Python and Malware: Developing Stealth and Evasive Malware without
Obfuscation

Vasilios Koutsokostas! and Constantinos Patsakis!~2

Unstitute of Problem Solving, Department of Informatics, University of Piraeus, Piraeus, Greece

2Information Management Systems Institute, Athena Research Center, Artemidos 6, Marousi 15125, Greece

Keywords:

Abstract:

Malware, Antivirus, Python, Evasion, Sandbox.

With the continuous rise of malicious campaigns and the exploitation of new attack vectors, it is necessary to

assess the efficacy of the defensive mechanisms used to detect them. To this end, the contribution of our work
is twofold. First, it introduces a new method for obfuscating malicious code to bypass all static checks of
multi-engine scanners, such as VirusTotal. Interestingly, our approach to generating the malicious executables
is not based on introducing a new packer but on the augmentation of the capabilities of an existing and widely
used tool for packaging Python, PylInstaller but can be used for all similar packaging tools. As we prove, the
problem is deeper and inherent in almost all antivirus engines and not PyInstaller specific. Second, our work
exposes significant issues of well-known sandboxes that allow malware to evade their checks. As a result,
we show that stealth and evasive malware can be efficiently developed, bypassing with ease state of the art

malware detection tools without raising any alert.

1 INTRODUCTION

Adversaries are continually trying to attack systems,
to gain access to information and other resources.
This leads to a continuous arms race that has signif-
icantly augmented the sophistication of the methods
used to penetrate systems and, to a lesser extent, those
deployed to protect them. Therefore, novel security
mechanisms are developed using advanced methods
to detect malicious patterns exploiting all possible
features, using machine learning and artificial intel-
ligence methods in the past few years. However, the
adversaries are crafting complex new attacks, exploit-
ing the human factor, and often resort to encryption
and other obfuscation methods to hide their malicious
traffic and actions.

Malware, a piece of software that is crafted to per-
form a malicious task in a computing system, is a
problem which has plagued computing systems for
decades. Furthermore, the relatively recent introduc-
tion of cryptocurrencies has significantly changed the
cybercrime ecosystem as it has provided a simple
monetisation method with some privacy guarantees.
Indeed, as reported by several sources, cybercrime
has become a multi-billion underground economy
with such economic impact ((IC3), 2019; Thomas,
2020) that the World Economic Forum considers it the

Koutsokostas, V. and Patsakis, C.
Python and Malware: Developing Stealth and Evasive Malware without Obfuscation.
DOI: 10.5220/0010541501250136

second most-concerning threat to global commerce
over the next decade (Forum, 2020).

The main pillars for detecting and analysing mal-
ware are static and dynamic analysis (Gandotra et al.,
2014). In the former, there is no execution of the file
under inspection. Therefore, we try to correlate pat-
terns in every aspect of the file that can be collected
without executing it, including but not limited to im-
ported libraries, file segments, API calls, strings, file
structure, entropy, etc. On the contrary, in dynamic
analysis, we open and/or execute the file in a con-
trolled testing environment (sandbox) to identify what
this piece of software does. In this regard, we keep
track of every possible network interaction, filesys-
tem change, memory dump, processes etc. (Or-Meir
et al., 2019), replicating a real-world host environ-
ment. Moreover, one may debug the binary to execute
it, possibly line by line, to understand what it does and
how, and even manipulate its behaviour.

The above methods are well-known to malware
authors who try to bypass them by introducing ob-
fuscation and other anti-analysis methods (Branco
et al., 2012). Modern malware frequently uses pack-
ers and encryption to obfuscate their contents and by-
pass static analysis checks by generating new binaries
with different static properties. Similarly, they are
often armoured with evasion methods to bypass dy-

125

In Proceedings of the 18th International Conference on Security and Cryptography (SECRYPT 2021), pages 125-136

ISBN: 978-989-758-524-1

Copyright (© 2021 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

SECRYPT 2021 - 18th International Conference on Security and Cryptography

namic analysis. Thus, they perform specific checks in
the system to determine whether they are being exe-
cuted in a virtual environment and if known protec-
tion mechanisms typical of sandboxes are running,
and can assess their execution mode to tell whether
they are being debugged (Issa, 2012). If any of these
checks is positive, the malware typically changes its
behaviour to harden and slow down its analysis. All
the above can come under one umbrella to facilitate
malware evasion by simultaneously packing the bi-
nary and armouring it with a myriad of evasion meth-
ods (Litd et al., 2018).

The main goal of this work is to assess the effort
and methods needed to create stealth malware. We
define this stealth concept in an objective and repeat-
able way. More precisely, we consider that a malware
sample is stealth if (i) it achieves a “clean sheet” after
inspection by multi-engine scanners, such as VirusTo-
tal (VT) and (ii) malware sandbox environments do
not consider it malicious per se. VT and other similar
services used statically examine the file with several
dozens of antiviruses (AVs). Therefore, even if an AV
may detect the malware on execution, VT’s verdict
might classify it as benign. Note that a clean sheet
verdict from VT, which has around 70 AVs clearly
shows the trend of the market, meaning that the rest
of the AVs, which are minor share of the market are
not expected to have different behaviour. Practically,
our work starts from understanding why some AVs
are erroneously flagging some executables as mali-
cious and uncovers an inherent problem of AV en-
gines when handling Python files. This can be eas-
ily escalated to develop undetectable malware. What
is even more alarming is the fact that while one may
argue that there are several tricks to bypass static AV
tests by hiding the payload, we illustrate that a threat
actor does not need to cover the payload. Widely used
payloads can be simply embedded in Python and es-
cape the detection.

