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Abstract: Code Reuse Attacks can trick the CPU into performing some actions not originally intended by the running
program. This is due to the fact that the execution can move anywhere within a process’s executable memory
area, as well as the absence of policy checks when a transfer is performed. In our effort to defend against this
type of attacks, in an earlier paper we present a Proof-of-Concept mitigation technique based on a modified
Linux kernel where each library - either dynamically or statically linked - constitutes a separate code region.
The idea behind this technique is to compartmentalize memory in order to control access to the different mem-
ory segments, through a gate. Taking our previous work one step further, in this paper we present an updated
version of our kernel-side technique, where we implement security policies in order to identify suspicious
behavior and take some action accordingly.

1 INTRODUCTION

As the advancement of technology offers capabilities
which result in attackers on every level getting more
competent and effective, attacks have become more
elaborate. Therefore, we need to establish an ade-
quate level of security in software systems. As the
complexity of these systems is ever-increasing, we
have not seen a commensurate improvement in code
design and development. Hence, systems are becom-
ing ever more vulnerable to attacks at multiple lev-
els. Complete security of a program is unfeasible.
Conceding that vulnerable code will be included in
production systems, there is a need to detect when
one or more of these vulnerabilities is exploited by
an attacker. By monitoring the behavior of a pro-
gram, we can detect any deviations from nominal op-
eration. Once a program goes off-nominal we need to
determine whether the cause is security-related and, if
so, take appropriate action. Our idea is to implement
such actions at an abstract level, between the Operat-
ing System (OS) and a running application.

Unlike most run-time security mechanisms, where
violations in most cases lead to the termination of
the offending process, the call intercept technique
offers a variety of options in dealing with the se-
curity breach. For example, systrace(8) (Provos,
2003) may rewrite function arguments (e.g. truncate
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or replace strings), or return an error without mak-
ing the call. A key concern is the level at which the
call intercept should be made. Some papers propose
to carry out the checks at the machine code level -
via call graphs (e.g., CFI (Abadi et al., 2005) and
variants), while others at the system call level (e.g.,
systrace(8)). However, because these systems per-
form the checks at fairly low level, they are quite labor
intensive and error prone and exhibit high overhead.
Coarse-grained CFI techniques mainly try to deal
with the increased performance issues of CFI, trad-
ing off security and being left vulnerable to motivated
adversaries. Finer-grained solutions provide higher
security, although even in this case studies (Evans
et al., 2015) have shown that some implementations
prove ineffective in defending against code-reuse at-
tacks (CRAs).

Contributions. In this paper, we present our hy-
pothesis that by carrying out behavioral monitoring
at a higher level, we can create a flow diagram that
is closer to the program logic and hence more under-
standable. We have chosen the library function call
level as the ideal boundary to install our checks, be-
cause libraries are used by the main program but are
not part of its execution logic. We present an updated
version of our previous Proof-of-Concept mitigation
technique, behind which the idea is to compartmen-
talize memory in order to provide access control to
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memory segments based on security policies. We ex-
tend our previous approach by installing a special cus-
tom library, a gate, one for each separate segment and
redirect the flow of execution through this gate where
we enforce the relevant security policies. Our mitiga-
tion technique requires kernel support, which is on of
its strengths since we can manipulate the memory se-
curely and efficiently. We chose to leverage the Mem-
ory Management Unit (MMU) and specifically the
NX-bit, because it is easier to us due to our previous
development experience. To the best of our knowl-
edge, it is the first time this is performed in this way.
Furthermore, our mechanism can be implemented on
top of other defense mechanisms.

The remainder of this paper is organized in the
following manner: Section 2 offers a brief summary
of the timeline of CRAs and related defenses. In
Section 3 we detail the design of our approach. In
Section 4, we describe the implementation specifics.
In Section 5, we evaluate our custom kernel both in
terms of effectiveness and performance. Discussion
and conclusion are provided in Section 6.

2 BACKGROUND AND RELATED
WORK

Code Reuse Attacks (CRA) work on the premise that
an adversary can use code already present in a pro-
gram’s memory space in order to mislead the CPU
to perform unintended by the program actions. So-
phisticated approaches, such as Return Oriented Pro-
gramming (ROP) (Shacham, 2007; Checkoway et al.,
2010; Roemer et al., 2012) and Jump Oriented Pro-
gramming (JOP) (Bletsch et al., 2011), form snippets
of code, “gadgets”, chaining together legitimate com-
mands already in memory, eventually forming a se-
quence of gadgets that perform the unauthorized ac-
tion desired by the attacker. Initially, CRAs were
based on the principle that gadgets are located at
known addresses in memory. Address Space Lay-
out Randomization (ASLR) (PaX, 2001) was intro-
duced as a defense measure, but was eventually by-
passed (Shacham et al., 2004).

