language such as
Java will not be sound in the general case. In other
words, errors can be introduced when creating the
call graph. The exact error depends on many de-
sign choices in the call graph analysis. We, therefore,
opted for a highly conservative call graph algorithm.
Still, some of the challenges identified in this study,
such as call graph algorithms failing to fully model
callbacks from native code may also affect the recall
of our approach.

6.3 Efficiency and Scalability

To be viable for larger projects, the approach needs
to scale well with project size. Large projects are
here seen as either projects with a large number of
classes and methods, or as projects with a large num-
ber of dependencies. Due to dependencies possibly
being transitive, importing one library could result in
several hundred dependencies, where some of them
can be matched against a CVE. Thus, when looking
at scaling, we analyzed two factors, namely (a) the
number of vulnerable dependencies (before analysis),
and (b) the size of the call graph.

SECRYPT 2021 - 18th International Conference on Security and Cryptography

528



0 1 2 3 4 5
·105

0

20

40

60

80

100

Call graph size

R
un

tim
e

(s
)

Figure 2: Call graph size vs. runtime, zoomed in on projects
with at most 500,000 call graph edges.

We ran these experiments on a Dell XPS 9350 lap-
top. Considering the running time as a function of
the number of vulnerable dependencies, the correla-
tion coefficient is 0.11, indicating a very weak corre-
lation.

If we instead consider the number of edges in the
call graph, we see a much stronger correlation to the
running time. The correlation coefficient is here 0.96.
For the vast majority of projects, the call graph has
fewer than 500,000 edges, with only a few outliers
in our sample. Looking at only projects with up to
500,000 call graph edges, the correlation coefficient
is 0.71, still a rather strong correlation. This is shown
in Figure 2, together with linear regression. The lower
correlation is due to the library analysis not being in-
cluded in the call graph size, and for large projects this
is negligible. For smaller projects, the library analy-
sis will affect the running time, but will still not be
visible when looking at the program call graph.

7 RELATED WORK

In our work, we focus on utilizing static call graphs to
improve the precision of vulnerability discovery. Our
static approach is similar to Plate et al.’s dynamic ap-
proach (Plate et al., 2015), which collects call graphs
while running tests. Thus, their approach requires a
high-quality test suite. Existing techniques for au-
tomatic test generation can aid such approaches, but
cannot supplant hand-written tests (Sui et al., 2020).

Ponta et al. expand on Plate et al.’s approach, com-
bining static and dynamic analysis (Ponta et al., 2018)
to address this limitation in a productionized tool used
internally at SAP and exploring mitigation strategies.
Their findings show that on SAP code, 7.9% of the
vulnerabilities that they detect require both static and

dynamic analysis. It is not clear how their findings
translate to software developed outside of this specific
industrial environment; for instance, the low degree of
unit test coverage that we found (Section 5.4) would
severely limit their dynamic techniques. They do not
describe their call graph construction algorithm, so
we cannot make a more detailed comparison.

Our approach relies on CPE information to iden-
tify vulnerable versions of libraries. However, that
information may be incomplete or inaccurate. If the
CPE does not specify the earliest vulnerable version
of a library, we currently make the conservative as-
sumption that all versions prior to the reported fix (if
any) are vulnerable. Dashevskyi et al. introduce a
technique for tracing a vulnerability backward in time
through an affected piece of software to find out at
what point that vulnerability was first introduced (Da-
shevskyi et al., 2019). This approach could comple-
ment our technique and reduce the false positive rate.

8 CONCLUSIONS

We have described a framework for analyzing the use
of vulnerable functionality in libraries containing vul-
nerable code. We instantiated the framework for an-
alyzing Java libraries, using data from the Maven de-
pendency management system, and evaluated them on
randomly chosen GitHub projects. Of 111 analyz-
able projects with dependencies, we identified 2741
usages of dependencies with known vulnerabilities
and successfully analyzed 2227 of these usages, of
which 545 uses did not use the vulnerable function-
ality. Though our implementation has limitations, it
provides a promising step towards fully automating
vulnerability identification, removing false positives
stemming from a pure CPE match.

ACKNOWLEDGEMENTS

This work was partially supported by the Wallen-
berg Artificial Intelligence, Autonomous Systems and
Software Program (WASP), funded by the Knut and
Alice Wallenberg Foundation, and partially by the
Swedish Foundation for Strategic Research, grant
RIT17-0035.

REFERENCES

Alomar, N., Wijesekera, P., Qiu, E., and Egelman, S.
(2020). ”You’ve got your nice list of bugs, now

Using Program Analysis to Identify the Use of Vulnerable Functions

529



what?” vulnerability discovery and management pro-
cesses in the wild. In Sixteenth Symposium on Usable
Privacy and Security (SOUPS) 2020, pages 319–339.

