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State machines are frequently used in software development, in many different contexts, ranging from mod-

eling control software to distributed applications that operate in cloud environments. We have implemented
and experimented on basic execution path-based predictive caching approaches for state machines to show
that due to the limited number of paths that can be taken during a state machine run better pre-fetching can
be achieved for state machine caches. We have applied our predictive approaches over least frequently used
(LFU) and least recently used (LRU) replacement on two different state machine instances run with real-world

execution traces.

1 INTRODUCTION

State machines are powerful formal models that are
being used in a wide area of applications to capture
the stateful behaviour of developed software. By their
description, state machines contain execution paths
that are repeatedly executed for different kinds of in-
put to perform the predetermined sequence of opera-
tions. This repetitive behaviour may be taken advan-
tage of to perform predictive caching decisions based
on the anticipated path that may be executed through
the use of historical execution information.

In this paper we investigate the effects of execu-
tion path-based predictive caching in state machine
implementations. Basically, on top of employing a
conventional cache replacement approach like Least
Frequently Used (LFU), we observe the recent exe-
cution of the state machine to predict which execu-
tion path is most likely to be taken in the future. Us-
ing statistics of the paths taken in the past, we direct
the cache pre-fetching decisions according to the most
likely path to be taken next.

We have used a data set based on actions per-
formed in a limited amount of time among a group
of Twitter users and implemented a state machine that
performs these actions on a simple database. We have
also used another state machine that has been derived
from GitHub interactions provided by a commercial
database vendor. We have applied a write back pol-
icy over an in memory cache that is capable of hold-
ing only a few objects from the database. Our results
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show that applying a cumulative path probability cal-
culation approach in path prediction provides the best
results in pre-fetching.

Directing caching decisions on state machines
may specifically be important for environments where
relatively smaller state machines run simplistic func-
tionality with a limited amount of memory, such as
Internet of Things applications. Increasing the cache
hit ratio based on historical data can significantly im-
prove energy consumption and run-time performance
of those devices as well.

Section 2 presents related work on predictive
caching in state machines. Section 3 presents our ex-
perimental data, state machines that are used in ex-
periments, and the approaches that we implemented.
Later in Section 4 we present the results of our ex-
periments and evaluate the results. In Section 5, we
conclude by mentioning possible future work.

2 RELATED WORK AND
LITERATURE REVIEW

Even though the use of caching to improve perfor-
mance has been a greatly investigated topic, there are
relatively a limited number of recent studies present
in the literature in the domain of state machines. For
a recent literature survey on proactive caching (we
use the more restrictive term predictive caching in
this paper), readers may refer to Sun Guolin et al.’s
work (Anokye et al., 2020).

In (Santos and Schiper, 2013), Santos et al. make
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use of State Machine Replication (SMR) where repli-
cated state machines have a cache of requests that
have been previously executed. This cache is con-
sulted by the replicas when a request is received. If
the request has already been executed, its previously
computed reply is sent by the replica to the client.

A service manager is used to manage events in se-
quence, executing them on the service and sending a
reply back to the client. Replies are cached to en-
sure at-most-once execution of requests. A Concur-
rentHashMap 1is used to reduce contention and im-
prove multi-threaded performance when under high
load from many threads.

For Scalable State Machine Replication (S-SMR)
in (Bezerra et al., 2014), when a command is exe-
cuted, the executing client multicasts the command
to all partitions that contain variables that the com-
mand reads or updates. An oracle is assumed to exist
that handles informing the client about which parti-
tions the command should be sent to. A server in a
partition is able to cache variables that are from other
partitions in multiple ways. They consider conserva-
tive caching and speculative caching.

With conservative caching, a server waits for a
message from a variable’s partition that says if the
cached value is still valid or not before executing a
read operation for that variable. If it’s been inval-
idated, the server discards the cached copy and re-
quests the value from the partition. With speculative
caching, it is assumed that the cached values are up
to date. A server will immediately get the cached
value from a read operation without using any vali-
dation messages. If the variable is invalidated by a
message from a server in the variable’s partition, the
server with the invalid value will be rolled back to be-
fore the operation, the cached value will be updated to
the new value, and execution will be resumed from the
earlier state. In (Le et al., 2016), Dynamic Scalable
State Machine Replication (DS-SMR) improves on
(Bezerra et al., 2014)’s S-SMR by giving each client
a local cache of the oracle’s partition information. If
the cache contains information about the variables in-
volved in a particular command, the oracle is not con-
sulted, improving scalability.

We may also mention Robbert van Renesse et al.’s
work (Marian et al., 2008), where they use a middle
tier state machine-like model to alleviate replication
of services, that may include caching. Even though
this study is quite out of scope of our study we still
mention it as a possible approach to handle caching
services on the cloud.