Furthermore, Snow et al. introduced “Just-In-
Time” ROP (JIT-ROP) (Snow et al., 2013) which
maps an application’s memory layout on-the-fly, thus
bypassing ASLR. Next, it constructs and delivers a
ROP payload based on collected gadgets.

Later, Bittau et al. presented Blind Return Ori-
ented Programming (BROP) (Bittau et al., 2014).
BROP works against modern 64-bit Linux with
ASLR, NX memory and stack canaries (Wagle and
Cowan, 2003) enabled. It can remotely find enough

gadgets to perform the write(2) system call and then
transfer the application’s binary from memory to the
attacker’s socket.

Over the years, important work has been carried
out with respect to defenses against CRAs. Backes
and Nürnberger developed Oxymoron (Backes and
Nürnberger, 2014) to counter JIT-ROP attacks. Oxy-
moron combines two methods: fine-grained memory
randomization with the ability to share the entire code
among other processes. However, in order for this
defense to be effective, an executable along with all
of its shared libraries need to be instrumented us-
ing Oxymoron (Mithra and Vipin P., 2015). In con-
trast, our approach is completely transparent, since
we require no access to the executable or its shared
libraries.

Venkat, et al. (Venkat et al., 2016) propose a se-
curity defense called HIPStR to thwart (JIT-)ROP.
HIPStR performs dynamic randomization of run-time
program state. However, this measure requires ex-
tensive run-time support to piece the randomized in-
structions back together, imposing significant over-
head (around 15% at best), counter to our mechanism
which leaves only a minimal performance footprint.

The systrace(8) (Provos, 2003) system which
supports fine-grained policy generation, guards the
calls to the operating system at the lowest level, en-
forcing policies that restrict the actions an attacker
can take to compromise a system. However, this
fine-grain control is overly verbose. Additionally, it
may leave a library in an inconsistent state if a mis-
configuration interrupts the sequence of these calls in
the middle of execution (Kim and Prevelakis, 2006).
Later research (Watson, 2007) showed that concur-
rency vulnerabilities were discovered, that gave an at-
tacker the ability to construct a race between the en-
gine and a malicious process to bypass protections.
Our technique operates at a higher level, away from
low level calls, closer to the application logic, fa-
cilitating the generation of policies and being more
lightweight in this way.

Access Controls For Libraries and Modules (Sec-
Module) (Kim and Prevelakis, 2006) forces user-level
code to perform library calls only via a library pol-
icy enforcement engine providing mandatory policy
checks over not just system calls, as in the case of
systrace(8), but calls to user-level libraries as well.
Access to a specific function or procedure is con-
trolled by the kernel, however the overhead of two
context switches per function invocation (caller to
kernel and kernel to caller), makes the technique quite
expensive for more general use. One of the issues
identified by the authors of the SecModule paper is
the difficulty in encapsulating library modules which
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was error prone and extremely labor intensive. An-
other issue is the inability to evaluate call arguments.
Although they are contained in a known structure
pointed to by a stack pointer, their examination re-
quires lots of casting in the C++ functions. In con-
trast, our approach automatically encloses libraries in
a seamless generic way, with low overhead as well as
the ability to evaluate call arguments.

Abadi et al. proposed Control-Flow Intetegrity
(CFI) (Abadi et al., 2005) which enforces the execu-
tion of a program to adhere to a control flow graph
(CFG), which is statically computed at compile time.
If the flow of execution does not follow the prede-
termined CFG, an attack is detected. CRAs such as
ROP and JOP by definition divert the program flow,
hence they are discovered. This approach, however,
suffers from two main disadvantages. First, comput-
ing a complete and accurate CFG is difficult since
there are many indirect control flow transfers (jumps,
returns, etc.) or libraries dynamically linked at run-
time. Furthermore, the interception and checking of
all the control transfers incur substantial performance
overhead. Our mechanism, although implementing
a kind of CFI, deals with high-level calls to library
functions (away from the low level instructions) with
minimal run-time performance cost.

In (Kayaalp et al., 2012) Kayaalp et al. propose
Branch Regulation (BR) which limits control flow
transfers to specific legitimate points, disallowing -
in effect - arbitrary transfers from one function into
the middle of another. However, it annotates the bi-
nary, resulting in increased code size. In addition, the
shadow stack used by the mechanism is not secure
since it resides in mapped memory (Christoulakis
et al., 2016). Moreover, when a legitimate direct jump
is performed (e.g. longjmp(3)) it may transfer the
control flow in the middle of a function, thus throw-
ing a false-positive exception. The main advantage of
our mechanism is that it is source/binary-agnostic.