Nevertheless, it is clear that once the user is lured
to execute malware, it might be too late to block its ac-
tions. Moreover, we consider the malware as stealth
if it escapes detection from the state of the art mal-
ware sandboxes. To this end, we experimented with
the most well-known sandboxes publicly available on
the Internet. Our analysis and experiments have un-
covered significant issues in these sandbox environ-
ments that allow malware to bypass them. Based on
the above, our work illustrates critical issues in detect-
ing malware that affects the whole ecosystem, span-
ning from how AVs statically recognise malware, to
the evasion from sandboxed environments. Practi-
cally, using our methods, one may efficiently develop
malware or armour an existing one so that that it is

126

not detected by a wide range of state of the art tools
used for detecting malware.

In what follows, we provide a brief overview of

the related work. Then, we discuss the conceptual ap-
proach for the development of stealth malware. In
Section 5, we analyse our experiments and the ex-
tracted results. Then, in Section 6, we discuss our
findings and their impact. The article concludes sum-
marising the contributions of our work and streamlin-
ing future work.
Ethical Compliance. Our work complies with the
standards for conducting offensive security in an eth-
ical way. To this end, we have responsibly disclosed
our findings to each sandbox provider individually
prior to submitting this work. Moreover, we have not
published nor communicated our methods to prevent
them from being used in the wild.

2 RELATED WORK

Similar to the use of sandboxes for cats, a malware
sandbox is a controlled virtualised environment in
which a potentially dangerous file is submitted for
inspection, so that it does not “litter” the rest of the
system. This environment will automatically exe-
cute/open the file and analyse its behaviour, such as
filesystem interaction, network connections, registry
changes and access, API calls, memory access, etc.
The virtualised and isolated nature of the environment
prevents the malware from causing any harm to the
system performing the analysis. Another approach
would be to actually debug the suspicious file and ex-
amine in detail command by command and even alter
its behaviour.

Clearly, the above is not the ideal for the adver-
sary, so almost all modern malware come equipped
with an evasion method leveraging, for instance,
sandbox and debugger detection methods. For the
sandbox evasion, the malware performs a broad range
of checks to assess the environment they are being
executed. In essence, the malware will look for envi-
ronmental artifacts (Bulazel and Yener, 2017) which
include but are not limited to hardware identifiers,
presence of user interaction, sensor readings, uptime,
usernames, timing discrepancies, registry values, and
hardware specifications (Martignoni et al., 2009; Shi
et al., 2014), see Figure 1. Therefore, such a mal-
ware would resolve to i) calls to the registry, check the
process list and filesystem to perform pattern match-
ing against a predefined set of strings ii) time mea-
surements to determine whether the elapsed time is
aligned with the expected processing time and iii)
detect possible deviations from the outcome of spe-

Python and Malware: Developing Stealth and Evasive Malware without Obfuscation

cific commands. The above indicates that minor de-
tails, for instance, the MAC address of the network
may easily reveal the virtualised environment as well
as the list of running processes or inconsistencies in
CPU/GPU specifications. Some malware may also
use logical bombs to deliver their payload. For in-
stance, the execution can be delayed based on time
constraints or enabled only after proper packet receipt
from a specific domain. In fact the time that a honey-
pot devotes for execution of a sample introduces many
differences on what data is collected. As recently re-
ported by Kiichler et al. (Kiichler et al., 2021), the
bulk most of the malware behavior is observed dur-
ing the first two minutes of execution, while further
actions may take up to ten minutes.

It must be highlighted at this point that due to the
monetisation model (discussed later on), a sandbox
will not execute and inspect a binary for an arbitrary
amount of time. Additionally, to analyse as many
samples as possible, it cannot provide all the available
system resources. Therefore, by delaying the execu-
tion, allocating a lot of space and memory, a malware
may evade detection. Thus, the sharing of the pro-
cessing resources may easily expose the virtualised
environment as the VM could report the host’s proces-
sor with a fragment of the available cores. Recently
Huang et al. (Huang et al., 2020) introduced PiDi-
cators which do not use API calls but pure assembly
code and far fewer checks to determine whether a bi-
nary is being executed in a VM triggering far fewer
alerts. It has to be noted that the wide adoption of
virtualised environments in, e.g. cloud computing,
some malware is even more targeted, trying to detect
sandboxed environments and not simply virtualised
(Yokoyama et al., 2016). For more on evasion meth-
ods the interested reader may refer to (Chen et al.,
2008; Issa, 2012; Petsas et al., 2014; Uitto et al.,
2017; Veerappan et al., 2018; Afianian et al., 2019;
Checkpoint Research, 2020; Apostolopoulos et al.,

2021).
U &

System Computer

User interaction Logic bomb

Running

CPUIGPU specs, processes, drivers,

uptime BIOS, installed
applications

Mouse interaction,
scrolling, key
presses, sensors

Delayed execution,
IP check, DNS
resolution

Figure 1: Sandbox evasion methods overview.

These countermeasures from the malware have re-
sulted in the introduction of anti-evasion methods.
For instance, MALGENE (Kirat and Vigna, 2015) per-
forms data flow analysis and data mining on the sys-
tem calls to determine whether the inspected binary

actions could be a result of an evasion method.

VM Cloak (Shi et al., 2017) checks the environ-
ment for misconfigurations and differences in execu-
tion environments that could reveal that the execution
is done in a VM, while Leguesse et al. (Leguesse
et al., 2017) harden Android sandboxes which have
more sensors to cover. A widely used project for hid-
ing Windows VMs is A. Ortega’s pafish! which fo-
cuses on the checks that are performed by malware.

Recently, D’Elia et al. (Cono D’Elia et al., 2020)
introduced a dynamic binary instrumentation based
method, called BluePill which allows analysts to in-
strument the binaries they are dissecting evasive mal-
ware in a stealth way so that they cannot determine
that they are being debugged. Nevertheless, this is
another part of the continuous battle, bringing, for in-
stance, anti-anti evasion methods in this fight (D’Elia
et al., 2019).

