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Abstract: Engineering efforts are one of the major cost factors in today’s industrial automation systems. We present
a configuration system, which grants a reduced obligation of engineering effort. Through self-learning the
configuration system can adapt to various tasks by actively learning about its environment. We validate our
configuration system using a robotic perception system, specifically a picking application. Perception systems
for robotic applications become increasingly essential in industrial environments. Today, such systems often
require tedious configuration and design from a well trained technician. These processes have to be carried
out for each application and each change in the environment. Our robotic perception system is evaluated on
the BOP benchmark and consists of two elements. First, we design building blocks, which are algorithms and
datasets available for our configuration algorithm. Second, we implement agents (configuration algorithms)
which are designed to intelligently interact with our building blocks. On an examplary industrial robotic
picking problem we show, that our autonomous engineering system can reduce engineering efforts.

1 INTRODUCTION

Continuously increasing need for autonomous and
dynamic industrial production lines leads to an ongo-
ing spread of robotic solutions as well as an increas-
ing requirement for autonomous robotic interactions.
State of the art industrial robotic systems are config-
ured manually by experienced and trained engineers.
Our goal is to solve robotic engineering tasks auto-
matically, by learning optimized solutions for each
environment. We do this by implementing learning
algorithms and utilizing common interfaces such as
the OpenAI Gym toolkit (Brockman et al., 2016) to
interact with our environment in a standardized way.
This enables an effortless exchange of learning algo-
rithms independent of the environment. To evaluate
our robotic perception system, we are utilizing the
publicly available and commonly used BOP bench-
mark (Hodaň et al., 2020).

As an applicable precedent for industrial robotic
engineering tasks, we designate robotic picking prob-
lems to be well suited. Finding optimal 6D object
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poses (consisting of the object’s position and orienta-
tion in a 3D space) in a scene for industrial robotic
picking applications is essential and has been devel-
oped rapidly in recent history. Not only does this tech-
nology offer a vast field of applications, it has also
been shown to be successful enough to lift future bur-
dens in industrial settings. Nevertheless, today such
systems still bear a major challenge, which is the need
of adaption and configuration to the task by a trained
engineer. This process is time consuming and expen-
sive. Therefore, we are introducing a novel approach
for the furtherance of autonomous engineering. By
utilizing learning techniques, we instigate the robots
autonomous adaption to new and challenging situa-
tions, such as different environments, objects, reflec-
tion types, occlusions, shadows, illumination or ob-
ject surface structures.

Applications for our approach lie in the field of
robotic picking in industrial environments of multiple
ordered or unordered objects with challenging surface
structures (textureless / highly reflective), object han-
dling from industrial linear transport lines as well as
assembly tasks.
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Figure 1: Illustration of the configuration system on an exemplary task. The configuration algorithm (agent) chooses operators
out of a given set, considering the scene input data (input images and object models) and generates a resulting pipeline. Green
lines on the result images indicate the currently estimated position of the object. In this pipeline, operators are chosen to refine
the estimated 6D object pose, until a successful pick is achieved by the robot.

1.1 Contribution

Our approach combines two elements. First, we trans-
fer the operative elements (in our case the 6D pose es-
timation, refinement and scoring functions, as well as
the datasets) into formally modeled building blocks.
This is needed for generating well-designed inter-
faces, which are essential for our configuration algo-
rithm to function properly. Second, we apply the con-
figuration algorithms (being categorized as: hypothe-
sis generation, hypothesis refinement and hypothesis
scoring). We demonstrate a set of learning approaches
(including reinforcement learning and an evolution-
ary method), which interact with our formally mod-
eled blocks, utilizing the standardized interfaces as
defined by the OpenAI Gym toolkit. The main contri-
butions of this paper comprise:

• A systematic organization of our procedural
knowledge in the form of building blocks as well
as suitable interfaces for perception tasks.

• The evaluation of configuration algorithms which
interact with our building blocks.

• A thorough investigation of the interaction of our
configuration algorithms with our building blocks
and the evaluation of all interacting elements with
a focus on the task of 6D pose estimation for in-
dustrial robotic applications.

