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Abstract: Two new methods for optimization of passive step-based excitation signals for system identification of non-
linear dynamic processes via a genetic algorithm are introduced - an optimized Amplitude Pseudo Random
Binary Signal (APRBSOpt) and a Genetic Optimized Time Amplitude Signal (GOATS). The investigated op-
timization objectives are the evenly excitation of all frequencies and the uniform data distribution of the space
spanned by the system’s input and output. The results show that the GOATS optimized according to the
uniform data distribution outperform the state-of-the-art excitation signals standard ARPBS (APRBSStd), Op-
timized Nonlinear Input Signal (OMNIPUS), Chirp and Multi-Sine in the achieved model quality on three
artificially created Single-Input Single-Output (SISO) nonlinear dynamic processes. However, the APRBSOpt
only exceeds the Chirp, Multi-Sine and APRBSStd in the achievable model quality. Additionally, the GOATS
can be used for stiff systems, supplementing existing data and easy incorporation of constraints.

1 INTRODUCTION

System identification refers to a process of build-
ing mathematical models of a dynamic or static sys-
tem based on the relation between measured input-
output data of a given system (Isermann, 1992; Hart-
mann, 2013). The quality of such data-based mod-
els is mainly influenced by the information which
are gathered in the data for the model training (train-
ing data) (Hartmann, 2013; Heinz and Nelles, 2017;
Heinz et al., 2017; Tietze, 2015). A well-known and
validated methodology for the maximization of the
amount of information of the training data is the De-
sign of Experiment (DoE) (Hartmann, 2013). The
DoE for the training of dynamic models (dynamic
DoE) differs from the DoE for training of stationary
models (static DoE) regarding the kind of information
needed to be collected during the experiment. Both
the dynamic and the stationary models need the in-
formation about the stationary nonlinearity (equilib-
rium), whereas the dynamic model needs additional
information about the frequency and the transient be-
haviour of the systems.
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In general, two classes of DoE can be distinguished:
The passive and the active DoE. The passive DoE, de-
fines the offline development of an experiment design,
whereas the active DoE describes the online approach
of a DoE (Heinz and Nelles, 2017). We assume that
the optimization task of dynamic DoE’s of complex
nonlinear dynamic systems is too difficult to solve
properly online in the limited time range. To address
this problem, simplifications of the optimization task
often have to be chosen such as simpler model struc-
tures or less computational demanding loss functions.
This, however, results in only optimal solutions for
the chosen simplifications. For this reason, the cur-
rent paper aims to develop two new passive excitation
signals to increase the modeling quality of nonlinear
dynamic processes.
Chirp, Multi-Sine and Amplitude Pseudo Random
Binary Signal (APRBS) are widely used passively
designed excitation signals (Baumann et al., 2008;
Hoagg et al., 2006; Nelles, 2013; Pintelon and
Schoukens, 2012; Rivera et al., 2002; Tietze, 2015).
Step-based excitation signals like an APRBS show a
better capability to cover the space spanned by the
system’s input u and output y compared to sinusoid-
based signals such as Chirp and Multi-Sine (Heinz
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and Nelles, 2017). In the last decade, a variety of opti-
mizations and modifications of the APRBS have been
developed (Deflorian and Zaglauer, 2011; Heinz and
Nelles, 2016; Nouri et al., 2018).
To the best of our knowledge, the study of Nouri et
al. is the first study which optimized an APRBS via
a genetic algorithm (GA) (Nouri et al., 2018). They
have optimized the APRBS according to an informa-
tion criterion to minimize the uncertainty for a pa-
rameter estimation of a predefined white box model
structure. In their study, the optimization is used to
improve the parameter identification instead of sys-
tem identification. Another modern step-based signal
is the Optimized Nonlinear Input Signal (OMNIPUS),
which is proposed in (Heinz and Nelles, 2017; Heinz
et al., 2017). It aims to optimize the coverage of the
space spanned by u and y. However, the optimiza-
tion of OMNIPUS is incrementally, which can lead
to suboptimal designs, because earlier designed se-
quences of the optimization cannot be changed in the
later process of the optimization.
The present paper aims to add to the current literature
by developing two new passive excitation signals for
system identification of nonlinear dynamic systems
which will be compared to four state of the art ex-
citation signals on three artificially created processes.
Our approach differs from the current studies regard-
ing the optimization of a step-based excitation signals
by introducing new loss functions for optimizing the
coverage of the space spanned by u and y and the
evenly excitation of all frequencies in a global fash-
ion via a GA.