Finally, it should be noted that bare-metal mal-
ware execution environments, so the execution is per-
formed in an actual and not virtualised environment,
so there is no VM nor sandbox stain to cover, are also
considered in the literature (Kirat et al., 2011; Guan
et al., 2017; Kirat et al., 2014; Mutti et al., 2015;
Deng and Mirkovic, 2018), nevertheless, they cannot
be considered a practical solution for assessing mal-
ware samples at the desired rate as they cannot scale
efficiently.

3 PYTHON & PYINSTALLER

Python is an interpreted programming language with
continuous increasing popularity. Despite its read-
ability and simplicity, it has accumulated several fea-
tures over the years, making it very attractive for
scripting and Rapid Application Development. Cur-
rently, it is widely used for server-side web develop-
ment, machine learning, system scripting and secure
software-related engineering, especially offensive.
The fact that Python can be used in all major plat-
forms, as well as the fact that it is easy to write and
many exploits and offensive security tools, have been
written in Python has pushed a lot of malware au-
thors to write their malware in this programming lan-
guage”. However, we argue that there is another more

Uhttps://github.com/aOrtega/pafish

https://unit42.paloaltonetworks.com/unit-42-
technical-analysis-seaduke/,https://blog.talosintelligence.
com/2020/04/poetrat-covid- 19-lures.html,https:
//blog.netlab.360.com/not-really-new-pyhton-ddos-
bot-n3crOmOrph-necromorph/,https://www.crowdstrike.
com/blog/bears-midst-intrusion-democratic-national-
committee/

127

SECRYPT 2021 - 18th International Conference on Security and Cryptography

important issue with Python that makes it more at-
tractive for malware authors. AVs have not properly
integrated this attack vector in their scope, as we will
show in the next paragraphs.

While Python is preinstalled by default in most
Unix-like operating systems, it is not the case of Win-
dows. Moreover, Python, as an interpreted language,
does not compile to create an executable. To create
an executable from a Python script, there are several
options, with the most popular one being Pylnstaller.
Pylnstaller takes as input a Python and tries to dis-
cover all its module and library dependencies that are
needed to properly execute it. To do this, Pylnstaller
is recursively looking for imports of the necessary
files, until it reaches native Python modules and li-
braries. Once the dependencies are identified, instead
of keeping the Python scripts, Pylnstaller keeps the
compiled Python scripts (.pyc files), usually referred
to as Python bytecode. These files, along with an ac-
tive Python interpreter and environment in the form of
what is called the bootloader, are copied in a folder.
Thus, PylInstaller allows the packaging of applications
in folders and unique executable files without the need
to have Python preinstalled.

The bootloader is the core component of Pyln-
staller as it prepares the environment for executing
the Python code and actually executes it. The boot-
loader is different for each architecture and highly
customizable. Once someone launches a bundled
Python application, the bootloader is initiated and
spawns another child process of itself. The parent
bootloader process handles the signals for the two
processes and uncompresses all the .pyc files in a
folder named _MEIxxxxxx in the temp folder of the
host, where xxxxxx is a random number. The child
process loads the temporary Python environment with
all the needed modules and libraries for the script can
be imported and executes the script. Once the child
process terminates, the parent process will cleanup
and terminate as well.

To compress the files and create a single exe-
cutable, PylInstaller uses two compression methods,
ZlibArchives for Python compiled files (executable
Python zip archives) and CArchive for all other files.
In this work, we delibrately study Pylnstaller as be-
yond being the most widely used solutions for cre-
ating executables from Python, many other installers
are based on it. Therefore, the issues reported in this
case can be escalated to other installers.

128

4 CONCEPTUAL APPROACH

Our work’s conceptual approach is to progressively
determine what triggers detection of a malicious bi-
nary in static and dynamic analysis and create patches
to remove it. We argue that if VirusTotal and other
similar engines consider a binary as benign and the
dynamic analysis from a sandbox does not trigger
an alert, the binary is deemed benign, even by secu-
rity savvies. In this regard, a suspicious indication
of sandbox would be considered simply suspicious.
Therefore, it will fall below the detection radars and
would be executed by a typical user. While we under-
stand that an anti-malware mechanism may detect it
upon execution, this is clearly too late in most cases.

Two individual streams emerged from this ba-
sic concept, targeting towards evading each analy-
sis. Once we developed the measures that bypassed
each one of them individually, we merged them into
a unique binary. Therefore, we will present the ap-
proach and experiments individually. As we will de-
tail in the next section, for the static analysis, we up-
loaded our samples to VirusTotal and used the detec-
tion output and classification of each antivirus, the re-
ported YARA rules, as well as the community com-
ments to determine which static properties are the
ones that lead to the detection of the malware. To fur-
ther validate our results, we submitted our results to
two more similar engines. For the dynamic analysis
with sandboxes, we initially submitted some binaries
that collected data from each sandbox environment
and then used this as an input to armour our binary
with evasion measures. Notably, as discussed later in
the article, we identified several important issues for
many of the sandboxes that were responsibly commu-
nicated to them.

4.1 Bypassing Static Analysis

The methodology behind the technique to bypass the
static analysis stems from observations on PylInstaller
(https://www.pyinstaller.org/) 4.0 binaries. To gener-
ate an executable, PylInstaller adds a lot of “noise” to
the generated binaries, from, e.g. the libraries that are
appended, and even if the code is not malicious, many
AVs falsely treat the executable as malware. In fact,
as reported by the community, in numerous occasions
even simple “Hello world” Python scripts are flagged
as malicious by several AVs as they consider binaries
generated by Pylnstaller as malicious by default.