2 RELATED WORK

In this work, three essential elements are combined
together. First, for our specific demonstrative appli-
cation, 6D pose estimation algorithms are utilized to
solve robotic picking tasks in simulation. Second, the
configuration elements, including the 6D pose estima-
tion algorithms as well as different datasets, are de-
scribed as formally modeled building blocks in order
to allow for a standardized interaction. Third, learn-
ing algorithms interact with those building blocks
through a standardized interface (where we chose
OpenAI Gym). In this section we present the related
work of each of those elements.

2.1 Robust 6D-Pose Estimation

Fast and robust image-based object detection algo-
rithms are essential for industrial robotic picking
pipelines. Various algorithms were introduced in the
past, each having individual benefits and drawbacks.
Some algorithms show high robustness, but only for
textured and Lambertian objects (Lowe, 2004; Sun
et al., 2011; Yeh et al., 2009). Lambertian objects
exhibit ideal diffuse reflection and are well-studied.
More complex challenges can be targeted in various
ways. A popular approach is the use of depth sensors
and RGB-D cameras (Choi and Christensen, 2016;
Tang et al., 2012; Song et al., 2017) to find a stable so-
lution. Using multi-view imaging, a non-Lambertian
reflection can be suppressed during computation by
enforcing a Lambertian estimation, which is robust
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Figure 2: Picture from the view of the robotic arm and a 3D point-cloud illustration from a side view. Shown from both the
initial position as well as the optimized position which results in a successful pick.

to outliers (Hailin Jin et al., 2003). This approach
got special attention in the field of light field imag-
ing (Wanner and Goldluecke, 2013). Photometric
stereo can be used to model higher order reflections
by placing multiple light sources in a systematic po-
sition towards the scene (Chen et al., 2020).

Many such approaches are complementary to each
other and are applicable in special environments (e.g.
high depth variations, symmetries, surface reflec-
tions). We demonstrate a formal modeling structure,
which allows for dynamic combinations of various al-
gorithms and hence enables the selection of the op-
timal combination of algorithms for each individual
problem (e.g. unordered and highly reflective objects
in a bin together with symmetric matte samples).

2.2 Hierarchical Modeling

Human engineers perform hierarchical tasks given
their prior experience and ability to reason by taking
a sequence of actions. This is a complex process and
enables taking abstract decisions even for unknown
environments. To achieve this with a configuration
algorithm, abstract models are required to translate
these sets of actions to well-defined executable rou-
tines.

For these action spaces, hierarchical planning can
be used to find optimal results. While for small action
spaces, a simple search or brute-force approach can
find a sufficient solution, hierarchical planning can be
used to find improved solutions for large action spaces
and/or time consuming action evaluations. In such
cases a simple search would not succeed. Therefore, a
large problem is factorized and abstracted with a self-
defined model. For our problem, we reduce the action
space by a different approach. Instead of using self-
defined models, we learn models for an abstraction
layer in order to take successful steps in large or costly
action spaces.

Prior knowledge of human engineers can be inter-
preted as strategically developed intuition about the
behavior and use of building blocks, which are easy
and cheap to simulate. We connect such blocks in
the best prior estimated way (e.g. use the most ef-
ficient sequence of optimizers) in order to fulfill a
specific goal (e.g. pick an object with an industrial
robot). By utilizing the hierarchical modeling struc-
ture demonstrated in (Kast et al., 2019), we provide
standardized interfaces for a structured management
of 6D hypothesis generation, refinement and scoring
operations. This permits us to use and combine differ-
ent approaches (blocks) for planing, learning as well
as finding optimal solutions.

2.3 Learning Algorithms

We utilize machine learning approaches on the exam-
ple of robotic picking solutions, where the learning
algorithms automatically configures and refines pa-
rameters for a given scene. Industrial tasks of such
nature are today still solved by human engineers. Our
approach will allow for a faster deployment and re-
duce the required ongoing engineering efforts. Such
directions of industrial robotic automation were pre-
viously discussed in e.g. (El-Shamouty et al., 2019;
Kleeberger et al., 2020).

Our configuration algorithm decides which action
(e.g. a specific optimization algorithm) to perform
next in a given situation (e.g. pick a metallic item
from an unordered box). We are demonstrating this
by implementing configuration algorithms such as re-
inforcement learning algorithms and evolutionary ap-
proaches.

