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Abstract: The availability of zero inflated count data has led to the demonstration of various statistical models and
machine learning algorithms to be applied in diverse fields such as healthcare, economics and travel. However,
in real life there could be a count k > 0 that is inflated. There are only a few studies on k− inflated count
models. To the best of our knowledge, there is no article that demonstrates the machine learning algorithms
on such data sets. We apply existing k− inflated count models as well as machine learning algorithms on
travel data to compare the prediction and fitness of the models and find the significant covariates. Our study
shows that the k− inflated models provide a good fit to the data, however, the predictions from machine
learning algorithms are superior. This study can be extended further to include other artificial neural network
approaches on a larger data set.

1 INTRODUCTION

In many areas of study, a widely popular data type
explored is the count data. The Poisson distribution
is commonly used to study equi-dispersed count data.
The data is equi-dispersed when mean is equal to the
variance. In real life data sets, over-dispersion is a
common occurrence. The negative binomial distri-
bution is used when variance is more than mean or
over-dispersed in the count data. It is possible that
there is inflation at count zero for which the zero in-
flated distributions are widely used. In seminal pa-
per, (Lambert, 1992) introduced zero inflated Poisson
(ZIP) regression model for zero inflated count data.
The ZIP regression models are applied in many areas
like life science (Ridout et al., 1998), (Hall, 2000),
travel (Lord et al., 2005), and economics (Gurmu and
Trivedi, 1996), (Cameron and Trivedi, 2013).

In the presence of over-dispersion in zero inflated
count data, zero inflated negative binomial (ZINB)
model is more appropriate and it was first studied by
(Greene, 1994). Instead, of high frequency of zero it
is possible there is any count value k > 0 that is in-
flated. The more appropriate choice for such data sets
is k−inflated count models. An extension of ZIP dis-
tribution is k−inflated Poisson (kIP) distribution. The
kIP model is a mixture of degenerate distribution at
k with probability π and Poisson (λ) with probabil-
ity (1−π). It is a special case of zero and k inflated
Poisson (ZkIP) distribution studied by (Lin and Tsai,

2012) and (Arora, 2018). The kIP model is also a
special case of a k−inflated generalized Poisson dis-
tribution given by (Bae et al., 2005). The k−inflated
analog of negative binomial is k−inflated negative bi-
nomial (kINB) distribution. Recently, (Payandeh Na-
jafabadi and MohammadPour, 2018) studied kINB
for rate making system. As compared to zero inflated
count models, the literature on k−inflated count re-
gression models is not so rich.

The count regression models allow us to study the
the relationship between the response variables and
covariates. They allows us to find significant covari-
ates and make predictions. However, they have a few
limitations. They do not allow to study the non-linear
relationships of the covariates and are sensitive to out-
liers. There are various machine learning algorithms
that enable us to build a more robust and complex
regression models. They have good predictive abil-
ities and are efficient. Recently, the approaches have
been applied on zero inflated count data (see (Lee and
Jin, 2006), (Arief and Murfi, 2018),(Alfredo et al.,
2018) ). Though, we did not come across any work
that demonstrates the machine learning algorithms on
k−inflated count data.

In this article, we consider the Poisson, NB and
their k−inflated analog regression models. We study
the fit and prediction of the models using training and
test data, respectively. We perform 5-fold validation
and implement machine learning algorithms to make
the predictions. A comparative study between the
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regression models and machine learning algorithms
show that the latter makes better predictions. The ar-
ticle is organized as follows. The Section 2 of the ar-
ticle describes statistical distributions and their corre-
sponding regression models. It also describes the ma-
chine learning algorithms applied in the article. We
demonstrate the methodology on a real life data set in
Section 3. A detailed analysis is performed in Sec-
tion 4. Lastly, Section 5 concludes the article.

2 METHODOLOGY

In this Section, we describe the methodologies used in
this article. We present the statistical distributions and
their regression models in Section 2.1 and Section 2.2,
respectively. The measures of fit, described in Sec-
tion 2.3, are used to find the best model. The machine
learning algorithms are described in Section 2.4. The
measures of prediction are given in Section 2.5.

2.1 Statistical Distributions

The Poisson and negative binomial are most com-
monly studied for count response variable. For
zero inflated count data, their zero inflated analogs,
zero inflated Poisson and zero inflated negative bi-
nomial are popular. While, for any count k >
0 their k−inflated analogs, k−inflated Poisson and
k−inflated negative binomial are more appropriate. In
this Section we briefly describe Poisson, negative bi-
nomial and their k−inflated analogs.