The latter exhibits an erroneous policy applied by
almost all AVs; at least the ones used in VT, when
handling binaries produced by Pylnstaller. In prac-
tice, none of them understands its output; probably

Python and Malware: Developing Stealth and Evasive Malware without Obfuscation

because of its overblown added libraries. Therefore,
on the one hand, we have most antivirus for which
Pylnstaller acts like an efficient packer, so one can
hide arbitrary code in them. On the other hand, other
AVs have understood this capacity and immediately
flag the binaries as malicious.

powershell -NoP -NonI -W Hidden -Exec
Bypass -Command New-Object System.
Net.Sockets.TCPClient ("10.0.0.1"
,4242) ; Sstream = $client.GetStream
(); [byte[]]Sbytes = 0..65535[%{0};
while (($1 = $stream.Read (Sbytes, 0,
Sbytes.Length)) -ne 0){; $data = (
New-Object -TypeName System.Text.
ASCIIEncoding) .GetString (S$Sbytes, 0,
$1i); $Ssendback = (iex S$data 2>&1 |
Out-String); $sendback2 =
$sendback + "PS " + (pwd).Path + ">
"; $sendbyte = ([text.encoding]::
ASCII) .GetBytes ($sendback2); Sstream
.Write ($sendbyte, 0, $sendbyte.Length
); $Sstream.Flush () }; Sclient.Close ()

Listing 1: A typical Powershell reverse shell.

In what follows, we dig a bit deeper on the problem
with Pylnstaller to understand the nature of the noise
that makes it act like a packer. We start with a simple
reverse shell with a PowerShell script which is typi-
cally flagged by AVs. The one-line script is provided
in Listing 1. Note that similar backdoor mechanisms;
e.g. malicious PowerShell execution, are widely used
by malware in the wild. Two scripts, one in JavaScript
and one in Python were written appending the exact
same PowerShell code snippet to their body; there-
fore, no obfuscation is applied. While both of them
are plain ASCII files, with minimal differences in
their contents and the malicious string in plain sight,
there are significant deviations on their detection from
AVs, see Figure 2, which are rather alarming. More
precisely, one may observe that the JavaScript file is
flagged as malicious by four times more AVs than its
Python peer. Notably, none of them were identified
correctly, the JavaScript is considered as fext and the
Python as Java. While the inconsistency in the de-
tection rate of AVs for almost the same plaintext file
cannot be easily understood, the compiled Python file
(pyc), and Python bytecode in general, illustrates a
more catastrophic result. None of the AVs is able to
recognise it as malicious; therefore, it shows that none
of the AVs understands what is inside a pyc file as the
conversion to the Python compiled file efficiently ob-
fuscates the contents of the script to bypass the static
analysis.

The above illustrates a clear strategy to bypass
static analysis for an executable. One has to write a
Python script which does all the “dirty job” and com-

pile it using PylInstaller to hide its malicious content.
Then, if we masquerade the Pylnstaller enough so that
it is not considered as such, we may pass any exe-
cutable without any detection from the AVs.

Based on the above, our strategy is to exploit these
inefficiencies in handling binaries generated by PyIn-
staller. Thus, the plan is to use PylInstaller to create
the binaries out of malicious scripts, but then remove
all the possible static features that it appends from the
binary. The general outline of the method is illus-
trated in Algorithm 1.

4.2 Bypassing Dynamic Analysis

The dynamic analysis bypass is solely targeted to-
wards bypassing the checks performed by executing
the binary in a set of well-known and widely used
sandboxes. To this end, we first created a set recon-
naissance of executables that were simply collecting
environmental data from each sandbox and perform-
ing some checks with a standard tool for assessing the
sandboxes’ quality for malware analysis, pafish. Once
collected, the input was then sent to a server that we
controlled to gather and analyse it.

Beyond the output of pafish, which identified sev-
eral misconfigurations and our own findings, one has
to consider some particular inherent issues that such
services have. The environmental findings have to be
considered in the scope of a service offered in a virtu-
alised environment, for a limited amount of time and
with the minimum amount of resources to allow for
scaling. As a result, a VM cannot always meet a typ-
ical computer’s specifications in terms of, e.g. mem-
ory, disk, etc.

Finally, one has also to consider that most sam-
ples in such a sandbox originate from users without
paid plans, so these are tested in VMs that are more
limited. Based on the market model (see Section 2), if
a file is considered benign by the static analysis, and
the sandboxes have not identified it as malicious, the
chances of the file being rescanned in a “better” VM
drop dramatically.

5 EXPERIMENTAL RESULTS

5.1 Static Malware Analysis

Following our findings for the handling of Python
bytecode, the main goal of the experiments is to alter
the executable in a way that it does not look generated
by PylInstaller. In our experiments, we opted to use
some standard malicious payloads as a codebase that
were executed through Python, create an executable

129

SECRYPT 2021 - 18th International Conference on Security and Cryptography

(a) JavaScript using PowerShell reverse (b) Python using PowerShell reverse (c) Compiled Python scipt (pyc) of the

shell. shell.

Python using PowerShell reverse shell
script.

Figure 2: Scan results for reverse shell scripts using Javascript and Python.

Algorithm 1: Bypassing static analysis.

1: procedure OBFUSCATE_PAYLOAD(x)

2 Select proper payload;

3 Parametrise the payload;

4: XOR the payload with a random key;

5 Convert the XORed payload to base64;
6
7

: procedure PATCH_BOOTLOADER(exe)
Rename Pylnstaller references to a random
string
8: Rename files and their calls with pyi_ prefix
to a random prefix.
9: Replace default icons
10: Update linker’s flags in WScript

11: procedure PATCH_BINARY(exe)

12: Add version to the binary

13: Remove rich header

14: Rename _RTDATA header to .bss

15: Recalculate PE32 checksum.