Previously, automatic decision making for large
action spaces in unknown environments was targeted
by approaches such as AutoML (Hutter et al., 2018).
AutoML makes machine learning more accessible by
reducing the need of human expertise. It takes a
dataset, optimization metric and constraints as input
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and finds a suitable machine learning model for the
task. Another approach for predicting the best success
in specific areas is matrix factorization. This was suc-
cessfully employed for recommender systems (Koren
et al., 2009). The goal is to predict the best ratings
for a specific task (or user) in a matrix of options.
A method for parameter optimization in large spaces
was presented by (Hutter et al., 2011) (“SMAC”),
which aims to solve general algorithm configuration
problems.

We approach the problem by forming our action
space based on building blocks of procedural knowl-
edge. These building blocks are 6D pose (estima-
tion / refinement, and scoring) algorithms, which per-
form differently in varying environments (e.g. diffi-
cult surface structures or object shapes). Additionally,
our used and acquired datasets are also formulated in
building blocks. Our configuration algorithm learns
how to pick the best 6D pose algorithm for a given
task (e.g. pick a shiny object) under a defined state
(e.g. current position evaluation).

3 PERCEPTION PIPELINE
ENGINEERING

We implement an operator library which facilitates
the standardized and dynamic selection and param-
eterization of the formally modeled 6D pose algo-
rithmic elements. We implemented three types of
such elements, namely, blocks for hypothesis gener-
ation for 6D object poses, hypothesis refinements as
well as hypothesis scoring elements. The latter are
used to evaluate the current position. Each opera-
tor element is modeled using a hierarchical model-
ing and planning structure as discussed in Sec. 2.2.
The formally modeled algorithmic elements will be
described in the following conceptually. The specific
implementations for our examplary application (in-
dustrial robotic picking) will be described in Sec. 5.1
for each element. Additional formally modeled but
non-algorithmic elements are datasets, which will be
described in Sec. 5.2.

3.1 Hypothesis Generation

In our work we deal with a subproblem of robotic
picking tasks, namely the 6D pose estimation of ob-
jects. The initial step for our 6D pose estimation is the
generation of a hypothesis h0 ∈ R6 with a generation
operator OG:

h0 = OG(I),
where I∈Rm×n×c×k is a set of rectified images of size
m×n with k observed viewing angles and c color and

depth channels (1 for black and white, 3 for RGB and
4 for RGB with depth). Additional parameters are
required for specific implementations, as described in
Sec. 5.1.1. Our configuration algorithm can either ini-
tialize with a single shot pose estimation algorithm or,
for systematic evaluation, a randomized initialization,
where the degree of randomization is controlled via a
parameter.

3.2 Hypothesis Refinement

After a successful initial hypothesis generation, we
offer a set of pose refinement operators. Such opera-
tors take a pose and infer an optimized pose hypothe-
sis vector h by applying an operator OR at the iteration
t as follows:

ht+1 = OR(ht ,I,ρ),

where the extrinsic camera parameters ρ ∈ R6×k and
the set of rectified images I are required as input.

3.3 Hypothesis Scoring

Our hypothesis scoring operators OS take a 6D pose
ht as well as the input image stack I and infer the ac-
curacy of the current estimation by returning a score
value Ψ as follows:

Ψ = OS(ht ,I).

4 CONFIGURATION
ALGORITHMS

In order to combine the created building blocks (de-
scribed in Sec. 3), we model suitable configuration al-
gorithms (in the literature often referred to as agents).
For comparison purposes we model several configura-
tion algorithms to demonstrate their performance. As
a baseline model we design an agent to take a random
choice from a given set. Other used approaches (e.g.
policy gradient, evolutionary method, simple agent)
have more complex interaction patterns. In the fol-
lowing we will first define terms and approaches used
throughout the paper, then describe our configuration
algorithms in more detail.