Poisson Distribution. Let a response variable Y
follows a Poisson distribution with unknown parame-
ter λ > 0. The probability mass function (p.m.f.) of
random variable Y is given by

P(Y = y) =
e−λ λy

y!
; y = 0,1, . . . . (1)

The mean and variance of Y is λ. It is the equi-
dispersion property of the distribution that makes it
popular. The other commonly used property of the
distribution is that it belongs to the exponential fam-
ily. Therefore, it is easy to find the sufficient statistics
and maximum likelihood estimates.

Negative Binomial Distribution. When the count
response is over-dispersed (variance>mean), then
negative binomial is a better choice. The p.m.f. of
a response variable Y from negative binomial distri-
bution is:

P(Y = y) =
(

y+θ−1
y

)
(1− p)y pθ; y = 0,1, . . . ,

(2)
where θ > 0 and 0≤ p≤ 1.

k−Inflated Poisson Distribution. When zero is in
excess in count response, then zero inflated Poisson
(ZIP) distribution gives better fit to the data. In real
life scenarios, any count k > 0 can be inflated. The
analogue distributions for such data sets is k− in-
flated distributions. The k−inflated Poisson distribu-
tion (kIP) is a mixture of two distributions. One is
degenerate at k with probability π and the other is
Poisson (λ) with probability (1− π). The p.m.f. of
a count response Y from kIP distribution is:

P(Y = y) =


π+(1−π)

e−λ λk

k!
, y = k

(1−π)
e−λ λy

y!
, y≥ 0, y 6= k.

(3)

where 0≤ π≤ 1 and λ > 0. When π = 0, (3) reduces
to Poisson distribution. The kIP distribution is a spe-
cial case of zero and k−inflated Poisson (ZkIP) dis-
tribution studied by (Lin and Tsai, 2012) and (Arora,
2018).

k− Inflated Negative Binomial Distribution. To
study the inflation at k > 0, the extension of NB dis-
tribution is k− inflated negative binomial (kINB) dis-
tribution. The p.m.f. of kINB is given by

P(Y = y)=

 π+(1−π)
(k+θ−1

k

)
(1− p)k pθ, y = k

(1−π)
(y+θ−1

y

)
(1− p)y pθ, y 6= k.

(4)
On reparameterization, the variance of NB and kINB
models in R and SAS is given by Var(Y ) = λ+ rλ2;
λ is the mean of response and r is the dispersion pa-
rameter. The high values of r corresponds to over-
dispersion in the data. When r is zero or close to zero,
it signifies equi- or under-dispersion in the data.

2.2 Count Regression Models

To build the regression model, consider n indepen-
dent count responses Y = (Y1, . . . ,Yn). The regres-
sion model corresponding to the Poisson distribu-
tion is popularly known as Poisson log linear regres-
sion model or simply a Poisson regression model.
The Poisson regression model is a generalized linear
model with a log link function. The Poisson regres-
sion model for the response vector Y is given by

log(λλλ) = β0x0 +β1x1 + . . .+βpxp. (5)
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where λλλ = (λ1, . . . ,λn) is the rate parameter of the
model. The unknown parameters corresponding to
the vectors of covariates, x = (x0 = 1,x1, . . . ,xp) is
βββ = (β0,β1, . . . ,βp). When the response variable fol-
lows a NB distribution then the NB regression model
is most appropriate. The link function in the NB re-
gression model can be obtained from (5) by replacing
λλλ by the mean of NB distribution.

The kIP model is constructed using the ZIP re-
gression model studied by (Lambert, 1992). The kIP
model links the covariates to the rate parameter λλλ.
The inflation parameter π is linked to an unknown
constant using logit link. The model can be easily
extended to associate the desired covariates to the in-
flation parameter π. The link functions are given by

log(λλλ) = β0x0 +β1x1 + . . .+βpxp,

logit(π) = γ. (6)

Similarly, the kINB regression model uses the same
link function as in kIP.

The Poisson, NB models and their k− inflated
analogs are implemented in SAS using GENMOD
and FMM procedures. The Poisson and NB models
are implemented in R using glm and glm.nb func-
tions, respectively. The kIP and kINB models are run
in R using optimization routine ’nlminb’. The routine
applies Newton-Raphson approach to obtain the esti-
mates. The algorithms in SAS and R use maximum
likelihood estimation approach to find the estimates
of the unknown parameters. The results obtained in
SAS and R are same.