2 METHOD

2.1 Design of Experiment

The first investigated optimization objective is the
evenly excitation of all frequencies f f which aims
to the excitation of the relevant bandwidth of sys-
tem without over-emphasizing specific frequencies.
The second investigated optimization objective is the
space-filling coverage fi of the space spanned by the
system’s input u and output y or more precisely the
input space of a Nonlinear AutoRegressive with eX-
ogenous input (NARX) system. Since the regressors
of the regression matrix X e.g. of a first order NARX
structure are the delayed sequences of input u(k− 1)
and output y(k− 1), the optimization of the space
spanned by these regressors seems to be purposeful
to improve the modeling quality.
In Fig. 1 the first order NARX input space of a non-
linear dynamic process separately excited with a stan-
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Figure 1: First order NARX input space point distribution
of an APRBS, a Chirp and Multi-Sine.

dard APRBSStd, Chirp and Multi-Sine is shown. As
Heinz and Nelles have shown and also is illustrated
in Fig. 1 step-based signals have a better space cov-
erage compared to sinusoidal-based signals in the
first order NARX input space (Heinz and Nelles,
2017). Sinusoidal-based signals like the Multi-Sine
and Chirp signal are not able to fill the areas in the
upper left and lower right corner. Step-based signals
like the APRBS and OMNIPUS are able to cover the
upper left and lower right corner as well as the center
due to their piecewise constant sequences and their
steps (Heinz and Nelles, 2017). Due to this reason,
the signal type of step-based signals is considered for
the two new excitation signals which are optimized
via a GA.

The first new signal type is an optimized
APRBS (APRBSOpt) with an optimized amplitude
permutation pp. An APRBS is based on a se-
quence which controls the duration of the con-
stant phases and the time dependent occurrence of
the steps. This sequence is generated by a pseu-
dorandom binary sequence (PRBS). The minimum
hold time Th allows to adjust the APRBS to a
specific frequency range (Isermann, 1992; Nelles
and Isermann, 1995). The different amplitude levels
A = Na× d (Na := amount of amplitude levels, d :=
input dimension) could be chosen prior e.g. by a static
DoE method and then modulated to the PRBS sequen-
tially (Isermann, 2010). The permutation of these
amplitudes pp will define the amplitude order of the
APRBSOpt which influences the coverage of the in-
put space and the amplitude spectrum, whereby it is a
promising parameter for the optimization. The second
new signal type is inspired by the APRBS as well. For
this signal type not only the amplitude order pp is op-
timized via a GA, but also the sequence ps. Therefore,
it is an independent new signal type and is named Ge-
netic Optimized Amplitude Time Signal (GOATS).

2.2 Genetic Algorithm

A GA is a metaheuristic algorithm which belongs to
the family of evolutionary algorithms (EA). The basic
concept is to imitate the Darwinian principle of evo-
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lution (variation, reproduction and selection) to tech-
nical environment to iteratively solve optimization
problems (Holland, 1975; Sivanandam S.N., 2008).
Therefore, a GA is suitable to optimize the introduced
parameters of the last subsection the permutation pp
and the sequence ps without information about the
derivatives.
The used GAs for single objective optimization
(SOO) and multi objective optimization (MOO) of
the objectives f f and fi in this paper are a combi-
nation of different methods for selection, recombina-
tion and mutation of popular genetic algorithms due
to their good performance. The Tournament Selec-
tion is commonly used and very popular method for
selection due to its efficiency and simple implementa-
tion (Goldberg and Deb, 1991; Razali and Geraghty,
2011). In this paper, it is used in selection of recom-
bination candidates and the candidates for the next
generation. In the SOO, the fitness of the individu-
als is directly compared with a set of four individuals.
The MOO uses the tournament selection of the Non-
dominated Sorting Genetic Algorithm II (NSGA-II)
proposed in (Deb et al., 2000).
The two parameter types of the optimization are the
permutation pp ∈ NN