16: Select payload P

17: P'=0bfuscate_payload (P)

18: Use a Python S script to call P’ ;

19: Build a PE32 executable from S to a single file to
generate the bootlader B

20: B’'=Patch_Bootloader (B)

21: Build the PE32 executable PE32 from S to a
single file with bootlader B’

22: PE32’'=Patch_Binary (PE32)

with the corresponding bootloader of PylInstaller, and
then make the necessary changes to the bootloader
and the executable to prevent AVs from detecting it.
Initially, we wrote a script with a known malicious
shellcode payload from msfvenom and a Powershell
command that downloads the EICAR anti-malware
testfile and XORed that Powershell command with a
random hard-coded string and converted it to base64.
The reason for these choices is that both of them are

130

well known to trigger AVs; therefore, if any of them
is identified by an AV or a sandbox, it will immedi-
ately flag the file as malicious in both static and dy-
namic analysis. We compiled this script with Pyln-
staller and submitted the executable to VT. As shown
in Figure 4a, multiple AV engines reported our exe-
cutable as malicious. Moreover, we scanned a sim-
ple “hello world” Python script compiled with PyIn-
staller in VT, and it was also reported as malicious
by the same antivirus engines (Figure 4b), verifying
again the issues described in the previous section. To
further validate our results, we created some binaries
with the exact same functionality using C++, Rust,
and Go and submitted them for analysis to VT, see
Figures 4c, 4d and 4e respectively. It is important
to highlight in the latter figures that, contrary to the
ones for Python, the AVs have correctly identified the
presence of shellcode and Meterpreter, as shown by
the names that they attribute to our binaries. The dif-
ference is rather important since the shellcode is not
encoded in any of the implementations showing that
PyInstaller has efficiently hidden it from the AVs once
again.

Based on the above, it is apparent that by alter-
ing the Pylnstaller fingerprint on the executable, we
may evade the static analyses of many AVs. Thus, to
bypass Pylnstaller identification by AVs, we initially
made some clear “static” changes. These changes
were 1) substitution of strings and files from “pyi_”
to a random short string, ii) rename of “Pylnstaller”
strings to another random short string, iii) replace-
ment of the default icons, and iv) addition of flags
to the linker in WScript, see Table 1. After these
changes, we built the new bootloader. We then com-
piled the malicious script with the modified PylIn-
staller bootloader, managing to reduce the AVs that
reported our executable as malicious to four (Figure
5a). Note that the aforementioned actions are bypass-
ing several checks with YARA rules that some AVs

Python and Malware: Developing Stealth and Evasive Malware without Obfuscation

might perform, see Figure 3.

Since our binary did not have any version informa-
tion, we added one and recompiled it. While a trivial
action, after scanning this executable on VT, the AVs
are reporting our binary as malicious was further re-
duced to two (Figure 5b). Finally, we opened the last
built of our executable with PEtools (https://github.
com/petoolse/petools), cleared the rich header and re-
named the _RDATA header to .bss and recalculated the
checksum. The removal of the rich header was made
to prevent the detection of the binary through the sig-
nature of this header (Webster et al., 2017). This final
executable achieved zero detections from VT, see Fig-
ure Sc. The result was also cross-validated with other
custom and multi-engine scanners, e.g. Kaspersky
Threat intelligence portal (https://opentip.kaspersky.
com/), Gatewatcher (https://intelligence.gatewatcher.
com/), MetaDefender (https://metadefender.opswat.
com/), see Figure 5f, 5d and 5e, respectively.

Table 1: Linker flags for PyInstaller.

Flag Description

/BASE:0x00400000 Set base to default Windows PE image
base

/DYNAMICBASE:NO Disable dynamic base

/VERSION:5.2 Set image version

/RELEASE Set the checksum of the file

import "pe"
import "hash"
rule PyInstaller

meta:
description = "Identifies executable converted using PyInstaller."
author = "@bartblaze"
date = "2020-01"
tlp = "White"

"pyi-windows-manifest-filename" ascii wide
"pyi-runtime-tmpdir" ascii wide
"PyInstaller: " ascii wide

$
$

strings:

condition:
uintl6(0) == 0x5a4d and any of them or
(
for any i in (0..pe.number_of_resources - 1):
(pe.resources[i].type == pe.RESOURCE_TYPE_ICON and
hash.md5(pe.resources[i].offset, pe.resources[i].length) ==
"20d36c0a435caad0ae75d3e5f474650c")
)
}

Figure 3: A common YARA rule for detecting PylInstaller.
Source: https://github.com/bartblaze/Yara-rules/blob/
5f4961049d0d510b11250d5628383398889fc881/rules/
generic/Pylnstaller.yar.

5.2 Dynamic Analysis with Sandboxes

To assess the sandboxes and create a proper eva-
sion method, we first need to establish a ground truth
baseline for the environment that the sandboxes use.
Therefore, the strategy is to initially create a binary

that collects intelligence and then aggregate it to make
a binary that exploits it to bypass the detection.

To this end, we first created some reconnaissance
binaries that were submitted to Intezer, Any.run,
Triage, Hybrid Analysis, the public Cuckoo installa-
tion of the Estonian CERT (https://cuckoo.cert.ee/),
Cape, and Threat Grid sandboxes. However, not all
of them allowed Internet connections to the binaries.
Therefore, we used a machine with a public IP to col-
lect the input from the reconnaissance binaries when
the Internet connection was available. When this was
not the case, we manually inspected the logs that were
generated from the sandboxes as we wrote the corre-
sponding logs to the disk and registry.

To bypass the execution of our malicious code in a
sandbox environment, we analysed the collected data
to identify common deficiencies. The most signifi-
cant misconfiguration in almost all sandboxes was the
CPU specifications. More precisely, there were obvi-
ous contradictions regarding the threads and cores of
the reported CPU. For instance, a sandbox was report-
ing an AMD EPYC 7371 16-Core Processor, but in
the meantime, it was also reporting two cores and two
threads. Therefore, we collected all available CPU
specifications from Intel and AMD and added them as
dictionaries in our the evasive final malware. An ag-
gregated table of the issues that we identified in each
sandbox is reported in Table 2 and will be further dis-
cussed in the following paragraphs.

Despite the identified deficiencies, bypassing all
of them in a binary is not straight forward. The rea-
son is that continuous calls to read registry values,
or WMI is triggering alerts in the sandboxes. Thus,
one needs to unify these checks and prioritise them
according to the “noise” they introduce to the sand-
box. Therefore, in our malicious binary, we intro-
duced several conditions before executing the pay-
load.

