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Abstract: We describe the Tonnetz web environment and some of the possible applications we have developed within 
a pedagogical workshop on mathematics and music that has been conceived for high-school students. This 
web environment makes use of two geometrical representations that constitute intuitive ways of accessing 
some theoretical concepts underlying the equal tempered system and their possible mathematical 
formalizations. The environment is aimed at enhancing “mathemusical” learning processes by enabling the 
user to interactively manipulate these representations. Finally, we show how Tonnetz is currently being 
adapted in order to lead computer-based experiences in music perception and cognition that will be mainly 
carried at universities. These experiences will explore the way in which geometrical models could be 
implicitly encoded during the listening process. Their outcome may reinforce educational strategies for 
learning mathematics through music.  

1 INTRODUCTION 

Within the panoply of computer-based approaches on 
music education, there is a common agreement that 
web environments constitute an excellent device to 
support music learning processes (Meredith, 2016; 
Conway, 2020). The Tonnetz environment 1  is a 
web application based on previous research on 
computer-aided topological music analysis (Bigo et 
al., 2013; Bigo et al., 2014; Bigo and Andreatta, 
2016) and fostering mathematical and computational 
thinking through music.  

In this paper, we first provide a very short 
overview of the most active research axes of the 
Structural Music Information Research Project 
(SMIR project in short) within which the web 
environment has been developed. After discussing the 
“mathemusical” dynamics underlying the SMIR 
project, we focus in particular on some computational 
models of harmonic spaces that have been 
implemented in Tonnetz. This environment enables 
an interactive exploration of a great variety of 

 
1 We henceforth use Tonnetz for our open-source web 
environment and Tonnetz for the neo-Riemannian 
representation. The web environment is available at: 

geometric spaces for music-theoretical, analytical and 
compositional purposes. We will also present a 
current research project, supported by the CNRS, 
which constitutes the cognitive component of the 
SMIR project. This project, entitled Processes and 
Learning Techniques of Mathemusical Knowledge 
(ProAppMaMu project in short), aims to explore the 
link between geometric representations and cognitive 
sciences by following some previous work carried out 
by researchers in neurosciences and experimental 
psychology and by focusing on the interplay between 
structural mathematics and computational models. 

After some considerations on music cognition, we 
show how Tonnetz is currently being adapted to 
lead computer-based educational experiences for 
music perception and cognition. These experiences 
are planned to be systematically conducted at 
universities and might shed some new light on the 
way in which geometrical models are implicitly 
encoded in the listening process, and eventually 
suggest how to reinforce the learning techniques in 
mathematics through music. 

https://guichaoua.gitlab.io/web-hexachord/. We recom-
mend to open it with Chrome. 
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2 THE SMIR PROJECT AND ITS 
“MATHEMUSICAL” 
DYNAMICS 

The SMIR project, hosted by the Institut de 
Recherche Mathématique Avancée (IRMA) of the 
University of Strasbourg, is currently carried out in 
collaboration with musicologists from the Groupe de 
Recherche Expérimentale sur l'Acte Musical 
(GREAM) and computer science researchers from the 
Music Representations Team at IRCAM in Paris. 
Ongoing research includes axes such as mathematical 
morphology, generalized Tonnetze, formal concept 
analysis and computational music analysis (Agon et 
al., 2018), persistent homology and automatic 
classification of musical styles (Bigo and Andreatta, 
2019), category theory and transformational music 
analysis (Popoff, Andreatta and Ehresmann, 2018), 
homometry and phase retrieval in music analysis 
(Mandereau et al., 2011), or tiling musical problems 
and Fuglede spectral conjecture (Andreatta, 2015). 

All these topics share a common trait, which 
positions music at the core of mathematical 
formalization and computational modelling. Their 
dynamics is captured by the diagram in Figure 1, 
which shows how to navigate between music and 
mathematics by using computer science as an 
interface in the formalization ascending process 
(from music to mathematics) and the application 
descending process (from mathematics back to 
music). This dynamical “mathemusical” process is 
detailed deeper in Figure 2. Notice that some musical 
problems make use of computational models in an 
ascending formalization process, before necessarily 
reaching the state of general theorems in the 
mathematical realm.  This is typically the case of NP-
complete music-theoretical problems for which, 
unfortunately, it is not possible to exhibit a 
constructive algorithm. Some well-known 
compositional problems belong to this class. It is the 
case, for instance, of the enumeration of all-interval 
twelve-tone series, the estimation of Z-related chords, 
or the enumeration of Hamiltonian paths and cycles 
in music-theoretical graphs, such as the Tonnetz or its 
possible extensions (Cannas and Andreatta, 2018). 