2.3 Hypothesis Testing and Model
Selection

In statistical modeling, hypothesis testing allows us to
study the significance of the covariates. It also allows
to select a good fit model. For the nested models, we
compare the models using likelihood ratio test (LRT).
Besides LRT, the popularly used measures to select a
good model are Akaike Information Criterion (AIC),
Bayesian Information Criterion (BIC) and R-squared.
The AIC and BIC are based on log-likelihood func-
tion of the corresponding model. In this Section, we
explain the hypothesis tests used to find significant co-
variates and unknown parameters in the Poisson, NB,
kIP and kINB models. We also describe the thumb
rule to choose best fit model using AIC and BIC.

Hypothesis Testing. We use hypothesis testing to
study the significance of the parameters. The hypoth-
esis H0 : β j = 0 vs. H1 : β j 6= 0 tests the significance
of the unknown jth covariate. The Wald test statis-
tic is z = β̂ j/SE(β̂ j). For large sample and under the

null hypothesis, the statistic approximately follows a
standard normal distribution.

The significance of the dispersion parameters in
NB and kINB can also be tested. To test the dispersion
parameter r in NB and kINB models we use H0 : r =
0 vs. H1 : r 6= 0. The corresponding test statistic is
z = r̂/SE(r̂)∼ N(0,1).

The inflation parameter in the kIP and kINB mod-
els is 0≤ π≤ 1. To test the significance of inflation at
k, we test H0 : π= 0 vs. H1 : π> 0. Under the null, the
kIP and kINB models reduce to Poisson and NB, re-
spectively. Hence, the base models (Poisson and NB)
are nested in their k−analogs (kIP and kINB). For
nested models, we can perform LRT. The test statistic
is−2logΛ =−2(L0−L1) where, L0 is log-likelihood
of the model under null while L1 is log-likelihood un-
der unrestricted. The test statistic follows a mixture of
χ2 distributions (Chant, 1974),(Shapiro, 1985). The
distribution of the test statistic changes as π = 0 is a
boundary point. Hence, the regularity conditions are
not met.

Akaike Information Criterion (AIC). There are
various measures that could be used to select the best
model. One of the most popular measures is AIC. It
is given by

AIC =−2logL+2p, (7)

where logL is the log-likelihood of the model and
p is the number of parameters in the model. The
measure is preferred as it prevents over fitting of the
data. To prevent over fitting it penalizes a model on
adding more parameters. The model with minimum
AIC gives the best fit to the data. The difference be-
tween AIC of the various models is subjective. (Burn-
ham and Anderson, 2002) proposed a thumb rule for
AIC difference to choose the best model. The AIC
difference is given by

∆i = AICi−min(AIC). (8)

Here, AICi is AIC of ith model. The value of 0 ≤
∆i ≤ 2 provides substantial support, 4 ≤ ∆i ≤ 7 im-
plies considerably less support and ∆i > 10 essentially
provides no support for ith model.

Bayesian Information Criterion (BIC). Another
popular measure is the BIC. It is given by

BIC =−2logL+ p logn, (9)

where logL is the log-likelihood of the model, p is
the number of parameters in the model, and n is the
number of observations. It is also independent of the
prior and penalizes the model on its complexity. The
penalty term is larger in BIC than in AIC. While it has
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been commonly used for model identification in lin-
ear regression and time series, it can, however, also be
applied to any set of maximum likelihood-based mod-
els (Schwarz, 1978). The model with minimum BIC
gives the best fit to the data. As in the case of AIC,
there also exists a rule of thumb for model selection
based on BIC (Kass and Raftery, 1995).

∆i = BICi−min(BIC). (10)
Here, BICi is BIC of ith model. The value of ∆i can be
used as evidence against a candidate model to be the
best model. For 0≤ ∆i ≤ 2, it is not worth more than
a bare mention, 2 < ∆i ≤ 6, the evidence against the
model is positive, 6 < ∆i ≤ 10, the evidence against
the model is strong, and ∆i > 10, the evidence against
the model is very strong.

2.4 Machine Learning Algorithms

In this Section, we describe the machine learning al-
gorithms applied in the study. The first algorithm
we applied is decision trees. Decision Trees are one
of the most commonly used approaches in machine
learning. They help solve classification as well as re-
gression problems. The algorithm constructs a tree
by breaking the dataset into smaller subsets and in-
crementally building the tree node by node. They are
easy to understand and interpret and require less ef-
fort for data preparation. Despite their advantages,
they are prone to overfitting and instability because of
their non-robustness. For categorical datasets, infor-
mation gain in decision trees are sometimes biased to
the attributes with more levels.