Firstly, we check whether any known sandbox or
VM process is running in the background. After-
wards, we check whether the threads of the system
are more than four and if the available RAM is more
than 1 GB which is the bare minimum for most of the
64bit modern computers. Then, we check whether
the system is powered on more than a threshold, e.g.
2-3 minutes. Next, we examine the foreground ap-
plications and the parent of the process of our bi-
nary. The reason for this check is the execution pro-
cess of a sandbox. In most cases, there is a dropper
script which opens the file and exits. However, in a
real-world execution environment, one would expect
that the user would have some other open programs,
whether this is the Explorer, Word, or a terminal that
would initiate the execution of the binary. Clearly,

131

SECRYPT 2021 - 18th International Conference on Security and Cryptography

2
2 i

(b) Hello world binary with PylInstaller. (c) C++ compiled executable with the
malicious payload.

e

(d) Rust compiled executable with the (e) Go compiled executable with the

malicious payload.

malicious payload.

Figure 4: VT detection results for binaries from various languages.

if this is not the case, then some automated script
opened the binary for inspection.

Notably, up to this point, no flag is triggered to
the sandbox as the checks do not perform any black-
listed operation and are considered benign by most of
them. If all these checks are passed, then we start the
registry checks via WMIC for the CPU model name.
We validate with our dictionary the existence of the
model and the consistency of the reported threads and
cores with the manufacturer’s actual ones. Usually,
this query to the registry is logged by the sandbox, but
without any significant alert. Lastly, we query the reg-
istry, again via WMIC, to access system information
and find known VM strings in the system model or
system manufacturer. Clearly, this is also logged by
the sandboxes, without though any high score to is-
sue a malicious verdict. Moreover, not all sandboxes
managed to reach this point of execution, so in many
instances, these logs were not complete in all of the
reports.

If any of these checks fail, we perform a grace-
ful exit, perform some arbitrary computations before-
hand, and add some noise in the analysis. How-
ever, after the successful pass of the aforementioned
checks, the malicious binary is executed. Quite
alarmingly, in all tested sandboxes, our evasion meth-
ods succeeded, achieving low scores in both the dy-

132

namic analysis, as well as the static analysis offered
by the sandboxes. In fact, all of them considered the
samples suspicious for spawning another process of
itself which can be considered a false-positive indica-
tion, but the malicious payload was not delivered as
the binary understood that it was executed in a sand-
box.

6 DISCUSSION

Given the inherent static analysis restrictions, low de-
tection rate from AVs in VT can be considered up to a
point expected as our approach is unique and creates
an unknown pattern. Nevertheless, the fact that our
samples do not simply have few detections, but actu-
ally zero is very alarming. It becomes even more wor-
rying because PylInstaller is a widely used tool that is
poorly handled. Even the slight changes introduced
by us significantly reduced the AVs’ detection rate.
Notably, these methods can be applied to other lan-
guages’ packaging, e.g. for Go which is increasingly
being used by malware in the past few years?.

It is worth noticing that the above results indicate

3https://unit42.paloaltonetworks.com/the- gopher-in-
the-room-analysis-of-golang-malware-in-the-wild/

Python and Malware: Developing Stealth and Evasive Malware without Obfuscation

4 2

(a) Patched binary with Pylnstaller
strings removed.

(b) Patched binary with version fix.

(c) Final binary with all patches.

e
(d) GATEWATCHER scan results. (e) OPSWAT scan results. (f) Kaspersky static and dynamic analy-

sis results.

Figure 5: Screenshots of the results of our patched samples from multi-engine scanners.

that AVs do not efficiently handle large executables.
For instance, using the UPX feature of PylInstaller to
shrink the executable resulted in further detections of
the binary. Nevertheless, this can be attributed to the
UPX signature. However, the same behaviour was
noticed with, e.g. Nuitka (https://nuitka.net/) which
created far larger executables.

The results of the dynamic sandbox analysis can
be considered in many cases, catastrophic. The rea-
son is that our analysis showcases significant issues
in the configuration of the sandboxes that allow the
malware to fall below their radar. For instance, the
vast majority of sandboxes expose inconsistent CPU
specifications (processor name vs cores/CPU) while
we also noticed the use of non-existing CPU names
in one of them. Similar issues were also detected for
GPUs.

Differences between CPU timestamp counters
may be more challenging to patch; therefore, they
were encountered in most sandboxes. Quite inter-
estingly, the listing of well-known VM processes and
obvious VM related strings in Bios and system manu-
facturer (e.g. QEMU, KVM), small uptime, MAC ad-
dress vendor and low RAM, trivially exposed the vir-
tualisation environment indicating a poor configura-
tion of the sandbox environment. Moreover, we argue
that using a limited set of product Windows IDs that
we noticed can also be used to fingerprint sandboxes

and bypass them. Therefore, the further randomisa-
tion of these IDs is necessary as the purchase of more
licences does not solve the problem completely.

Finally, we should also stress the complete ab-
sence of foreground processes in all sandboxes. In all
occasions, the binary started without any other win-
dow opened, clearly showing that a dropper initiated
the execution. While one may argue that malware
may consider this as part of its persistence, e.g. via
registry autorun, it would be relatively easy for the
malware to verify the claim and correlate it with the
uptime. Therefore, sandboxes must open a couple of
windows, e.g. Explorer, to denote some user-initiated
action for the binary execution and hide the dropper’s
existence.

7 CONCLUSIONS

Many issues arise from misclassifications and it is es-
sential to understand which features are the ones that
resulted to, e.g. a false positive. Based on this prob-
lematic, we studied the case of PylInstaller, a widely
used packaging tool for Python scripts. The generated
executables are erroneously flagged as malicious re-
gardless of their content, as repeatedly reported online
by developers. While many malware authors have

133

SECRYPT 2021 - 18th International Conference on Security and Cryptography

Table 2: Identified misconfigurations and issues of sandbox environments.