The learning process (S ,A , f ,r) consists of a state
space S described as a vector, a discrete action space
A , a state transition function f : S ×A 7→ S , to map
a state st ∈ S at iteration t to the next state st+1 ∈ S .
A reward R : S 7→ r is followed by each action. We
define the trajectory (sequence of states s, actions a
and rewards r) as:

τ = {st ,at ,rt}t∈{t0,...,tH},st ∈ S ,at ∈ A ,rt ∈ R, (1)
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where t0 denotes the first iteration and tH the terminat-
ing event (e.g. terminal iteration with pick operation).
Our goal is to maximize the reward:

max
τ

R(τ),

by finding the optimal trajectories.
In our operative environment, the configuration al-

gorithm receives a state input, which is a vector of
scores, at every iteration t. These scores are deter-
mined by various algorithms to evaluate the current
situation (e.g. depth accuracy, position accuracy of
the current 6D-position estimate). The agent learns
an interpretation of this vector and infers the optimal
next step using a policy. A neural network can func-
tion as such a configuration algorithm in order to in-
fer the appropriate next choice (best expected result in
terms of accuracy and computation time for the cur-
rent score values). Our implemented configuration al-
gorithms are described in the following.

4.1 Random Agent

A random agent is a basic approach which takes a uni-
formly distributed random choice under all possible
actions. The agent receives a set of c action choices
at iteration t:

at = (at,k)k∈{1,...,c} ∈ Nc. (2)

We choose an action by determining k randomly
(from a uniform distribution). The action at,k results
in a reward rt ∈ R.

4.2 Simple Agent

A simple agent has a basic memory system and
chooses either a random action or the best memorized
one. Just as the random agent, this agent also receives
a set of c action choices at iteration t (see Eq. (2)). The
action is chosen by a ξ-weighted choice of k. With a
probability of p= ξ, where ξ∈ {0, . . . ,1} is a uniform
distributed random number, the action element with
the index k is chosen. With a probability of p = 1−ξ

the best memorized value is taken. The memory is
updated for all possible choices at each iteration t by
the received reward. This is achieved using a running
average:

mat =
1

nat

·
(
mat−1 · (nat −1)+ rt

)
,

where na denotes the current number of update calls
for each action. Note with ξ = 1 the simple agent
would behave as our random agent.

4.3 Policy Gradient Reinforcement
Learning

With a policy gradient reinforcement learning
method, we utilize a learning approach, where the
agent (policy network) takes a state vector st,k ∈ R,
where k ∈ {1, . . . ,n} represents the n input elements,
and returns a probability distribution over actions
P(A |S). We are sampling this probability distribu-
tion to retrieve our next action. The state st,k holds a
score, which reflects the quality of the current state.
Our neural network model consists of two linear lay-
ers, the first followed by a tanh activation function and
the second by a softmax function.

4.4 Evolutionary Reinforcement
Learning

We also adapt an evolutionary strategy, where we are
maximizing the fitness of a set of n agents Gt,i, i ∈
{1, . . . ,n}, at iteration t, by maximizing the reward r
of the agent over the episode length l:

max
rGt,i

1
l

l

∑
j=1

rGt,i, j .

An agent with superior neural network weights
(large rGt,i ) bears better traits to solve the task and will
show high performance in the given environment (e.g.
picking shiny objects from an unordered bin). The
best performing agents are used to create new popu-
lations of neural networks, by breeding and mutating.
We choose the best two agents to breed the next pop-
ulation of agents Gt+1,i by n random combinations of
their weights. More specifically, weights are either
picked from the first or the second best agent, by an
equal division of 50% for each. It is randomly deter-
mined which weights are chosen from which agent:

X
(

1, . . . ,
n
2
−1

)
wr1 +X

(n
2
, . . . ,n

)
wr2 ,

where X ∈ Nk,m is a matrix of randomized index val-
ues of the size k×m of the best performing weights
wr1 and wr2 . The neural network for each agent con-
sists of three linear layers, the first two are followed
by a tanh activation function and the last by a softmax
function.

5 EXPERIMENTAL BUILDING
BLOCKS

For our experimental evaluation we implemented and
utilized two base types of building blocks. First, algo-
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rithmic building blocks for 6D pose hypothesis gen-
eration, refinement and hypothesis scoring. Second,
dataset blocks, which provide access to both bench-
mark datasets as well as our real world dataset collec-
tion.