The most interesting case for “mathemusical” 
research occurs however when a musical problem 
reaches the state of a mathematical theorem after the 
formalization or generalization process and becomes 

 
2  Available at: https://guichaoua.gitlab.io/web-
hexachord/hexachordTheorem. We recommend to 
visualize it with Chrome. 

integrated within a computer-aided environment to be 
used by composers or music theorists in different 
situations within the field of music. One of the most 
celebrated theorems that one may find in the literature 
is Milton Babbitt’s “hexachordal theorem”, stating 
that a hexachord and its complement always have the 
same intervallic content (Blau, 1999). Tonnetz, and 
in particular its circular representation associated to 
the equal-tempered system, can be easily adapted to 
this special musical problem. It becomes an 
interactive platform for visualising the intervallic 
content of two generic collections of pitches related 
by complementation. Figure 3 shows the environment 
as it has been integrated in an online article retracing 
the history of this famous combinatorial problem 
(Bayette, 2019). The reader may try to discover the 
possible relations between the intervallic content of a 
given collection of pitches and its complement by 
exploring this special adaptation2. 

 
Figure 1: The “mathemusical” dynamics at the core of the 
SMIR project. 

 

Figure 2: A more detailed perspective of Figure 1 showing 
the different steps of the “mathemusical” dynamics. 
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Figure 3: Adaptation of Tonnetz for interactively 
visualizing Babbitt’s hexachordal theorem. 

3 THE TONNETZ GEOMETRY-
BASED WEB ENVIRONMENT  

Tonnetz makes use of two kinds of geometric 
representations: a circular representation and a tiling 
of the plane by triangles (alternatively by hexagons). 
We go now into some details of these geometric 
representations by emphasizing their relevance in 
supporting music learning and teaching via computer 
models. 

3.1 The Circular Representation 

As in the case of the HexaChord computer 
environment3, which was the inspirational source for 
this web application, two circular representations are 
available to the user: the chromatic circle and the 
cycle of fifths representation. These representations 
are extensively used in both American and European 
research around the pitch-class set theory (Andreatta, 
Bardez, and Rahn, 2008). Although both circles are 
algebraically equivalent (since they are related by an 
affine transformation), they highlight different 
properties of chord collections and their associated 
intervallic content with respect of symmetry, as 
shown in Figure 4. 

An interesting case, that can be taken as an 
exercise for advanced maths students, occurs when 
the two representations are exactly the same for a 
specific pitch collection. The reason of this 
equivalence goes deep into algebraic properties of the 
cyclic groups underlying the previous geometric 
representations. Apparently simple musical problems 
may give rise to deep algebraic investigations that can 
be easily modelled within an interactive environment 
such as Tonnetz. 

 
3 Available at: https://louisbigo.com/hexachord 

 
Figure 4: Two possible representations of the C7 chord in 
Tonnetz. On the left, within the chromatic circle; on the 
right, within the cycle of fifths. 

3.2 Two Ways of Tiling the Space 

Beyond the circles, Tonnetz incorporates further 
geometric representations: the tiling of the plane by 
triangles and by hexagons. These representations are 
widely spread within the neo-Riemannian music 
analysis (Gollin and Rehding, 2010). The 
triangulation of the 2-dimensional Euclidean space 
offers a first geometrical perspective on musical 
transformations between two given chords. 
According to the simplicial approach previously 
introduced by Louis Bigo and Moreno Andreatta 
(2015), triangles are 2-simplexes and they are glued 
together, as shown in Figure 5, by a self-assembly 
process when they share a common edge. 

 
Figure 5: On the left, the first three n-simplexes; on the 
right, the self-assembly process. Adapted from Bigo and 
Andreatta (2015).  

In the standard Tonnetz space, triangles represent 
major and minor chords, as Figure 6 puts in evidence, 
but one may use any 3-note chord as a 2-simplex 
generating the triangular tessellation of the plane via 
the self-assembly process. The structural properties of 
the resulting non-standard Tonnetz space will be 
different depending on the properties of the 
generating 2-simplexes (Catanzaro 2011). This fact 
leads to a panoply of topological cases, from the torus 
(as in the case of the standard Tonnetz) to non-
connected spaces (for instance, when the space is 
generated by only augmented triads). 
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Figure 6: Multiple visualizations of pentachord {C#, D, E, G, A} within the Tonnetz. On the left, its representation within 
the standard Tonnetz. On the right, the circular representations associated to this chord. 