Hybrid Thread
Rules Analysis Anyrun Intezer Tria.ge Cuckoo Grid Cape
Non existing CPU name X
Bad CPU specifications X X X X X X
Product Key reuse X X X
Bad GPU name X X X X X
Low Available Memory X
Running known VM processes X
Small uptime X
Difference between CPU times- X X X X X
tamp counters (rdtsc)
Bad MAC Address X
Hypervisor bit in CPUId X
Known VM brand string in Bios X
Known VM brand string in Sys- X

tem Manufacturer

recently switched to the use of Pylnstaller to write
their malware, this does not justify why every exe-
cutable of Pylnstaller should be treated as malicious.
On the contrary, it implies that AVs do not understand
the content of these files and treat them as malicious.
Based on this problematic, we have shown that the
problem is inherent as AVs cannot efficiently process
Python bytecode, which are included in Pylnstaller.
As a result, we may develop malware which escapes
static analysis of all AVs by simply changing some
characteristics of Pylnstaller binaries. Clearly, Python
bytecode decompilation is essential to prevent similar
attacks in the near future.

Based on our analysis, it is evident that apart from
clear misconfigurations, resource-wise limitations in
the sandboxes impose significant constraints that en-
able their identification. More precisely, to address
the numerous requests for scanning binaries, many
of the sandboxes resort to using a limited set of re-
sources (CPU/RAM) which especially for the CPU is
not properly handled. As illustrated, many of them
report contradictory configurations which can be eas-
ily detected and bypassed without issuing any signif-
icant alert. The analysis of a binary in a virtualised
environment which resembles a traditional, modern
PC system is very costly, let alone bear metal anal-
ysis. Nevertheless, with the continuous increase of
samples that have to be checked, the balance is going
to be significantly tipped at the dispense of sandboxes.
The latter denotes a definite need to improve our ex-
isting sandboxes’ capabilities to, e.g. enable them to
report more realistic configurations without exposing
them. Moreover, we should further explore the anal-
ysis using symbolic execution of the binary to offer
a cost-efficient alternative. Finally, despite the recent
advances in malware analysis and the numerous aca-
demic works and products touting almost absolute de-
tection rates, we illustrate that undetectable malware

134

might even be in plain sight and evade detection in
real-world experiments.

We argue that one can deploy even stealthier mal-
ware by minimising the filesystem footprint. To this
end, in future work we plan to rewrite the boot-
loader to extract all the necessary files in mem-
ory or use PyOxidizer (https://github.com/indygreg/
PyOxidizer), randomising file names in each com-
pilation, further reducing the pattern that one could
use to trace it. Fileless approaches (Kumar et al.,
2020) in which all the content is loaded in memory
through the use of, e.g. Living Off The Land Bina-
ries And Scripts (LOLBins and LOLScripts https://
github.com/LOLBAS-Project/LOLBAS) can further
decrease the detectability. In parallel, we plan to in-
vestigate other packaging and distribution tools for
other languages beyond Python to assess their obfus-
cation abilities.

ACKNOWLEDGEMENTS

This work was supported by the European Commis-
sion under the Horizon 2020 Programme (H2020), as
part of the projects CyberSec4Europe (https://www.
cybersecdeurope.eu) (Grant Agreement no. 830929),
LOCARD (https://locard.eu) (Grant Agreement no.
832735).

The content of this article does not reflect the of-
ficial opinion of the European Union. Responsibility
for the information and views expressed therein lies
entirely with the authors.

REFERENCES

Afianian, A., Niksefat, S., Sadeghiyan, B., and Baptiste,
D. (2019). Malware dynamic analysis evasion tech-

Python and Malware: Developing Stealth and Evasive Malware without Obfuscation

niques: A survey. ACM Computing Surveys (CSUR),
52(6):1-28.

Apostolopoulos, T., Katos, V., Choo, K. R., and Patsakis,
C. (2021). Resurrecting anti-virtualization and anti-
debugging: Unhooking your hooks. Future Genera-
tion Computer Systems, 116:393-405.

Branco, R. R., Barbosa, G. N., and Neto, P. D. (2012). Sci-
entific but not academical overview of malware anti-
debugging, anti-disassembly and anti-vm technolo-
gies. In Blackhat USA.

Bulazel, A. and Yener, B. (2017). A survey on auto-
mated dynamic malware analysis evasion and counter-
evasion: PC, mobile, and web. In Proceedings of the
1st Reversing and Olffensive-oriented Trends Sympo-
sium, page 2, New York, NY, USA. ACM, ACM.

Checkpoint Research (2020). Evasion techniques. https:
/levasions.checkpoint.com/.

Chen, X., Andersen, J., Mao, Z. M., Bailey, M., and
Nazario, J. (2008). Towards an understanding of anti-
virtualization and anti-debugging behavior in modern
malware. In 2008 IEEE International Conference on
Dependable Systems and Networks With FTCS and
DCC (DSN), pages 177-186. IEEE, IEEE.

Cono D’Elia, D., Coppa, E., Palmaro, F., and Cavallaro, L.
(2020). On the dissection of evasive malware. I[EEE
Transactions on Information Forensics and Security,
15:2750-2765.

D’Elia, D. C., Coppa, E., Nicchi, S., Palmaro, F., and Cav-
allaro, L. (2019). Sok: Using dynamic binary instru-
mentation for security (and how you may get caught
red handed). In Proceedings of the 2019 ACM Asia
Conference on Computer and Communications Secu-
rity, pages 15-27.

Deng, X. and Mirkovic, J. (2018). Malware analysis
through high-level behavior. In /1th USENIX Work-
shop on Cyber Security Experimentation and Test
(CSET 18), Baltimore, MD. USENIX Association.