5.1 Algorithmic Building Blocks

In the following we describe the implementation of
our algorithmic building blocks. These formally mod-
eled blocks are implemented in a way to enable a stan-
dardized interaction. Each block belongs to one of the
following three categories: hypothesis generation, hy-
pothesis refinement or hypothesis scoring. Hypothe-
sis generation algorithms generate initial 6D pose hy-
potheses using object models as well as input image
data (e.g. RGB image + depth image). Hypothesis
scoring algorithms take a 6D pose hypothesis as well
as input image data and return a value, which reflects
the estimated accuracy of the current position. Hy-
pothesis refinement algorithms take such initial ob-
ject poses and refine them, utilizing optimization al-
gorithms and taking scoring algorithms into account.

5.1.1 Hypothesis Generation

In this section we describe a set of utilized algorithms
which generate an initial hypothesis h0 ∈R6, as intro-
duced in Sec. 3.1.

Single Shot Pose Estimation Algorithm. The al-
gorithm, presented in (Tekin et al., 2017), predicts the
6D pose of an object from an input image using an
end-to-end CNN (Convolutional Neural Network) ar-
chitecture.

To achieve this, we apply an operator OGS at the
first iteration on a set of rectified images I ∈ Rm×n×k:

h0 = OGS(I,ρ).

Where k defines the viewpoints and the image grid
size is m× n. Extrinsic camera parameters are de-
fined as ρ ∈ R6×k, consisting of translation and rota-
tion from the camera to the world coordinate system.

This method can handle occlusions and allows for
real-time processing. Fast computational speeds can
be achieved due to omitting the need for additional
post-processing, which most other algorithms of this
category require. This algorithm is using a pre-trained
network. For tailoring it to a specific dataset or set
of objects, another training sequence is suggested for
updating the weights.

Simulated Initialization. For strategic evaluation
purposes we implemented a simulated initialization

for our generated hypothesis h0 ∈ R6. The simulated
initialization algorithm which takes our ground truth
hypothesis:

ĥ = (ĥp, ĥo)

as input and adds random Gaussian noise on the posi-
tion ĥp and orientation ĥo components. The degree of
randomization can be varied systematically with the
parameter λ ∈ R+. Hence our operator OGI is called
at the first iteration as follows:

h0 = OGI (ĥ,λ),
where λ = 0 initializes with the given ground truth.

5.1.2 Hypothesis Refinement

In this section we describe a set of utilized hypothesis
refinement algorithms which function as such opera-
tors OR, as introduced in Sec. 3.2.

ICP Refinement. First, we model an Itera-
tive Closest Point (ICP) algorithm as presented
by (Rusinkiewicz and Levoy, 2001). ICP is a well-
established (Arun et al., 1987) procedure for itera-
tively fitting 3D models and 3D point clouds when
an initial hypothesis prediction exists. We formulate
the open source implementation from Open3D (Zhou
et al., 2018) as a building block, which we will call
PCD-ICP (Point Cloud ICP).

D2CO Refinement Methods. Then, we utilize the
Direct Directional Chamfer Optimization (D2CO)
method, presented in (Imperoli and Pretto, 2015),
which refines 3D object positions. It processes gray-
level images and promotes using a 3D distance called
Directional Chamfer Distance (Liu et al., 2012). The
method targets handling textureless and partially oc-
cluded objects at a high processing speed while not
requiring an offline learning step. To achieve this, it
is employing non-linear optimization procedures.

The D2CO framework (Imperoli and Pretto, 2015)
additionally provides a set of comparison algorithms.
The set comprises the Directional Chamfer Distance
ICP (DC-ICP), Simple Chamfer Matching optimiza-
tion, an ICP implementation that exploits the Cham-
fer Distance (C-ICP) and a direct optimization proce-
dure (a simple coarse-to-fine object registration using
Gaussian pyramids of gradient magnitudes images).
DC-ICP showed state of the art results but required
many iterations to converge and hence is quite slow.
Within this framework, other algorithms (such as LM-
ICP or direct optimization) were shown to perform
weaker but with a significant speed improvement. C-
ICP showed a lower registration rate as well as a high
computational time for the tested objects.
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Depth Refinement. Additionally, we implemented
a depth refinement algorithm, which was first men-
tioned in (Dietrich et al., 2019). It is taking a given
pose hypothesis ht and refining it along the ray from
the optical frame to the pose hypothesis. The amount
of the shift is defined by the distance between the in-
put depth image and the rendered depth image.