Antal, G., Hegedűs, P., Tóth, Z., Ferenc, R., and Gyimóthy,
T. (2018). Static JavaScript Call Graphs: a Compara-
tive Study. In Proceedings of the 18th IEEE Interna-
tional Working Conference on Source Code Analysis
and Manipulation. IEEE.

Anwar, A., Abusnaina, A., Chen, S., Li, F., and Mo-
haisen, D. (2020). Cleaning the NVD: Comprehen-
sive quality assessment, improvements, and analyses.
arXiv:2006.15074.

Dashevskyi, S., Brucker, A. D., and Massacci, F. (2019).
A screening test for disclosed vulnerabilities in foss
components. IEEE Transactions on Software Engi-
neering, 45(10):945–966.

Dean, J., Grove, D., and Chambers, C. (1995). Optimiza-
tion of object-oriented programs using static class hi-
erarchy analysis. In European Conference on Object-
Oriented Programming, pages 77–101. Springer.

Ekman, T. and Hedin, G. (2007). The JastAdd extensi-
ble java compiler. In Proceedings of the 22nd An-
nual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications,
pages 1–18.

Höst, M., Sönnerup, J., Hell, M., and Olsson, T. (2018).
Industrial practices in security vulnerability manage-
ment for iot systems–an interview study. In Proceed-
ings of the International Conference on Software En-
gineering Research and Practice (SERP), pages 61–
67.

Ko, Y., Lee, H., Dolby, J., and Ryu, S. (2015). Practi-
cally tunable static analysis framework for large-scale
javascript applications (T). In 30th IEEE/ACM In-
ternational Conference on Automated Software Engi-
neering (ASE), pages 541–551. IEEE.

Li, Y., Tan, T., and Xue, J. (2019). Understanding and
analyzing java reflection. ACM Trans. Softw. Eng.
Methodol., 28(2):7:1–7:50.

Livshits, B., Sridharan, M., Smaragdakis, Y., Lhoták, O.,
Amaral, J. N., Chang, B.-Y. E., Guyer, S. Z., Khed-
ker, U. P., Møller, A., and Vardoulakis, D. (2015). In
defense of soundiness: A manifesto. Commun. ACM,
58(2):44–46.

McCarthy, J. (1960). Recursive functions of symbolic ex-
pressions and their computation by machine, part i.
Communications of the ACM, 3(4):184–195.

NIST (2011). Common Platform Enumeration: Naming
Specification, Version 2.3, NIST Interagency Report
7695.

NIST (2021). National vulnerability database.
https://nvd.nist.gov/.

Plate, H., Ponta, S. E., and Sabetta, A. (2015). Impact as-
sessment for vulnerabilities in open-source software
libraries. In 2015 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages
411–420.

Ponta, S. E., Plate, H., and Sabetta, A. (2018). Be-
yond metadata: Code-centric and usage-based anal-
ysis of known vulnerabilities in open-source software.

In 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME).

Ryder, B. G. (1979). Constructing the call graph of a pro-
gram. IEEE Transactions on Software Engineering,
SE-5(3):216–226.

Smaragdakis, Y., Balatsouras, G., Kastrinis, G., and
Bravenboer, M. (2015). More sound static handling of
java reflection. In Feng, X. and Park, S., editors, Pro-
gramming Languages and Systems, pages 485–503,
Cham. Springer International Publishing.

Sui, L., Dietrich, J., Tahir, A., and Fourtounis, G. (2020).
On the recall of static call graph construction in prac-
tice. In 2020 IEEE/ACM 42nd International Confer-
ence on Software Engineering (ICSE), pages 1049–
1060. IEEE.

Synopsys (2020). Open source security and risk analysis
report. Online.

The MITRE Corporation (2021). Common Vulnerabilities
and Exposures.

Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L. J., Lam,
P., and Sundaresan, V. (1999). Soot - a Java byte-
code optimization framework. In Proceedings of the
1999 Conference of the Centre for Advanced Studies
on Collaborative Research, CASCON ’99.

Wåreus, E. and Hell, M. (2020). Automated cpe labeling
of cve summaries with machine learning. In Inter-
national Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, pages 3–22.
Springer.

Xavier, L., Brito, A., Hora, A., and Valente, M. T.
(2017). Historical and impact analysis of api break-
ing changes: A large-scale study. In 2017 IEEE 24th
International Conference on Software Analysis, Evo-
lution and Reengineering (SANER), pages 138–147.
IEEE.

Xie, T. and Notkin, D. (2002). An empirical study of java
dynamic call graph extractors. University of Washing-
ton CSE Technical Report 02-12, 3.

SECRYPT 2021 - 18th International Conference on Security and Cryptography

530