To obtain a better predictive performance than a
single model, ensemble methods like bagging and
boosting are typically used. Bagging (or Bootstrap
Aggregating) involves training the base model on ran-
dom subsets of the training dataset and then, aggre-
gating their results by either voting or averaging to
form a final prediction. An example of this ensem-
ble method is random forests (RF), which uses this
technique along with feature bagging. The random
feature selection ensures that the trees are indepen-
dent of each other and provides a better performance
due to a better bias-variance trade-off. While bagging
involves ensemble voting, boosting involves sequen-
tially building an ensemble by training a new model
by re-weighting. The re-weighting involves adjusting
the weights of the samples which the previous model
has had highest error on. The recent algorithms that
demonstrate this technique are AdaBoost and XG-
Boost.

Random Forests. The random forests (RF) were
proposed by (Tin Kam Ho, 1995) and later extended

by (Breiman, 2001). They are considered to be one of
the most robust and accurate learning methods. The
technique is frequently used for both classification
and regression. Using the concept of bagging, the al-
gorithm builds an ensemble of decision trees. Each
decision tree in the random forest provides a classifi-
cation or prediction. By aggregating over the ensem-
ble, final predictions are then made.

Over the last few years, significant changes have
been made to increase the accuracy and overall per-
formance of the algorithm. The growth of these en-
sembles depends significantly on the random vec-
tors used to grow each individual tree. (Breiman,
996b) suggested the use of bagging where each tree
is grown using a random selection (without replace-
ment) from the training set. (Dietterich, 2000) sug-
gested the use of random split selection, in which a
random split is selected at each node from among the
best m splits. (Tin Kam Ho, 1998) used the random
subspace method. It uses a random subset of features
to train every decision tree. Finally, (Breiman, 2001)
suggested the use of out-of-bag error to estimate the
generalization error.

Random Forests are still widely used due to their
numerous advantages. They are straightforward to ap-
ply and can be easily parallelized. They provide ac-
curacy as good as AdaBoost, even outperforming it
in some cases and is relatively robust to outliers and
noise. The various implementations of this algorithm
in languages like Python and R provide useful esti-
mates of error and variable importance.

Decision Trees. The decision trees are widely
known approach, commonly used for supervised
learning. They are majorly used for classification
problems, but they could be used for regression analy-
sis as well. Similar to a tree, a decision tree comprises
of a root node, decision branches, interior nodes and
leaf nodes. The root node represents the initial node
or the most significant feature. It could be used to
split the dataset into smaller subsets based on some
decision rules or choices from a number of alterna-
tives that are represented by the branches of the deci-
sion tree. The interior nodes and the leaf nodes rep-
resent intermediate features used for splitting and the
final decision or outcome, respectively. There are var-
ious algorithms that could be used to build decision
trees such as Chi-squared Automatic Interaction De-
tection (CHAID), Classification and Regression Trees
(CART), C5.0 and Quest, etc. In a decision tree, each
node may have two or more branches depending upon
the algorithm. The advantage of using decision tree
regression is that it requires very little bit of data pro-
cessing and it can capture nonlinear patterns easily. It
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is easy to interpret, understand and visualize. In this
article, we apply Decision Tree Regression (DTR).
Unlike the conventional decision trees which are used
for classification, the DTR can predict numerical out-
comes of the dependent variables as well.

Adaptive Boosting. Adaptive Boosting or Ad-
aboost is one of the first practical boosting methods
introduced by (Freund and Schapire, 1997). This al-
gorithm sequentially boosts weak learners to derive
an ensemble of strong learners which gives a bet-
ter prediction accuracy for the model. Similar to
RF, Adaboost is also an ensemble technique whose
baseline model is a decision tree. The weak learn-
ers are used in ensemble learning because a com-
plex function could be described by simpler general
trends which can provide a string approximation of
that function. Since, it is often difficult to select an in-
dividual optimal learner from a variety of weak learn-
ers, boosting comes into play and simplify the selec-
tion process.

In Adaboost, weak learners are iteratively trained
on the training dataset by continual sampling with re-
placement. The predictive performance of the weak
learners is evaluated and the sampling distribution
weights are correspondingly updated for those sam-
ples which were incorrectly classified by this weak
learner. The next learner is trained on this resam-
pled distribution with updated weights. Adaboost was
initially introduced and widely used for classification
problems, but it was also extended to regression anal-
ysis as well. The accuracy of the algorithm depends
majorly on the baseline model’s accuracy. It might
not give good results if the prediction hypothesis is
weak or sufficient data is not available. We aim to in-
vestigate the prediction performance of Adaboost for
predicting numerical outcomes of the dependent vari-
able in comparison to other models.