In different environments (objects can be e.g.
shiny, matte, symmetric, unordered), our hypothe-
sis refinement building blocks can exhibit varying
strength and weaknesses, which affect their perfor-
mance. We show that combining such algorithmic
building blocks in a strategic way allows for the uti-
lization of the strength of each algorithm in an op-
timal way. This combination leads to a superior 6D
pose estimation result for a given scene and state. To
achieve this, we set up and implement configuration
algorithms in order to learn the best combination dy-
namically for various environments.

5.1.3 Hypothesis Scoring

In this section we describe a set of utilized algorithms
which generate scoring values for a current 6D pose
hypothesis, as introduced in Sec. 3.3

D2CO Scoring. This method (as described in
Sec. 5.1.2) comes with a scoring function, which is
based on local image gradient directions. It uses an
L1 penalty and allows for outliers.

ΨC =
1
l

l

∑
p=1
|cos(GIp −NJp)|

Here, Ip denotes the gray scale image at the position
p= (x,y) on a discretised surface with a size of m×n,
l defines the number of cloud elements, and Jp de-
notes the projected point cloud element. The gradient
of the image is defined as:

GIp = (GIp,x ,GIp,y ,1)

while the normal direction NJ is calculated for the
projected point cloud Jp with:

NJp = (NJp,x ,NJp,y ,NJp,z).

Depth Scoring. We implement a depth scoring met-
ric ΨD, which is combining two depth scores:

ΨD = (M1 +M2).

For the computation of the score a depth image of
the object hypothesis is rendered and compared with
the input depth image. The operator computes the fol-
lowing scores:

(a) LM (b) Our industrial dataset

Figure 3: Dataset examples from the BOP Bench-
mark (Hodaň et al., 2020) (LM) and our industrial dataset
(covers). The latter depicts an example of one of our typical
industrial dataset types.

• M1: Percentage of measured points on the object
with a depth distance between the depth map D to
the given depth map D̂ lower than a parameteriz-
able threshold (0.005 meter).

• M2: Percentage of measured NaN points on the
depth map D of the observed object.

This metric computes a likelihood of D holding
accurate depth values.

5.1.4 Pick Operator

In our simulated environment, we additionally imple-
mented a “pick” operator. This operator measures the
distance of the current 6D pose to the 6D ground truth
pose. If the distance is below a defined threshold of
accuracy, the pick is defined as “carried out success-
fully”, otherwise it failed. This threshold was defined
from experience and set to a value so that only a small
deviation from the ground truth is allowed both in po-
sition and rotation. In a real world scenario the suc-
cess of the “pick” is defined by whether the object was
grabbed and held by the robotic arm.

5.2 Dataset Blocks

We combine our algorithmic building blocks
(Sec. 5.1) using the previously defined configura-
tion algorithms (Sec. 4). Our goal is to find the
optimal trajectory τ (Eq. 1) for our robotic picking
application. Note that the trajectory τ defines our
sequence of perception operators. For every scene,
a less time intensive trajectory, which ends with a
successful pick operation is superior to a trajectory,
which consumes more time until the successful
terminal operation. For this evaluation we are using
both, datasets with ground truth information from
the BOP benchmark as well as self-acquired real
world datasets. In the following we describe the
implementation of our dataset building blocks. By
formally modeling our dataset blocks we enable a
standardized interaction.
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5.2.1 BOP Benchmark

The BOP benchmark provides scenes for 6D pose
estimation, where multiple objects are present. The
benchmark contains 11 public datasets which come
with RGB-D images, 3D object models, 6D ground
truth object poses as well as intrinsic camera param-
eters. Additionally, the datasets comes with a tool-
box, which can be utilized to handle the data. We
are using the Linemod (LM) benchmark, illustrated
in Fig. 3a, to evaluate our setup and algorithms. It
contains 15 different scenes with a total of 18273
images, comprising textureless as well as industry-
relevant objects, which are two important categories
for our industrial robotic picking task. We are using
this dataset for evaluating our configuration system.