Forum, W. E. (2020). Wild wide web consequences of digi-
tal fragmentation. https://reports.weforum.org/global-
risks-report-2020/wild-wide-web/.

Gandotra, E., Bansal, D., and Sofat, S. (2014). Malware
analysis and classification: A survey. Journal of In-
formation Security, 2014.

Guan, L., Jia, S., Chen, B., Zhang, F., Luo, B., Lin, J., Liu,
P, Xing, X., and Xia, L. (2017). Supporting transpar-
ent snapshot for bare-metal malware analysis on mo-
bile devices. In Proceedings of the 33rd Annual Com-
puter Security Applications Conference, pages 339—
349, New York, NY, USA. ACM, ACM.

Huang, Q., Li, H., He, Y., Tai, J., and Jia, X. (2020). Pidica-
tors: An efficient artifact to detect various vms. In In-
ternational Conference on Information and Commu-
nications Security, pages 259-275. Springer.

IC3), I. C. C. C. (2019). 2019 internet crime report. https:
//pdf.ic3.gov/2019_IC3Report.pdf.

Issa, A. (2012). Anti-virtual machines and emulations.
Journal in Computer Virology, 8(4):141-149.

Kirat, D. and Vigna, G. (2015). Malgene: Automatic ex-

traction of malware analysis evasion signature. In
Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security, pages 769—
780, New York, NY, USA. ACM, ACM.

Kirat, D., Vigna, G., and Kruegel, C. (2011). Barebox: effi-
cient malware analysis on bare-metal. In Proceedings
of the 27th Annual Computer Security Applications
Conference, pages 403-412, New York, NY, USA.
ACM, ACM.

Kirat, D., Vigna, G., and Kruegel, C. (2014). Bare-
cloud: Bare-metal analysis-based evasive malware de-
tection. In USENIX Security Symposium, pages 287—
301, Berkeley, CA, USA. USENIX Association.

Kiichler, A., Mantovani, A., Han, Y., Bilge, L., and
Balzarotti, D. (2021). Does every second count? time-
based evolution of malware behavior in sandboxes. In
Proceedings of the Network and Distributed System
Security Symposium, NDSS. The Internet Society.

Kumar, S. et al. (2020). An emerging threat fileless mal-
ware: a survey and research challenges. Cybersecu-
rity, 3(1):1-12.

Leguesse, Y., Vella, M., and Ellul, J. (2017). Androneo:
Hardening android malware sandboxes by predicting
evasion heuristics. In IFIP International Conference
on Information Security Theory and Practice, pages
140-152, Cham. Springer, Springer International Pub-
lishing.

Lita, C. V., Cosovan, D., and Gavrilut, D. (2018). Anti-
emulation trends in modern packers: a survey on the
evolution of anti-emulation techniques in upa pack-
ers. Journal of Computer Virology and Hacking Tech-
niques, 14(2):107-126.

Martignoni, L., Paleari, R., Roglia, G. F., and Bruschi,
D. (2009). Testing CPU emulators. In Proceedings
of the Eighteenth International Symposium on Soft-
ware Testing and Analysis, ISSTA ’09, pages 261—
272, New York, NY, USA. ACM.

Mutti, S., Fratantonio, Y., Bianchi, A., Invernizzi, L., Cor-
betta, J., Kirat, D., Kruegel, C., and Vigna, G. (2015).
Baredroid: Large-scale analysis of android apps on
real devices. In Proceedings of the 31st Annual Com-
puter Security Applications Conference, pages 71-80,
New York, NY, USA. ACM, ACM.

Or-Meir, O., Nissim, N., Elovici, Y., and Rokach, L. (2019).
Dynamic malware analysis in the modern era—a state
of the art survey. ACM Computing Surveys (CSUR),
52(5):1-48.

Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis,
M., and loannidis, S. (2014). Rage against the virtual
machine: Hindering dynamic analysis of android mal-
ware. In Proceedings of the Seventh European Work-
shop on System Security, EuroSec ’14, pages 5:1-5:6,
New York, NY, USA. ACM.

Shi, H., Alwabel, A., and Mirkovic, J. (2014). Cardi-
nal pill testing of system virtual machines. In 23rd
USENIX Security Symposium (USENIX Security 14),
pages 271-285, San Diego, CA.

Shi, H., Mirkovic, J., and Alwabel, A. (2017). Handling
anti-virtual machine techniques in malicious software.
ACM Transactions on Privacy and Security (TOPS),
21(1):2:1-2:31.

Thomas, D. S. (2020). Cybercrime losses: An examination
of us manufacturing and the total economy.

135

SECRYPT 2021 - 18th International Conference on Security and Cryptography

Uitto, J., Rauti, S., Laurén, S., and Leppinen, V. (2017). A
survey on anti-honeypot and anti-introspection meth-
ods. In World Conference on Information Systems and
Technologies, pages 125-134. Springer.

Veerappan, C. S., Keong, P. L. K., Tang, Z., and Tan, F.
(2018). Taxonomy on malware evasion countermea-
sures techniques. In 2018 IEEE 4th World Forum on
Internet of Things (WF-1oT), pages 558-563. IEEE.

Webster, G. D., Kolosnjaji, B., von Pentz, C., Kirsch, J.,
Hanif, Z. D., Zarras, A., and Eckert, C. (2017). Find-
ing the needle: A study of the pe32 rich header and re-
spective malware triage. In International Conference
on Detection of Intrusions and Malware, and Vulner-
ability Assessment, pages 119—138. Springer.

Yokoyama, A., Ishii, K., Tanabe, R., Papa, Y., Yoshioka, K.,
Matsumoto, T., Kasama, T., Inoue, D., Brengel, M.,
Backes, M., et al. (2016). Sandprint: fingerprinting
malware sandboxes to provide intelligence for sand-
box evasion. In International Symposium on Research
in Attacks, Intrusions, and Defenses, pages 165-187,
Cham. Springer, Springer International Publishing.

136