Extreme Gradient Boosting. eXtreme Gradient
Boosting (or XGBoost) is an end-to-end scalable tree
boosting technique used for supervised learning. It
is an optimized implementation of gradient boosting
machines. It was introduced by (Chen and Guestrin,
2016). Due to its highly optimized algorithm and
system features, it is widely used by data scientists
around the world. The XGBoost algorithm itself im-
proves upon the gradient boosting machine frame-
work by reducing computational time and efficiently
allocating memory resources. It has sparse aware fea-
ture that handles missing values in the training data. It
also uses LASSO (L1) and Ridge (L2) regularization
to penalize the complexity of the model and comes
with built-in cross-validation while training. It imple-

ments the distributed weighted quantile sketch algo-
rithm to find the optimum split points. Apart from
its algorithmic advantages, it also takes advantage of
the system to perform efficiently. It uses paralleliza-
tion, cache optimization, and out-of-core computing.
During training, it makes use of all CPU cores for
the construction of trees (parallelization). Its out-of-
core computing optimizes available disk space when
handling large datasets that do not fit into memory.
Through cache awareness, it efficiently uses hardware
resources by allocating internal buffers in each thread
to store gradient statistics.

2.5 Prediction Analysis

The model selection is followed by model predic-
tion. The predictive power of the model ensures that
the model is robust to new observations. A popular
approach to study the model prediction is by con-
structing training and test data. The training data
is used to build the model. The best fit model is
found using training data. The test data is used to
examine the prediction power of the best fit model.
Here, for regression models the ratio of training to
test data is 80:20. We apply m-fold cross-validation
to the machine learning algorithms. There are various
measures to study the predictive performance of the
model. We use root mean square error and mean ab-
solute scaled error. The measures are based on com-
paring the error between observed and predicted re-
sponse.

m-fold Cross-validation. A m-fold cross validation
is a resampling procedure in which the dataset is split
into m smaller subsets known as folds. Using the
leave-one-out concept, one fold is left out for testing
while the model is trained on the remaining m-1 folds
in each iteration. This process is repeated for m itera-
tions in total and the aggregate result for the model is
derived by averaging over the results of each iteration.
The advantage of using m-fold cross-validation is that
it gives less biased and yet more accurate estimate by
reducing out-of-sample error.

Root Mean Square Error. The root mean squared
error (RMSE) is a commonly used measure. It is

given by RMSE=

√
1
n

n

∑
i=1

(yi− ŷi)
2. Here, yi is the ob-

served count response and ŷi is the predicted count re-
sponse for ith subject. The minimum value of RMSE
on test data indicates good predictive performance of
the model or machine learning algorithm under study.
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Mean Absolute Scaled Error. When there are zero
counts in the data, (Sellers and Shmueli, 2010) rec-
ommend to use mean absolute scaled error (MASE).

The MASE is given by mean
∣∣∣∣ yi− ŷi

(1/n)∑
n
i=1 |yi− ȳ|

∣∣∣∣.
R-squared. The value of R-square (R2) is a good-
ness of fit measure commonly used while assessing
the fit of models. It is given by

R2 =
∑

n
i=1(ŷi− ȳ)2

∑
n
i=1(yi− ȳ)2 , (11)

The value of R2 is bounded between 0 and 1. The R2

value of 1 indicates that the model perfectly fits the
data.

3 DATA

To demonstrate the methodology we use a real life
data example. The data set is from Toronto Police
Service Public Safety data portal (Police, 2019). The
portal provides open access to the information on traf-
fic collision in Toronto. The dataset consists of in-
formation on fatal and non-fatal; pedestrian and non
pedestrian accidents. It has information on the type
of vehicles involved in the accident, namely, automo-
biles, cyclist, motorcyclists, emergency vehicles and
trucks. Similar data sets have been considered in nu-
merous studies (see (Lord et al., 2005),(Lord et al.,
2008)).

We considered data on non-fatal accidents of non
pedestrians accidents from year 2013-2019. In the
database, each accident is identified by a unique ac-
cident number (or ACCNUM). The ACCNUM is the
same for the people involved in an accident. On the
basis of ACCNUM we extracted information on the
number of non-fatal injured people. In this study, we
predict the number of non-fatal injuries (NoNonFa-
tal) for non pedestrian accidents. The response vari-
able, ’number of non-fatal injuries’ (NoNonFatal) is
a count response. It takes values from 0 to 13. There
are various covariates in the database, but, many of
them have missing observations. On the basis of rel-
evance and data availability, we choose the number
of people injured or involved in an accident (NoIn-
jured), light, cyclist, automobile, truck, motorcycle,
emergency vehicle and transit or city vehicle (Trsnci-
tyveh) as covariates in the study. The ’NoInjured’ is a
discrete count variable. The environmental covariate
light has 9 categories so it was treated as a continu-
ous variable. The categories of the light covariate are
dark, daylight, dark and artificial, dawn, dusk, dusk

and artificial, daylight and artificial, dawn and arti-
ficial, other. The other covariates have binary cate-
gories yes or no so they are considered as categorical
covariates.