a of the APRBS and GOATS and

the sequence ps ∈ NN
a of the GOATS. The permuta-

tion pp defines the order of the different amplitude
levels of the ARPBS and the GOATS. The sequence
ps is represented as a sequence of integers between
two limits which are defining the minimum and max-
imum duration of an amplitude level of the GOATS.
As crossover operator of the permutation parameter
the Order Crossover 1, Order Crossover 2, Partially
Map Crossover and Position Based Crossover are
used (Davis, 1985; Goldberg et al., 1985; Syswerda,
1991). Which specific crossover method in a
crossover situation is chosen, is depending on a uni-
form random distribution. This concept of a uni-
form selection is analogous implemented for the the
mutation operators, whereby every method can con-
tribute with its advantages. The mutation operators of
the permutation are the Reverse-, Interchanging- and
One-Point-Slide-Mutation1 (Sivanandam S.N., 2008).
The mutation operator used for the sequence param-
eter type is the Power-Mutation (Deep et al., 2009).
It is used to produce new genes for the sequence.
As crossover operators of the sequence parameter
type the Uniform-, SBX- and Two-Point-Crossover
are taken (Deb and Agrawal, 1995; Hartmann, 1998).
The SBX-crossover is slightly adapted by a round-

1Slides a subtour for one position, Example: Parent: [7,
10, 5, 3, 4, 2, 8, 9, 6, 1]; Subtour: [3, 4, 2]; Child:[7, 10, 3,
4, 2, 5, 8, 9, 6, 1]

function, so that after the crossover the sequence only
contains integers.
Additionally, the mutation rate λm and crossover rate
λc are adaptively changed during optimization by rat-
ing the normalized relative improvement of the fitness
caused by the mutation or crossover. This approach is
inspired by the work of Lin et al. (Lin et al., 2003).

2.3 Modeling Approach for Nonlinear
System Identification

Besides a good space-filling of the training data and
good coverage of frequency spectra, the question
arises how the quality of an excitation signal can
be quantified. A straightforward and reasonable ap-
proach is to quantify the quality of an excitation signal
for nonlinear system identification whilst a model is
trained based on the data which is gathered by the ex-
citation signal. While it is too computational expen-
sive and impractical to use this directly in a GA, for
rating the results of the optimization it is well suited.
A deterministic model training is preferable, because
a nondeterministic training would impede the analysis
due to a more complicated distinction of the reasons
of the change of the model performance. One model
architecture which is easy to train by the usage of a
deterministic training method and yields good model
performances, is the architecture of local model net-
works (LMN) (Hartmann, 2013; Nelles, 2013). For
the optimization of the LMN the hierarchical local
model tree (HILOMOT) is used (Nelles, 2006). The
HILOMOT is an incremental tree construction algo-
rithm which divides the input space in an axis-oblique
manner and estimates local models in the created sub-
spaces. The overall model output ŷ is calculated by
the weighted sum of the sub-models ŷi(x) and the val-
idation functions Φi(z) with the subsets x and z of all
inputs u (Nelles, 2006).