For Mobile Edge Caching in (Yao et al., 2019),
caching in the context of mobile edge networks is cov-
ered, including the issues of where, how, and what
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to cache. They discuss caching locations, including
caching at user equipment, base stations, and relays,
as well as caching criteria such as cache hit prob-
ability, network throughput, content retrieval delay,
and energy efficiency. Several caching schemes are
mentioned, for example, distributed caching, in which
nodes use info from neighboring nodes to increase the
perceived cache size to the user.

In (Le et al., 2019), Le Hoang et al. propose Dy-
naStar, based on DS-SMR from (Le et al., 2016).
Their improvements over DS-SMR involve multicas-
ting of commands, caching of location information
from the oracle on the client, and re-partitioning of
a command’s variables to a target partition that exe-
cutes the command, replies, and returns the updated
variables to their partitions.

Last but not least we should also mention re-
cent studies of Changchuan Yin et al. (Chen et al.,
2017; Chen et al., 2019) where they utilized a liquid
state machine learning model to manage caching in
an LTE-U unmanned Aerial Vehicle Network. Com-
pared to our approach this study uses network level
information and the state machines come into action
as a learning model rather than the executed model
itself.

3 STATE MACHINE MODEL AND
EXPERIMENTAL DATA

3.1 Caching Approaches Used in
Experiments

Figure 1 presents the overall architecture we have
used to perform our experiments. As our state ma-
chine instance receives events, a cache managing
component accesses data from the database, caching
it locally. The cache manager also has a collection of
statistics that is used to determine likelihoods of what
event will be sent next. These statistics consist of sub-
sets of the full state machine history, with each subset
path containing the frequencies of the potential next
events. Based on these frequencies of previous events,
the most likely upcoming event can be predicted, and
the data that would be used by the resultant state can
be cached in advance.

We propose two approaches for predicting the
next set of objects to be fetched to the cache as fol-
lows. We use the notations in Tablel during our defi-
nitions.

* Path based prediction: Based on the current state
of the state machine and the possible predecessors
paths, we choose the next most likely path and the
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Figure 1: Overall system diagram, consisting of the state
machine, cache manager, and database.

Table 1: Notation used for state machines.

Type Symbol

State Machine SM =SUT

States S {S0,51,--,8u}
Transitions T:SXEXxS

Events E :{Ey,E\,....Es}
Paths P: {PQ,PI,...,PH}
Path P :(Ty,Th,...)|T; €T

Path fragment
of length n

P (To,Ty,....T, 1) | €T

second most likely path to fetch their data. During
the execution of the state machine, after each state
change from P; to P; we fetch the possible set of
path fragments of a particular length of size n, that
may emerge from the current state P; and choose
the most likely two based on execution data. To
obtain path frequencies we analyze the execution
data of the state machine to count the number of
occurrences for possible future path fragments of
length n.

» Event based prediction: In this approach, based on
the current state, we determine the set of possible
predecessor events and assign a weight to each of
them based on the frequency of each event calcu-
lated by the execution data. Out of the weighted
events, we perform a weighted random selection,
repeat this process n times for each selected event
and pre-fetch the data of the selected event or
path.

We also use two different approaches during
the frequency calculations during the prediction ap-
proaches.

* On-the-fly calculation: We only use the past ex-
ecution data that occurred up to a certain history
window size to calculate path/event frequencies.
Every time the state machine executes events that
match the width of window size we re-calculate
the path execution statistics from scratch, disre-
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garding former event executions and taking the
most recent history window into account.

e Cumulative calculation: Like on-the-fly calcula-
tion we use data from a certain history window.
However, instead of calculating probabilities from
the scratch every time, we cumulatively update
the probabilities every time the history window is
about to be updated with recent events.

We compare our proposed approaches against by
applying them over a well-known cache replace-
ment approaches: LFU and LRU. We compare our
approach among each other and with random pre-
fetching over varying cache sizes and history window
sizes to get an idea about how pre-fetching behaves
under different circumstances.

We have used a write back policy through all our
experiments where we write the updated value in the
cache whenever it is to be replaced. Since we only
experiment with a single instance, there weren’t any
observed side effect in terms of consistency.

3.2 Data Sets and State Machines Used
in Experiments

In our experiments we have chosen to use two dif-
ferent data sets to synthesize and experiment on ar-
tificial state machines. The first data set we used is
the activity time graph of the Higgs Twitter data set!.
The Higgs Twitter data set contains action data from
300K users, with 170K tweets containing mentions,
36K replies to tweets, and 350K retweets, along with
follower data consisting of almost 15M connections
between users. In our experiments we have built a
simple state machine that contains the events "tweet”,
“reply”, “retweet” and “’follow” to process a subset
of the events available in this data set. We extracted
the relevant information from the data sets and pre-
processed them to filter out the unrelated columns and
TOWS.