4 ANALYSIS

We demonstrate the methodologies discussed in Sec-
tion 2 on a real life data set. The data set is briefly
described in Section 3. The response variable is num-
ber of non-fatal injuries (NoNonFatal) in an accident.
After removing possible outliers and missing obser-
vations there are 1459 independent subjects and 8
covariates in the study. The mean and variance of
the count response are 2.63 and 2.46, respectively.
The frequency at count 2 is 646 (44.28%). The pre-
liminary analysis shows that the data is possibly, al-
most equi-dispersed or slightly under-dispersed and
inflated at k = 2. The histogram and boxplot of the
response variable are shown in Figures 1 and 2, re-
spectively. The correlation analysis on the covariates
did not show any strong correlation. Thus, all the co-
variates mentioned in Section 3 are included in the
study.
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Figure 1: Histogram of response.

The count regression models described in Section 2.2
are built to study the relationship between response
variable and covariates. The statistical models are
also used to make the predictions. To perform the
analysis the data is divided into training (80%) and
test (20%) data. The training data set is used to con-
struct and find the best model. While, the test data is
used to make the predictions. In the training data, the
response variable has mean 2.63 and variance is 2.51.
The mean and variance of test data are 2.65 and 2.30,
respectively. The frequency of 2 in the training data is
499 (42.76%) while the frequency of 2 in the test data
is 147 (50.34%). The descriptive analysis shows that
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Table 1: Estimates, standard errors (in parentheses) and model diagnostics (log-likelihood, AIC) for the training data.

Parameter kINB kIP NB Poisson
Intercept 0.4984* 0.4984* 0.4568* 0.4568*

(0.2894) (0.2894) (0.2725) (0.2725)
NoInjured 0.2433* 0.2433* 0.2444* 0.2444*

(0.0087) (0.0087) (0.0083) (0.0083)
Light 0.0071 0.0071 0.0060 0.0060

(0.0124) (0.0124) (0.0113) (0.0113)
Cyclist -0.0623 -0.0623 -0.0475 -0.0475

(0.0567) (0.0567) (0.0487) (0.0487)
Automobile -0.2640* -0.2640* -0.2006* -0.2006*

(0.0920) (0.0920) (0.0799) (0.0799)
Truck -0.0376 -0.0376 -0.0331 -0.0331

(0.0879) (0.0879) (0.0801) (0.0801)
Motorcycle -0.0135 -0.0134 -0.0081 -0.0081

(0.0600) (0.0600) (0.0534) (0.0534)
Emergency Vehicle -0.1144 -0.1144 -0.1091 -0.1091

(0.2260) (0.2260) (0.2151) (0.2151)
Trsncityveh -0.0886 -0.0886 -0.0805 -0.0805

(0.0885) (0.0885) (0.0826) (0.0826)
γ̂ -1.2777 -1.2778 – –

(0.1163) (0.1163)
r̂ < 0.0001 – < 0.0001 –

– –
π̂ 0.2179* 0.2179* – –

(0.0198) (0.0198)
No. of parameters 11 10 10 9

Log-likelihood -1620.70 -1620.70 -1689.06 -1689.06
AIC 3261.40 3261.40 3398.12 3396.12
BIC 3312.00 3312.00 3441.70 3441.70
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Figure 2: Boxplot of the response.

the training and test data has high frequency at 2. A
small positive difference between mean and variance
is preserved which indicates the existence of almost
equi-dispersion or a slight under-dispersion.

The high frequency of 2 in the training data in-
dicates inflation at k =2. Thus, we construct kINB,
kIP, NB and Poisson regression models. The parame-
ter estimates and their standard errors (in parentheses)
are given in Table 1. The significant parameters at
10% level of significance are asterisk marked. From
Table 1, it could be observed that NoInjured and Au-

tomobile are significant covariates in all the models
considered under study. The intercept is significant
at 10% level while other parameters are significant at
5% level of significance as well.

The Table 1 shows that Poisson is a parsimonious
model as it has least number of parameters. While,
NB and kIP have equal number of parameters. The
kINB has 11 parameters, thus is the most complex
model in the study. The kIP and kINB models have
significant inflation at 5% level of significance with
π̂ = 0.2179. The estimated value of the dispersion
parameter (r̂) in NB and kINB models is < 0.0001.
When the data is under- or equi-dispersed then the
NB model might not converge. On convergence it
is reduced to the Poisson model. Here, the nega-
tive binomial (NB) model did not converge in SAS
and R. Thus, it gives identical results to the Poisson
model. While, the kINB model is reduced to the kIP
model. The data is almost equi-dispersed, hence, NB
and kINB models are reduced to Poisson and kIP, re-
spectively.