In our previous work (Tsantekidis and Prevelakis,
2017), we implement access control similar to the
work presented above. Under our scheme, each call
to an external function of a library is intercepted and
its arguments are examined to determine whether the
control flow transfer is warranted. This allows high-
level checks to be carried out in a similar fashion
to the systrace(8) engine (Provos, 2003) – which,
however operates at the system call level – and Sec-
Module (Kim and Prevelakis, 2006) that introduces a
form of authentication when calling functions from a
library. Our approach is transparent to the user appli-
cations, since it can work in the background without
the applications ever knowing its existence. Further-
more, there is no need to have or modify the source

code of any application, making the mechanism suit-
able for legacy applications as well as binary pro-
grams. Since this is a user-space mechanism, there
is no need to invoke the kernel, meaning there are no
context switches, which saves performance overhead.
Additionally, it can be easily adopted in real-life en-
vironments. However, our approach is not without its
disadvantages. It relies on dynamic library hooking,
so it is unsuitable to trace statically-linked applica-
tions. There is, also, a slight increase in code size
compared to the original library version. Moreover,
it can only protect programs written in C/C++ and it
can be bypassed by a highly-skilled attacker who is
aware of its existence and is able to manipulate the
program’s memory.

3 DESIGN

The goal of our proposed approach is to thwart
control-flow hijacking attacks by segregating a pro-
cess’s executable areas which correspond to exter-
nal libraries or the main executable and by impos-
ing strict control over any attempt to invoke such an
area, through a policy enforcement engine. In order
to achieve this, we set a number of requirements that
our mechanism must fulfill:

(R1) Effectiveness: Intercept every attempt to access
a protected region and redirect it inside the asso-
ciated gate.

(R2) Transparency: Allow applications to continue
working as originally intended by the developer,
while our access control mechanism delivers a se-
cure run-time environment.

(R3) Efficiency: Minimize run-time and memory
overhead imposed by our implementation.

To abide by these requirements, we propose a cus-
tomized Linux kernel that leverages the MMU in or-
der to separate the memory of a process into regions,
based on the libraries that are loaded upon a pro-
gram’s execution. When an untrusted, user-space ap-
plication issues a call to a protected library, our cus-
tom kernel intercepts it and redirects it through a gate
library - which stands as a policy decision mechanism
- before allowing it to continue.

In order to meet requirement (R1) and intercept all
calls, our system marks all the executable regions (e.g
.text/code region) that correspond to a linked library
or the main executable as non-executable. Further-
more, for each region it maps a special custom library
- which we designate as gate - in the running process’s
address space. When an application or other region
issues a call to a non-executable region, a deliberate
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Figure 1: Design overview.

page fault occurs. The Page Fault Exception Handler
(PFEH) (Bovet and Cesati, 2005) is, then, invoked to
resolve the issue. In order to continue executing, we
modify the PFEH so it redirects the flow inside the as-
sociated gate library that we had previously mapped
in the process’s memory area. If the policy check is
passed, it marks the specific non-executable region as
executable and continues with the call, starting the
whole procedure from the beginning. Figure 1 shows
this sequence of events. This way we are able to inter-
cept all the calls inside the libraries that an application
uses and enforce the execution flow through the pol-
icy decision engine.

Threat Model. We consider an adversary model
which is composed of two classes of threats. The
first class of threats comprises the bugs/vulnerabil-
ities that an application contains. These can be ei-
ther (a) already discovered and known without, how-
ever, a security patch being available or having be-
ing applied by the system administrator or (b) zero-
day/undiscovered, without anyone knowing about
their presence. An adversary is in possession of a
technique (e.g. BROP, JIT-ROP, etc.) that can ex-
ploit one ore more of these vulnerabilities and mount
a CRA that eventually compromises the application.
Our mechanism can detect and immediately mitigate
any attempt to exploit these bugs until a patch can be
applied, by hindering the execution of collected gad-
gets.

The second threat class is the behavior of a pro-
gram. At run-time, an application can present ab-
normal behavior that opposes what is nominally ex-
pected. Our mechanism can observe not only the oc-
currence of calls, but also the number of calls to a par-
ticular service or function, as well as the sequence of
these calls (similarly to our previous work in (Tsan-
tekidis and Prevelakis, 2019)), in order to create an
understanding of the different states that an applica-

tion is going through during its execution.

Security Policies. The main challenge of our ap-
proach is to create comprehensive security policies
that include the complete list of communication paths
among the different segments (libraries/executables)
in which we compartmentalize the running applica-
tion. This challenge originates from the complexity of
the library/application (i.e. its development as well as
its functionality), the way that the paths are provided
(e.g., by the developers of the library/application) and
the effort required to track these paths.

Based on the value of a property (e.g., the access
rights of a file, the number/sequence of function calls,
etc.), if our mechanism detects a suspicious activity
which is further characterized as malicious, it applies
the corresponding security measure defined in the pol-
icy. The evaluation of the security policies is continu-
ous, throughout the execution of the monitored appli-
cation and is triggered whenever a call to a separate
memory region is performed.