5.2.2 Our Real World Dataset

This dataset was acquired in our lab. It consists of
several acquisitions of covers (see Fig. 3b), which are
placed in a bin. The dataset was acquired with diffuse
illumination and a roboception visard 160 color cam-
era and consists of 436 acquired scenes. Throughout
the project we used this dataset for internal quanti-
tative and qualitative comparison of the standardized
BOP benchmark with our industrial real world acqui-
sitions. The ground truth was manually annotated.

6 EXPERIMENTAL RESULTS

We evaluate the use of our formally modeled building
blocks (see Sec. 3) by an configuration algorithm (see
Sec. 4). To achieve this, we are utilizing the defined
datasets (see Sec. 5.2) to demonstrate the performance
of our proposed algorithms. Our dynamic framework
for procedural knowledge (building blocks) plays an
integral part by enabling a structured use and provid-
ing clear interfaces to our algorithmic models.

6.1 Setup

Our test setup takes a specific input dataset and ini-
tializes the first hypothesis h0 with a hypothesis gen-
eration algorithm. At each iteration t, the configu-
ration algorithm gets a set of possible actions a and
chooses from that set (as described in Sec. 4). If the
configuration algorithm arrives at the pick action and
is successful, the process is terminated. We measure
success in time until the successful pick for each test-
case. A failing pick operation would result in a return
of a negative time penalty reward and the algorithm
continues with the next chosen operator.

We are splitting the LM BOP dataset in two dis-
joint test- and training-sets, for all algorithms which
have a training sequence included. All image IDs are
randomly assigned to one of the two sets.

6.2 Evaluations

Quantitative evaluations are presented using the LM
samples from the BOP Benchmark dataset (see
Sec. 5.2.1). We compare four configuration algo-
rithms (random agent, simple agent, policy gradient
and evolutionary approach) using three metrics (num-
ber of operations, computational time, % of success-
ful first pick operations), as shown in Fig. 5. All
evaluations are carried out using an increasing noise
level λ for the initial hypothesis generation opera-
tion. Specifically, we used noise levels up to λ = 1.0
(where λ= 0 would evaluate the initialization with the
ground truth position), illustrations of initialization
examples with each noise level are shown in Fig. 4.
Note, that the noise both on the position and orien-
tation is normally distributed and varies in extend by
this random factor. In the following we describe each
metric and discuss the results.

6.2.1 Number of Operations

The number of operations a configuration algorithm
requires before a successful pick operation (object
was localized with the specified precision around the
ground truth, such that a pick would be possible) is a
time-independent quality measure. Ruling out the op-
timization of the computation time of each algorithm,
this measure focuses solely on the number of steps
(hypothesis refinement algorithm calls), which were
required to reach a successful pick operation.

An evaluation is shown in Fig. 5a, where the quar-
tile range of the result values on the dataset at each
observation (λ noise values) is indicated with a ver-
tical line. The mean value is at the position of the
interception with the dotted line (interpolated values
between λ level observations). A configuration algo-
rithm which takes fewer operations to arrive at a suc-
cessful pick operation is considered superior. Over
all noise levels, the random agent showed the worst
results. This serves as a baseline for our other al-
gorithms. The simple agent performed significantly
better in situations with low noise, where few op-
eration steps are sufficient, but increasingly worse
with higher λ values. The evolutionary reinforcement
learning strategy showed stable, but not optimal, re-
sults over different noise levels. Because of the high
computational efforts (several days of execution) of
that algorithm, we used a small number of agents and
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λ = 0.0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5

λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9 λ = 1.0 λ = 1.1

Figure 4: Examples of randomized noise levels from no noise (λ = 0.0) to noise level λ = 1.1 (as described in Sec. 5.1.1).
Noise is added on the 3-dimensional rotation and translation of the object position.

(a) Number of operations (b) Time (c) % First pick successful

Figure 5: Comparison of methods on the BOP LM dataset (see Sec. 5.2.1). Three types of metrics (see Sec. 6.2) were used
with noise levels λ ∈ {0.1, . . . ,1.0} (see Sec. 5.1.1).

iterations. This can be overcome be optimizing / par-
allelizing algorithmic components.