To find the best model, we use LRT, AIC and
BIC as described in Section 2.3. The AIC and BIC
difference between Poisson and kIP model is 134.72
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Table 2: Comparison of statistical models on training data with significant parameters.

Parameter kINB kIP NB Poisson
Intercept 0.2219* 0.2218* 0.2131* 0.2131*

(0.0399) (0.0399) (0.0353) (0.0353)
NoInjured 0.2431* 0.2431* 0.2441* 0.2441*

(0.0083) (0.0083) (0.0079) (0.0079)
Automobile -0.2194* -0.2196 * -0.1611* -0.1611*

(0.0825) (0.0826) (0.0699) ( 0.0699)
γ̂ -1.2795* -1.2794* – –

(0.1164) (0.1164)
r̂ < 0.0001 – < 0.0001 –

– –
π̂ 0.7824* 0.7824* – –

No. of parameters 5 4 4 3
Log-likelihood -1622.10 -1622.10 -1690.31 -1690.31

AIC 3252.20 3252.20 3388.62 3386.62
BIC 3272.50 3272.50 3408.86 3401.80

Table 3: Predictive performance of the statistical models on training and test data with all the covariates.

Train Test
Measure kINB kIP NB Poisson kINB kIP NB Poisson
RMSE 0.7919 0.7919 0.8578 0.8578 0.6932 0.6932 0.8172 0.8172
MASE – – – – 0.3840 0.3840 0.3400 0.3400

(>> 10) and 129.7 (>> 10), respectively. The kINB
is reduced to the kIP model and has same AIC and
BIC as kIP model. The NB model did not converge
and the AIC of NB (3398.12) is slightly higher than
the Poisson (3396.12) model. Based on the thumb
rule given by (Burnham and Anderson, 2002) and
(Kass and Raftery, 1995), the kIP model is best fit
for the data. The Poisson and kIP models are nested
so we can apply the LRT. The hypothesis is H0 : π = 0
vs. H1 : π > 0. The LRT statistic is −2logΛ =136.72
with p− value < 0.0001 and H0 gets rejected. Equiva-
lently, inflation at k =2 is significant. Here, the NB did
not converge in R and SAS. When the data is under-
or equi-dispersed then the NB is reduced to Poisson
irrespective of convergence. On performing LRT on
NB and kINB models, we get exactly same results.
So, kINB has significant inflation at k=2.

We re-ran the models with only significant covari-
ates, see Table 2. All the parameters are significant
at 5% level of significance. We get the similar inter-
pretations. The kIP and kINB models perform better
than their base (Poisson and NB) models. The infla-
tion at k=2 is significant in both the kIP and kINB
models. We observe from Table 1 and 2 that the co-
variate NoInjured has a positive impact on the mean
response, while, automobile has a negative impact.

We compared the predictive performance of the
models on the test data. The RMSE values of the test
and training data of kINB, kIP, NB and Poisson mod-

els are given in Table 3. The RMSE value of kINB
and kIP models is same for the test and training data.
Similarly, the RMSE value of NB and Poisson mod-
els are 0.8172 and 0.8578 for test and training data,
respectively. The RMSE of kINB and kIP models is
less than that of NB and Poisson models for both, test
and training data. On comparing the NB and Poisson
models to their k−inflated analogs we obtain MASE
of 0.3840 for kINB and kIP models. While, for NB
and Poisson we get MASE equal to 0.3400. The less
RMSE and MASE on test data implies less error in
prediction and hence better predictive powers. There-
fore, kINB and kIP models have slightly less predic-
tion error than their base counterparts.

The data science models like random forests and
XGBoost are popularly used for predictions. To make
the predictions on the count response, we use tech-
niques described in Section 2.4. We apply decision
trees, random forests, Adaboost and XGBoost on the
training dataset using cross-validation. In the decision
trees we apply decision tree regression (DTR) analy-
sis which essentially uses the CART algorithm. Here,
for cross validations we used five-folds. The predic-
tions are made on test data. The RMSE and MASE
are calculated to evaluate the performance of the ma-
chine learning algorithms. The scikit-learn library of
Python is used to perform the analysis.

In the training data, apart from AdaBoost all the
algorithms have RMSE ∼ 0.34. The RMSE of de-
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Table 4: Predictive performance and goodness of fit of the machine learning algorithms (Decision Trees (DT), Random Forests
(RF), Adaptive Boosting (AdaBoost), eXtreme Gradient Boosting (XGBoost) on training and test data with all the covariates.