All users are kept in a single set, where an individ-
ual user consists of an ID, a follower list, a following
list, and a timeline. The follower and following lists
are sets of users which make up those who the user
follows and those who follow the user. A timeline
consists of a collection of posts, where a post contains
a poster ID, mentioned ID, and a timestamp. For all
posts, which can be tweets (TW), retweets (RT), and
replies (RE), each row from the data set consists of
the user ID who posted the tweet, the user ID who was
mentioned, the timestamp of the post, and an identi-
fier for what type of tweet it is, either TW, RT, or RE.

Uhttps://snap.stanford.edu/data/higgs-twitter.html
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Table 2: Notation used for Twitter data set.

Category Set

Users U= {ug,ui,....un}

Followers F={fugs Surs-+s fun }
Sur = {uj, iy oo

Posts P = {pisy, Disy - Pisy }

Timelines T ={tuy,tuys s tuy

tui = {pts'jvptsk; ~'~7ptsm}

Table 3: Key for Twitter data set notation.

Symbol Meaning

U set of all users

U; an individual user

F set of sets of each user’s fol-
lowers

Su; a set of the followers for user
u;

ts; a timestamp

P set of all posts

Dts; an individual post that was
posted at timestamp ts;

T set of all timelines

ty; ordered set of posts on the

timeline of user u;

For additional clarification we present additional for-
mal definitions of the notation we have made use of
in our experiments in Tables 2 and 3.

Due to the relative simplicity of the Twitter data
set, our experiments were performed on a simple state
machine as illustrated in Figure 3. There exists basi-
cally four different states which navigate to a specific
state upon receiving an event such as tweet (TW), re-
ply (RE), retweet (RT) or follow (FL).

After receiving the event the state machine fetches
related data to the cache and performs necessary ac-
tions indicated in the figure. The tweet, retweet,
and reply paths update the data structures containing
the tweet timelines of the poster and their followers,
while the follow path updates the structures contain-
ing the following and follower lists of the involved
users. Simply each tweet, retweet and reply adds the
current post(pyy,,,) to the specific users timeline while
each follow activity adds the follower (uy) to the fol-
lowed user’s (uy) followers list (f;,).

In the presented state machine a brief formal def-
inition to represent the performed action is presented
in the transitions; in the real implementation many
other pieces of data needs to be fetched to perform the
action. For instance, retweeting action needs to fetch
the specific user’s timeline to obtain information on
the tweet that is being retweeted.

The second data set we use is the GitHub activity
data served publicly by a commercial database ven-
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P=PUpq
tyy = tu; U Discyr

Figure 2: Model of the simple GitHub state machine used
in experiments.

Dele Pull Issue
elete
Request Comment

Figure 3: Model of the simple Github state machine used in
experiments.

Jux = fie U Prscur

dor?. This data set contains 3.5GB of 1.2M git activ-
ities for a set of 310K repositories. To construct an
artificial state machine based on this data we have an-
alyzed the sequence of events that has been issued per
repository basis and build a common state machine,
presented in Figure 2, that can properly handle 95%
of the events that occur for any repository in the data
set. During the execution of state machine instances
in our experiments, we properly drop out the infre-
quent activity (less than 5% of the whole data) that
doesn’t correspond to any transitions in the state ma-
chine. For brevity, we do not present the specific ac-
tivities that corresponds to each transition in Figure 2.

Zhttps://www.citusdata.com/blog/2017/01/27/
getting-started- with-github-events-data/



4 EXPERIMENTS AND
EVALUATION

Experiments were performed on a system running
Kubuntu with 12 Intel i7-9750H 2.60 GHz cores, 16
GB of RAM, and a 1 TB SSD. The client and state
machine are Java-based and making use of Spring for
state machines. They were kept in a Docker container
and communicated directly as to not induce any tim-
ing penalties from communicating over the network.

Trials were repeated over a variety of cache sizes
for prediction with cumulative and on-the-fly statis-
tics calculation. With the on-the-fly approach, statis-
tics were updated on-the-fly as events were sent to the
state machine, while the cumulative approach updates
a set of statistics periodically. Each experiment was
conducted with varying amounts of space in the cache
1,000 to 50,000 objects, and varying history window
sizes from 10/15 to 50. The term history window size
in the experiments correspond to the term used in our
explanations in Section 3.1; it simply describes the
amount of past events to be considered when calcu-
lating path execution statistics.

E0n-the-fly event based BOn-the-fly path based & Cumulative event-based W Cumulative path-based

| H%I H%l

15 p—t 50
History window size

(a) Prediction over LFU

@On-the-fly event based EOn-thefly path based Cumulative event-based mcumulative path-based

Cache miss ratio

- el L

B History window size 2 o

(b) Prediction over LRU

Figure 4: Cache misses comparison for twitter state ma-
chine for a 5000 object cache and varying history window
sizes.