6.2.2 Computation Time

In Fig. 5b we evaluated the algorithms by the total
computation time required to reach a successful pick
averaged over all samples. The graph type is the same
as described in Sec. 6.2.1, where the quartile range for
each configuration algorithm and λ noise value is in-
dicated by a vertical line. The evolutionary reinforce-
ment learning strategy shows the worst computational
performance, followed by the random agent. While
the simple agent shows a better performance over all
noise level, the best performing strategy in total time
until a successful pick per sample is the policy gra-
dient algorithm. Note, that the configuration agent
takes the computation time into account, as the time
is returned as a negative reward component of the re-
ward created for each action. Future work will cover
the improvement of computation time through paral-
lelization as well as optimal data handling.

6.2.3 Successful First Picks

This metric evaluates how often a running algorithm
is correctly choosing the “pick” operator, when cho-
sen the first time in the sequence. Consider our op-
erational elements: hypothesis generation (agen) , hy-
pothesis refinement (are f ) and pick operator (apick). A
configuration algorithm which chooses the following
sequence (0 indicating that the simulated pick failed
and 1 a successful pick operation):

{agen,are f ,apick→ 0,are f ,apick→ 1}

would arrive at a successful pick after 5 operations
(value 5 in “number of operations”, as shown in
Fig. 5a). In the metric of successful first picks, it
would receive the value 0. Contrary, this sequence
would receive the value 1 (with value 5 in “number of
operations”):

{agen,are f ,are f ,are f ,apick→ 1}.

We are expressing the results as percentage of suc-
cessful first pick operations. The evaluation is shown
in Fig. 5c, where a higher value indicates a better
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performance. Note that, although the overall perfor-
mance of the evolutionary reinforcement algorithm is
superior to the random agent, it shows fewer success-
ful first picks. This indicates, that a higher improve-
ment can be achieved by allowing for more agents
and iterations (which requires a compensation of the
run-time by parallelization). The simple agent shows
a better successful pick performance than the ran-
dom agent over all noise levels. The best performing
method in this metric is our policy gradient agent.

We evaluated the performance of all three metrics
additionally on our industrial dataset, which showed
comparable results in all categories.

7 CONCLUSIONS

Industrial production processes have a continuously
increasing need for flexible and dynamic robotic so-
lutions. Today, this often requires long and tedious
configurations by well-trained engineers. Such pro-
cesses are both costly and time consuming. We target
this problem by learning optimized solutions, appli-
cable for a wide range of industrial tasks and environ-
ments. As an applicable precedent for such industrial
robotic engineering tasks, utilize the field of robotic
picking.

We demonstrated our systematic approach of for-
mulating procedural knowledge in building blocks
and creating standardized interfaces. We evaluated
specific configuration algorithms which were tasked
to choose such building blocks in an optimal order.
This was enabled by another standardized interface
for learning algorithms, namely the utilization of the
OpenAI Gym interface.

We showed, that an improvement of performance
with respect to a random or simple approach (as
could be performed by an engineered pipeline) can be
achieved for the task of 6D pose estimation for indus-
trial robotic picking for various scenarios (datasets).
From all evaluated configuration algorithms, the pol-
icy gradient approach achieved the most superior per-
formance. We successfully demonstrated the gen-
eral feasibility of our approach on the public bop-
benchmark.

We demonstrated the setup and use of config-
uration algorithms and formally modeled building
blocks, both utilizing standardized interfaces (the
OpenAI Gym interface and a framework for hierar-
chical modeling respectively). This standardization
enables the dynamic connection of a wide range of
formally modeled building blocks and configuration
algorithms. The more elements are available through
these frameworks, the more powerful our solution be-

comes. This will allow for a dynamic adaption to
a vast range of environments and objects with com-
plex shapes, surface reflection behaviors and textures.
Hence, one aspect of future work will lie in dimen-
sional scaling, such that our system holds numer-
ous elements (building blocks and configuration al-
gorithms). Other aspects of future work will cover
the improvement of computational time of different
algorithmic components or the increase of computa-
tional power (e.g. by parallelization, using services
such as server clusters), enabling the evaluation of
a wider range of learning algorithms, as well as the
transfer of our algorithmic ideas to different areas of
industrial robotic applications.
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