Train Test
Measure DT RF AdaBoost XGBoost DT RF AdaBoost XGBoost
RMSE 0.3406 0.3424 0.3866 0.3420 0.3814 0. 3748 0.4238 0.3698
MASE – – – – 0.1225 0.1181 0.1578 0.1150

R2 0.9617 0.9610 0.9410 0.9611 0.9468 0.9489 0.9252 0.9495

Table 5: Comparison of feature importance using machine learning algorithms.

Parameter Decision Trees Random Forests AdaBoost XGBoost
NoInjured 0.9930 0.9906 0.9878 0.9784

Light 0.0031 0.0041 0.0062 0.0029
Cyclist 0.0010 0.0011 0.0013 0.0079

Automobile 0.0005 0.0010 0.0008 0.0018
Truck 0.0006 0.0010 0.0009 0.0032

Motorcycle 0.0005 0.0010 0.0013 0.0027
Emergency Vehicle < 0.0001 < 0.0001 < 0.0001 0.0004

Trsncityveh 0.0009 0.0009 0.0013 0.0024

cision trees is minimum (0.3406) and the RMSE of
random forests and XGBoost are very close. The
AdaBoost has slightly higher RMSE than random
forests. Further, the machine learning algorithms are
run on the test data. We observe, XGBoost has low-
est RMSE (0.3698) while, the AdaBoost has the high-
est RMSE (0.4238). The random forests perform bet-
ter than decision trees with a decrease of 1.73% in
RMSE. On comparing random forests to XGBoost
we observe an improvement of 1.33%. The XGBoost
shows a significant decrease of 3.04% when com-
pared to decision trees.

The average MASE is determined by evaluating
the average of MASE values obtained using five-fold
validation. According to MASE measure, the least
value is of the XGBoost (0.1150). While, the highest
is of AdaBoost (0.1578). From Table 4, we observe
that there is slight improvement in the predictions as
we go from decision trees to random forests. Simi-
larly, XGBoost performs better than random forests.
To study the fit of the machine learning algorithms we
study R2 values of the training and test data. From Ta-
ble 4, we observe that the XGBoost provides the best
goodness of fit with an R2 of 0.9611 and 0.9495 for
training and test data, respectively. The R2 of decision
trees, random forests and XGBoost are approximately
close, while, AdaBoost provides slightly poor fit. Ad-
ditionly, from Table 5, we observe that ’NoInjured’
is the most important feature to predict the response.
The feature is significant in the statistical models as
well (see Table 1).

In conclusion, from the preliminary analysis we
observe that the training data is almost equi-dispersed
or slightly under-dispersed and inflated at k = 2. Us-

ing AIC, BIC and LRT, kIP model is the most appro-
priate model for the data set. On the basis of predic-
tion measures kIP and kINB performs equally well. It
is observed that the data is almost equi-dispersed thus
kINB is reduced to kIP model. The kIP model is par-
simonious. Thus, kIP model is the best choice for the
data set. While we have used parametric approaches
via statistical modeling to build a model and make
predictions, we also aim to study the non-parametric
approaches provided by the machine learning algo-
rithms. Using R2 as the goodness of fit measure and
RMSE and MASE as predictive indicators on vari-
ous machine learning algorithms, we observe that as
expected XGBoost performed best. Notably, the deci-
sion trees which do not involve any ensemble methods
performed poor as compared to the ensemble models
but significantly better than the statistical models.

5 SUMMARY

While, there are many studies on zero inflated count
data there are only a few applications shown on
k−inflated count data. In real life data sets, the occur-
rence of k > 0 inflated count data is not insignificant.
We demonstrate the application of k−inflated count
models. When there is inflation at k and data is equi-
dispersed, k−inflated Poisson is the most appropriate
model. We observe that the statistical models provide
a good fit and decent predictions. However, the pre-
dictions obtained using machine learning algorithms
are considerably better. The machine learning algo-
rithms are easy to apply and the computational time
is very less. The complexity of the machine learn-
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ing algorithms make them difficult to comprehend.
Although, the algorithms provide information on the
importance of the covariates; they do not provide any
information on the direction (positive or negative) of
contribution in the model. Thus, to study k−inflated
count data sets, the corresponding regression mod-
els are appropriate for interpretations while, machine
learning algorithms give superior predictions. So, it is
recommended to study both the approaches. Our fu-
ture work involves studying the approach on a larger
data set from a different area. We plan to extend the
comparative study by including various artificial neu-
ral network approaches.
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