ŷ(x,z) =
M

∑
i=1

ŷi(x) ·Φi(z) , where
M

∑
i=1

Φi(z) = 1 (1)

3 LOSS FUNCTIONS AND
OPTIMIZATION PROBLEMS

For rating the space-filling property of a point dis-
tribution, loss functions are required to quantify the
coverage of the points in a space-filling sense. For
the quantification of the coverage of the input space
three different loss function are investigated. The con-
sidered input space in this survey is the NARX input
space X . For the later usage and simplicity they will
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be gathered under the term input space-loss functions
fi.
• Audze Eglais (AE) (Audze and Eglais, 1977)

LAE =
N

∑
i=1

N

∑
j=i+1

1
L2

i j
, where Li j =

∥∥X i−X j
∥∥

2 (2)

• Maximum Projection (MP) (Joseph et al., 2015)

LMP =

{
1(N
2

) N−1

∑
i=1

N

∑
j=i+1

1
∏

p
l=1(xil− x jl)2

}1/p

(3)
• Fast and Simple Dataset Optimization (FA) (Peter

and Nelles, 2019)

LFA =
1
N

N

∑
i=1
|1− q̂(X(i))|, (4)

where q̂(X(i)) =
1
N

N

∑
i=1

e−
1
2 [X−X(i)]T Σ−1[X−X(i)]√

(2π)n|Σ|
,

Σ = diag(σ2
1,σ

2
2, . . . ,σ

2
n)

The AE and MP belong to the maximin distance de-
signs which mainly penalize close points in the input
space. The MP is based on the AE criterion and tries
to extend its projection properties in the subspaces of
the given input space but is computational more ex-
pensive (Joseph et al., 2015). In comparison, the FA
loss function is suited to adjust a data distribution to
a specific probability distribution (Peter and Nelles,
2019). In this study the FA is used to quantify the
similarity of the data distribution of the NARX input
space to a uniform distribution.
The approach to quantify the evenly excitation of the
frequencies is done by describing the mean value and
standard deviation of a normalized single sided am-
plitude spectrum Un. Three different combinations
are investigated and will be gathered under the term
frequency - loss functions f f .
• Mean Value of Normalized Amplitude Spectra

(MAP)

LMAP =−Un =−
1
N

N

∑
i=1

Un(i) (5)

• Standard Deviation of Normalized Amplitude
Spectra (SAP)

LSAP = σUn =

√
1
N

N

∑
i=1

(Un(i)−Un)2 (6)

• Mean Value and Standard Deviation of Normal-
ized Amplitude Spectra (MSAP)

LMSAP =−Un +2σUn (7)

=− 1
N

N

∑
i=1

Un(i)+2

√
1
N

N

∑
i=1

(Un(i)−Un)2

The factor 2 in (7) is used to scale the loss function
into the interval [0,1]. The normalized single sided
amplitude spectrum is calculated as follows:

U(k) =
N

∑
n=1

u(n) · e−i 2π
N kn

U+( f ) =


2U(k) , for 0 < k < N/2−1
U(k) , for k = 0
0 , for k < 0

(8)

Un =
U+

max(U+)
.

It is to note that all loss functions are constructed as
a minimization problem. Each loss function gathered
under the terms fi and f f first is optimized in a SOO.
After that the best of the fi loss functions is combined
with every loss function of f f and investigated via a
MOO.

single-APRBS : min
pp

( fi/ f (X(pp))) (9)

single-GOATS : min
pp,ps

( fi/ f (X(pp, ps))) (10)

multi-APRBS : min
pp

( fi(X(pp)), f f (X(pp))) (11)

multi-GOATS : min
pp,ps

( fi(X(pp, ps)), f f (X(pp, ps)))

(12)

4 EXPERIMENT AND DESIGN OF
TRAINING AND TEST SIGNALS

4.1 Artificial Processes

The following three artificially created nonlinear pro-
cesses are considered:
• First order Hammerstein (hamm1st)

y(k) = 0.2 f (u(k−1))+0.8y(k−1) (13)

• First order Wiener (wiener1st)

y(k) = f (z(k)), (14)
where z(k) = 0.2u(k−1)+0.8z(k−1)

• Second order Hammerstein (hamm2nd)

y(k) = 0.2 f (u(k−1))+0.5y(k−1)+0.3y(k−2)
(15)

The nonlinear static function f (x) of the
Hammerstein- and Wiener-systems is calculated
as follows:

f (x) =
atan(8x−4)+ atan(4)

2atan(4)
(16)
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The optimization of the coverage of the NARX-space
requires information of the process output. Therefore,
a first model of each process is needed. In this study,
a simple linear model is estimated which generates an
approximation of the information without much ef-
fort.