For the experiments using both of the state ma-
chines, every setup was sent events that compromised
all activities in the data set, with each of the setups
being repeated 10 times, averaging their results.

We present the cache miss rate comparisons
counted during the experiments on twitter state ma-
chine in Figures 4 and 5 to present results for varying
history window and cache sizes respectively. Each
subfigure individually presents results for prediction
over LFU and LRU separately.

From the experiments, we can see that predictive
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E10n-the-fly event based mOn-the-fly path based @ Cumulative event-based W Cumulative path-based

030

Cache miss ratio

(a) Prediction over LFU

BOn-the-fly event based Eon-the-fly path based @Cumulative event-based mcumulative path-based

Cache miss ratio

5000 10000
Cache size (objects)

(b) Prediction over LRU

Figure 5: Cache misses comparison for twitter state ma-
chine for a 25 object history window size and varying cache
sizes.

@on-the-fly event based DOn-the-fly path based @ Cumulative event-based = cumulative path-based
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8

Cache miss ratio

10 15 s 50
History window size

(a) Prediction over LFU

mOn-the-fly event based mOn-the-fly path based Cumulative event-based W Cumulative path-based

10 15 25 50
History window size

(b) Prediction over LRU

Figure 6: Cache misses comparison for github state ma-
chine for a 5000 object cache and varying history window
sizes.

caching performs better, in terms of cache miss ra-
tios, for on-the-fly approach especially for larger his-
tory window sizes. As expected, the selection of re-
placement policy doesn’t effect the predictive caching
performance slightly, only for larger history windows.

Another observation from the results may be that,
by the increase of the cache size in terms of number
of cached objects, performance of predictive caching
deteriorates slower with respect to the cache size.

We present the cache miss rate comparisons
counted during the experiments on the GitHub state
machine in Figures 6 and 7. We obtain similar re-
sults in terms of comparison between prediction ap-
proaches for this set of experiments. On the other
hand, for this set of experiments, using a larger state
machine resulted in an increased performance for on-
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B0n-the-fly event based Eon-the-fly path based Cumulative event-based m Cumulative path-based
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(a) Prediction over LFU
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Cache miss ratio

1000 5000 (. he size (objects) 10%° 50000

(b) Prediction over LRU

Figure 7: Cache misses comparison for github state ma-
chine for a 15 object history window size and varying cache
sizes.

the-fly strategies where it greatly decreased the per-
formance of cumulative strategies.

As an overall evaluation of our experiments from
different perspectives, following results were ob-
tained:

 Path-based prediction versus event-based predic-
tion: Path based prediction provided better results
especially for smaller state machines, smaller
window sizes and smaller cache sizes. There were
almost no difference for the larger state machine
between the two approaches.

* On-the-fly calculation versus cumulative history
calculation: From this perspective on-the-fly cal-
culation is the obvious winner. Cumulative cal-
culation was only able to provide comparable but
still worse performance under few resources and
smaller state machines.

* Effects of state machine size: The GitHub state
machine, being a more complicated state machine
with more states and transitions, not only pre-
sented better results under on-the-fly prediction,
it also deteriorated cumulative calculation perfor-
mance significantly. The Twitter state machine,
on the other hand, provided more comparable, but
overall worse, results for prediction and history
calculation strategies.

* Effects of cache size: Cache didn’t make any im-
portant difference for the larger GitHub state ma-
chine. Larger cache sizes decreased all the strate-
gies’ performance slower with respect to the in-
crease in cache size for the Twitter state machine.

* Effects of cache replacement policy: There were
almost no difference in using different replace-
ment policies under predictive caching.
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S CONCLUSION

In this study, we examined predictive caching for state
machines, where the data to be pre-fetched to cache
is predicted using the historical data based on the
past execution of the state machine. Since the num-
ber of different paths that a state machine can take
is relatively limited, execution path-based predictive
caching is expected to perform better for state ma-
chines. Our experiments showed that, indeed, pre-
dictive caching increases the performance of replace-
ment algorithms, in terms of cache miss ratio, sig-
nificantly when performed by collecting cumulative
statistics.

We plan to expand our study to perform more ex-
periments on different state machines and investigate
further the relation between cache size, history win-
dow size and prediction performance for path-based
prediction in state machines. We also plan to experi-
ment on multiple and replicated state machines where
write policies may greatly affect system performance.
Furthermore we may also adopt more intelligent ap-
proaches than simple statistics, such as artificial in-
telligence based approaches and/or deep learning, to
provide even fewer cache misses as future work.
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