  

Figure 7: Multiple visualizations of pentachord {C#, D, E, G, A,} within the Tonnetz, but represented this time in the dual 
space of the standard Tonnetz. 

Any triangulation of the plane is associated to its 
dual one: the graph obtained by replacing every 2-
simplex with a 0-simplex (i.e., a point) and by 
connecting two points when they corresponding 2-
simplexes share a common 1-simplex (i.e., an edge). 
Figure 7 shows how the pentachord of Figure 6 is 
now represented in the dual space, also called 
“chicken-wire” torus in the neo-Riemannian music 
theory (Douthett and Steinbach, 1998). 

In this new visual representation, the vertices are 
now major triads (normal font with the name of the 
chord root) or minor ones (italic font with the name 
of the chord root). Now, for any given collection of 
pitches, if the node corresponding to A major is 
illuminated, it means that the collection contains the 
A major triad as a subset. One may notice that each 
hexagon of the dual space represents a single note, 
more precisely the note which is common to all the 
triads which are associated to the nodes of the 
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hexagonal surface. For instance, pitch class F# 
belongs to the F# major, F# minor, D major, D# 
minor, B major, and B minor triads. 

4 USING TONNETZ IN 
OUTREACH AND 
EDUCATIONAL CONTEXTS 

Tonnetz has taken part of several large public 
events, such as the LaLaLab exhibition “Mathematics 
and Music” created by IMAGINARY and premiered 
at Heidelberg in May 2019. This exhibition was 
curated with the advice of several “mathemusical” 
researchers around the world and with the 
contribution of more than twenty artists and scientists 
working in the field. As shown in Figure 8, Tonnetz 
was presented by means of tactile screens and 
keyboards enabling the public to interactively explore 
the different geometric spaces available through the 
environment. 

Of course, Tonnetz can be used in quite more 
controlled scenarios with educational purposes. It has 
been recently integrated into a pedagogical workshop 
which was conceived by following the new high-
school programs of the French National Education. 
These programs introduce the topic of mathematics 
and music at the high-school level (typically for 15 
years-old students). They put a special emphasis on 
the way in which several harmonic structures have 
been formalized, from the Pythagorean scales to the 
equal-tempered system, and on the use of computer 
science to provide computational models of musical 
knowledge. In this workshop, designed within the 
ProAppMaMu project, we have tried to reinforce the 
interplay between standard pedagogical tools (flyers, 
slide presentations, audio and video extracts) and an 
interactive manipulation of Tonnetz. Figure 9 
shows the typical set-up of such a workshop in a high-
school class, where the students can individually 
explore further contents of the presentation through 
our web environment, which is available in their 
computer screen. 

The conception of a traditional paper support 
accompanying the “mathemusical” workshop has 
been done in synergy with Marie Marty, who is a 
designer from the Ecole Estienne of Design in Paris, 
specialist in scientific drawings. She has also created 
a series of animations for enriching the brochure 
support. Some topics within the official programs of 
the French National Education were selected for their 
potential to be also depicted in a traditional flyer, as 

shown in Figure 10. The aim was to describe, in an 
visually appealing way, the main features which are 
available in Tonnetz. Figure 11 highlights a portion 
of the paper flyer that can be “augmented” during a 
workshop. 

 

Figure 8: A visitor interacting with Tonnetz and a 
keyboard at the LaLaLab exhibition in Heidelberg 
(reproduced with the kind permission of IMAGINARY). 

 

Figure 9: A typical set-up of a “mathemusical” workshop 
of the ProAppMaMu project. 

 

Figure 10: The flyer for enriching the workshop. 
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Figure 11: On the left, the topic “the Tonnetz system” as contained in the brochure (third inner panel); on the right, a still of 
its matching gif animation for slide presentations. 

Both the animations and the computer-aided 
visualisations have been integrated into a pedagogical 
film (entitled “Musique et mathématiques: histoire 
d’une rencontre”) that aims to artistically summarize 
the theoretical content of the high-school workshop. 
The two main characters of this film, which appear in 
Figure 12, are playing on a stage (which is a 
keyboard) surrounded by several animations 
generated with Tonnetz. The dialogue between 
these characters provides at the same time a journey 
through the history of the relations between maths 
and music and a condensed presentation of the main 
concepts introduced in the workshop via the web 
environment4. 

 
Figure 12: Screenshot of the pedagogical film “Musique et 
mathématiques: histoire d’une rencontre”. 