4.2 Training Signals

First the design of APRBSStd, APRBSOpt and GOATS
will be described. Then the design of the sinusoid-
based signals will be delineated. The design of the
OMNIPUS is described in (Heinz and Nelles, 2017).
All excitation signals are set up for different durations
tstop for a better analysis of their properties and the
influences of the loss functions. In example to an-
swer the question if an optimization of the input space
coverage is more important for short signals com-
pared to longer signals. In the design of an APRBS
or a GOATS where all amplitudes should be modu-
lated, the duration of the signal is defined by the se-
quence and the different amount of amplitude levels.
Therefore, first the step-based signals will be com-
pared to their amount of amplitude levels. Later they
will be juxtaposed to the sinusoid-based signals with
similar durations. Four different amounts of levels in
this paper are investigated (26,51,101,167). For the
APRBSOpt, the APRBSStd and GOATS the same am-
plitude levels are considered. The APRBSOpt and the
APRBSStd even share the same sequence. The hold
time of 0.5s is identified by step experiments based
on an assumed sampling period of 0.1s and the sug-
gestions of Nelles to choose the minimum hold time
approximately to the dominant time constant of a sys-
tem (Nelles and Isermann, 1995; Nelles, 2013). In
this study, the amplitude levels can be simply gen-
erated by equidistant points, because a Single-Input
Single-Output (SISO)- System is investigated.
The following settings of the GA have been chosen:
maximum generation nmax,gen = 2500, population size
npop = 220, λc,ini = 0.5 and λm,ini = 0.5. The rates λc
and λm are adapted with ∆ = 0.005 in each genera-
tion during the optimizations according to their per-
formance of the last 10 generations.

The Chirp and Multi-Sine signal are generated
for several durations tstop in the interval [20s,200s]
with a step size of 10s. The Chirp has a linear fre-
quency modulation (f = [1/500Hz− 1Hz]). Each
Multi-Sine signal contains the tstop/2 amount of sine-
waves with equidistant frequencies in the interval f =
[1/500Hz−1Hz] and an optimized Schroeder Phase.
In addition, the system output of each process, gen-
erated by the different excitation signals, is disturbed
with white Gaussian noise with σ = 0.05 and µ = 0.

4.3 Test Signals

The test signal in this survey is a concatenation of
an APRBSStd, a Ramp (Tietze, 2015), a Chirp and a
Multi-Sine. Each signal has the same duration. The
following itemize summarizes the parameter settings
of the signal creation.
• 0s− 500s: APRBSStd: sample period = 0.1s, 50

random amplitudes, hold time = 0.5s

• 500.1s−1000s: Ramp: sample period = 0.1s, 50
random amplitudes, hold time = 0.5s

• 1000.1s−1500s: Chirp: linear frequency modu-
lation, f = [1/500Hz−1Hz]

• 1500.1s−2000s: Multi-Sine: 51 sine-waves, f =
[1/500Hz−1Hz], optimized Schroeder Phase

5 COMPARISON AND ANALYSIS
OF THE TRAINING SIGNALS

The model performances achieved by the different ex-
citation signals on the test data is indicated by the
Normalized Root Mean Squared Error (NRMSE).

NRMSE =

√
∑

N
i=1(y(i)− ŷ(i))2

∑
N
j=1(y( j)− y)2

(17)