4 IMPLEMENTATION

We provide an updated version of the Proof-of-
Concept (PoC) implementation of our previous proto-
type mechanism (Tsantekidis and Prevelakis, 2019),
using Linux kernel version 4.16.7, the latest one at
the start of the development phase.

Our mechanism identifies the regions of contigu-
ous virtual memory (Virtual Memory Areas - VMAs)
that are executable and correspond to a linked li-
brary or the main executable and maps the custom
gate library in the process’s memory, one for each
identified VMA. Then, these VMAs are marked as
non-executable wich is computationally inexpensive,
moving towards meeting requirement (R3). From
then on, when a process tries to perform a library
call, it will land on an address in a non-executable
area, which will deliberately produce a page fault.
Before handling it, we redirect the execution flow in-
side our policy enforcement engine in order to check
the security policies associated with the running pro-
gram. This procedure is performed automatically on
the kernel side, without requiring access to the source
code/binary of the application or linked libraries, thus
making our approach completely transparent, fulfill-
ing requirement (R2).

In this updated version of our previous work, we
introduce the notion of gate libraries as a policy en-
forcement engine, which we install one for each iden-
tified executable area. Every call originating from
a region different than the destination one (i.e. be-
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tween different libraries) is intercepted and analyzed,
even if the same call was previously checked again
at another point during execution. We can express
the security policies based on the outline presented
in Section 3, using a policy definition language (such
as KeyNote (Blaze et al., 1999)). Alternatively, the
library/application designer can provide us with the
policy in a similar format/language.

5 USE CASE

In order to evaluate the applicability and efficiency of
our proposed prototype, we analyze a use-case where
the NGINX HTTP server is compromised by Denial-
of-Service (DoS)/arbitrary code execution attack, af-
ter a vulnerability is triggered.

CVE-2013-2028 (Common Vulnerabilities and
Exposures, 2013) is a stack-based buffer overflow re-
lated to the chunk size of an HTTP request with the
header Transfer- Encoding:chunked. Although it
was addressed in versions later than 1.4.0, we can use
it to examine the effectiveness our prototype in de-
fending against CRAs. Due to its simplicity, we chose
the CRA (ROP) attack described in (sorbo, 2013),
which is a generic exploit for the 64-bit NGINX server
and uses the Blind ROP attack technique (Bittau et al.,
2014). Here we use our previous technique in (Tsan-
tekidis and Prevelakis, 2019) to extract the legitimate
addresses from the vulnerable NGINX binary, in or-
der to form the minimal security policy.

Additionally, as the exploitation unfolds, we mon-
itor its progress and we manage to identify a charac-
teristic sequence of calls to executables/libraries (in-
cluding the internal ones) and produce a trail of it.
The security policy can subsequently be updated to
reflect this information, so when the gate enforces the
policy, it will recognize the same fingerprint and be
able to intercept and mitigate the attack.

We leverage the Phoronix Test Suite (PTS) (pts,
2021) to evaluate the efficiency of our mechanism.
Specifically, we run the OpenSSL benchmark test.
Our test-bed is a machine with 16Gb of RAM
and an AMD FX-8370 Eight-Core processor, run-
ning Ubuntu 16.04 x86 64 and Linux kernel version
4.16.7. We run the benchmark test for both cases: (a)
default untouched kernel, (b) kernel customized with
our mechanism. The outcome reports on the num-
ber of RSA 4096-bit sign operations per second. Fig-
ure 2 summarizes the results of the tests. As expected,
the default setup is performing better. However, there
is only minimal decrease in performance when using
our custom kernel, of about 2%.

680 685 690 695

Default kernel

Custom kernel

RSA 4096-bit signs per second
Figure 2: Performance evaluation of our mechanism using
the OpenSSL benchmark of PTS.

6 DISCUSSION AND
CONCLUSION

In this paper, we present a Proof-of-Concept pro-
totype mitigation technique as an extension of our
previous work in (Tsantekidis and Prevelakis, 2017;
Tsantekidis and Prevelakis, 2019) that segregates the
memory of a running process into regions at the gran-
ularity of executables/external libraries (irregardless
of them being statically or dynamically linked), lever-
aging the MMU. With each of these regions we as-
sociate a special gate library that enforces security
policies and redirect execution through it after inter-
cepting calls to the regions. This way, we are able
to monitor access to executables/libraries and change
their functionality when there is suspicion/detection
of foul play, based on security policies. Our approach
is efficient and transparent and can be used on bina-
ry/legacy applications and existing environments, as
well as serve as a complimentary measure of defense
alongside already implemented mechanisms.
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