In this analysis, an amount of 10000 APRBSs
(APRBS10000) with space-filling amplitude levels and
random permutation are created for each of the two
amounts of amplitude levels 26 and 51 in order to im-
prove the comparability of the optimized step-based
excitation signals to a APRBSStd. All APRBS10000
are used to train 10000 models for each of the three
artificial processes. Figure 2 illustrates the histograms
of the achieved NRMSE of the models on the test
data trained by APRBS10000 for the amounts of ampli-
tude levels 26 and 51 for the hamm1st. Table 1 sum-
marizes all NRMSE values of the different optimiza-
tions. First the loss functions AE, MP and FA belong-
ing to the category of fi are compared in a SOO for the
hamm1st. The results show that the AE and MP have
a comparable effect on the model performance. The
effect of optimizing the input space coverage weak-
ens for more amplitude levels, since the space will be
covered good enough, if just enough amplitude lev-
els are modulated. For the hamm2nd the better pro-
jection feature of the MP does not come into play.
The FA loss function performs better when more data
is available. However, with more data the computa-
tional demand of the FA loss function is quite high
and therefore the loss function becomes inappropri-
ate. In the next step, the influence of the loss func-
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Table 1: Summary of optimization results indicated by the NRMSE.

opt.
type loss

APRBSOpt GOATS
amplitude levels amplitude levels

26 51 101 167 26 51 101 167

SOO

hamm1st

MAP 0.156 0.105 0.114 0.098 0.137 0.112 0.115 0.114
SAP 0.156 0.111 0.094 0.107 0.136 0.136 0.111 0.109
MSAP 0.136 0.113 0.116 0.101 0.229 0.201 0.140 0.157
AE 0.121 0.116 0.113 0.104 0.114 0.095 0.094 0.098
MP 0.109 0.126 0.092 0.106 0.107 0.103 0.111 0.10
FA 0.127 0.110 0.121 0.115 0.178 0.135 0.084 0.076

wiener1st AE 0.147 0.150 0.126 0.138 0.142 0.112 0.106 0.101

hamm2nd AE 0.181 0.175 0.156 0.163 0.156 0.144 0.158 0.170

MOO hamm1st
AE+MAP 0.097 0.111 0.098 0.103 0.120 0.119 0.105 0.105
AE+SAP 0.146 0.121 0.104 0.110 0.311 0.267 0.214 0.183
AE+MSAP 0.150 0.105 0.104 0.107 0.136 0.175 0.119 0.181
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Figure 2: Comparison of the step-based signals with the
histogram of test errors for APRBS10000 for hamm1st.

tions f f is investigated. The performance of the ex-
citation signals which are optimized according to f f
for 26 amplitude levels, is not better than the mean
value of the NRMSE for the APRBS10000 illustrated
in Fig. 2 and Table 1. It is even sometimes worse than
the mean value of the APRBS10000 which leads to the
assumption, that f f does not have the main effect on
the model performance. Another point which under-
pins this assumption is that the GOATS optimized ac-
cording to f f result in quite volatile and sometimes
relatively bad model qualities. The reason for this is
the degree of freedom in the sequence of the GOATS
in contrast to the APRBSOpt. Due to the degree of
freedom the f f can drive the sequence of the GOATS
to short durations so that the equilibrium is not cov-
ered sufficient. For a higher amount of amplitude lev-
els, the achieved model quality for the APRBSOpt and
GOATS optimized according to the f f becomes bet-
ter. This can be explained since the input space will be
covered good enough, if just enough amplitude levels
are modulated.
In addition, all f f also are optimized together with

the AE loss function in a MOO to prove if it can con-
tribute additional information which are not consid-
ered by fi. For these optimizations the modeling per-
formance is in the same range as the modeling quality
of the SOO with fi. Therefore, the optimization ac-
cording to f f does not lead to an improvement of the
modeling quality. The explanation for this is given
by the structure of the step-based signals which limits
the degree of freedom of optimization of the evenly
excitation of all frequencies resulting in too similar
amplitude spectra of the different step-based signals.
For this reason, only the SOO of fi is further consid-
ered for the optimization of the step-based excitation
signals.

Figure 2 shows the comparison of the APRBSOpt
and GOATS optimized with the loss AE in SOO and
the two state of the art step-based signals OMNIPUS
and APRBSStd. The modeling quality achieved by
the different step-based excitation signals is indicated
by the dashed lines. Consider that the APRBSStd
and the APRBSOpt share the same sequence. Fig-
ure 2 indicates that an optimization of the permu-
tation of the APRBSOpt compared to the APRBSStd
leads to an improvement of the modeling quality. Al-
though this improvement is limited due to the de-
gree of freedom of the APRBSOpt. This can be an-
alyzed through the comparison of the achieved model
quality of APRBSOpt to the quality of the GOATS.
The GOATS exceeds the APRBSOpt in all investigated
cases, because it can better cover the space due to
its degree of freedom in the duration of each ampli-
tude level. Consider that similar results are obtained
for the wiener1st and hamm2nd so they are omitted
in Fig. 2 to conserve space. Figure 3 illustrates the
comparison of step-based and sinusoid-based signals
over different signal durations for the achieved model
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Figure 3: Comparison of test errors for step-based and
sinusoid-based signals over signal duration.

quality on the test data. Comparing the OMNIPUS
to the GOATS, the GOATS has a similar performance
except for the hamm1st for the amounts of amplitude
levels 51, 101 and 167 and for the wiener1st with 51
points where it surpasses the OMNIPUS more sig-
nificantly. The GOATS is the only excitation signal
which in all cases significantly outperforms the mean
values of the APRBS10000 (17%−28%).

The Chirp is omitted of Fig. 3 for better visibility,
but it performs like the Multi-Sine. Figure 3 shows
that the step-based signals significantly exceed the si-
nusoid signals in the achievable model quality. Fur-
thermore, the model quality for the different durations
of the sinusoid-based signals is quite volatile. In ad-
dition, the optimized signals like APRBSOpt, GOATS
and OMNIPUS clearly outperform all other excitation
signals for short signal durations. For longer signal
durations (approximately 2− 4 times) the APRBSStd
can achieve a comparable model quality, because with
enough amplitude levels the space will be covered
good, when the amplitude levels which are modulated
to an APRBS are selected with a space-filling crite-
rion.

6 CONCLUSION AND OUTLOOK

The current paper proposes two novel approaches
for the optimization of step-based excitation signals
—APRBSOpt and GOATS — for nonlinear dynamic
system identification. For this purpose, the coverage
of the space spanned by the system’s input and out-
put and the evenly excitation of all frequencies of the

step-based signals have been investigated as objec-
tives for the optimization via a GA. The APRBSOpt
and GOATS are compared with four state-of-the-art
excitation signals (APRBSStd, Chirp, Multi-Sine and
OMNIPUS) on the three artificially created nonlinear
dynamic processes in order to evaluate the expectable
model quality.

Our results show that the optimization of the
space-filling coverage of the step-based excitation
signals leads to a significant improvement of the
model quality compared to the usage of a APRBSStd
for short signal durations. The reason for this is the
avoidance of unexplored areas in the space spanned
by the system’s input and output. In contrast to our
expectation, the results show that our optimization
of an evenly distributed amplitude spectrum does not
yield an improvement of the model quality. This can
be explained by the given structure of the step-based
signals which limits the degree of freedom for the op-
timization of the evenly excitation of all frequencies
resulting in too similar amplitude spectra.

Therefore, the single objective optimization of the
uniform coverage of the space is used for our newly
developed excitation signals APRBSOpt and GOATS.
The APRBSOpt, leads to an improved model qual-
ity compared to the standard APRBS which shares
the same PRBS basis. The improvement is, how-
ever, limited due to its degree of freedom constrained
by the given PRBS. We have found that the GOATS
leads to a significantly higher model quality com-
pared to the state-of-art-excitation signals APRBSStd,
Chirp, Multi-Sine and a slightly higher model quality
in comparison to the OMNIPUS on the three investi-
gated artificial nonlinear dynamic processes. In addi-
tion, the GOATS is suitable for stiff systems, capable
of supplementing existing data and easy incorporation
of constraints.

The present results are limited to the three arti-
ficially created low order dynamical SISO systems.
Therefore, in future research the GOATS has to be in-
vestigated for higher dimensional, higher dynamical
order and real world systems. Another future research
topic is the investigation of new loss functions for the
optimization.
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