 
4 The film is hosted at the CNRS AudiDiMath outreach 
platform: http://video.math.cnrs.fr/musique-et-
mathematiques/ 

5 PERCEPTUAL AND 
COGNITIVE IMPLICATIONS  

So far, the main outcomes of the SMIR project have 
been the online uploading of the Tonnetz 
environment, its adaptation within the contexts of art 
and popular music, and a detailed dissemination plan 
trough “mathemusical” workshops and exhibitions, 
suitable for pedagogical applications. Besides all 
these achievements, the SMIR project disclosed new 
interesting research questions belonging to the area of 
psychology and cognition. These questions concern 
the way in which individuals process the information 
carried by the geometrical representations discussed 
in the previous sections: 

 Do the structures implicitly encoded by 
Tonnetz have some perceptual foundation, 
somehow innate in human cognition? 

 How could we grasp plausible connections 
between its geometrical representations and a 
multimodal (in our particular context, auditory 
and visual) musical perception? 

 Which strategies would be the most suitable and 
efficient for helping the listeners become more 
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aware and familiar with such structures under 
the effect of such stimuli? 

ProAppMaMu aims at answering these questions 
by means of perceptual tests. Moreover, by focusing 
on the interplay between structural mathematics and 
computational models, the project will explore the 
way in which geometrical models of music theory 
might be used to reinforce the learning techniques 
within the context of mathematical education. 

5.1 Transformational Music Theory 
and Cognition  

One of the main goals of systematic musicology 
during the last decades has been to explore the links 
between human cognitive capabilities to process 
musical signals and the theoretical foundations of 
music (Leman, 1995). As music develops quite 
differently within each human culture, the theoretical 
representations conceived by Western music theorists 
are far from standing as universals. This fact does not 
mean, however, that Western representations are 
completely arbitrary. Consequently, a search for 
some objectification in this sense is highly desirable. 
Moreover, a better comprehension of the cognitive 
foundations and implications of such representations 
would help to improve the pedagogical strategies in 
musical and “mathemusical” educational contexts. 

Many music representations can be traced back to 
two main schemes, which are embedded in Western 
music notation: the horizontal flow of time and the 
vertical ordering of pitches, as outlined by the image 
schema theory (Johnson, 1987). Although such 
schemas may seem to be almost trivial within our 
culture, the way individuals interact with them is, 
cognitively speaking, quite complex. For instance, 
there is no one-to-one relationship between the 
vertical distribution of pitches and the plethora of 
cognitive strategies individuals adopt for pitch 
recognition (Letailleur, Bisesi, and Legrain, 2020). 
Concerning time, some composers have twisted the 
straight left-to-right musical timeline while drafting 
their oeuvre (Besada and Pagán Cánovas, 2020; 
Besada, Barthel-Calvet, and Pagán Cánovas, 2021). 

All these examples rely on relatively simple music 
features (pitch and time), which are unfolded 
throughout a unidimensional image schema. The 
standard Tonnetz is conversely much more complex, 
as pitches are placed in the crossroads of three 
different linear directions, giving rise to geometrical 
shapes matching with particular chords. Previous 
research in the field of musical psychology has 
encompassed these kinds of problems from diverse 
approaches. A key related topic is the study of 

perceived distance when hearing pitch collections in 
tonal and post-tonal music (Rogers and Callender, 
2006; Bisesi, 2017). Concerning our particular 
research, Carol L. Krumhansl (1998) compared three 
neo-Riemannian models of triadic distance with 
psychological data. She surmised that the perceived 
distance between chord roots is akin to the dual 
standard Tonnetz. Andrew J. Milne and Simon 
Holland (2016) have shown through experimental 
data that spectral pitch-class distances and the 
Tonnetz have high correlations. This evidence led 
them to provide a psychoacoustical explanation for 
perceived triadic distance. By contrast, very few is 
known about how individuals actually apprehend 
such abstract structures. 

The standard Tonnetz probably stands as the most 
exploited model of transformational music theory. 
This branch of music theory was formally stablished 
by David Lewin (1987; 1993) and privileges the 
analysis of the way musical objects transform over 
time instead of focusing on their intrinsic features. As 
previously defined, the aforementioned gluing self-
assembly process of the Tonnetz unfolds along three 
different directions which are respectively orthogonal 
to the three linear directions of individual pitches. 
Three different transformations (those that generate 
the space) relate each triangle (i.e., each triad) with 
each contiguous neighbour. As the standard Tonnetz 
is a cyclic and connected space (the aforementioned 
torus), any pair of triangles can be related by means 
of a finite series of combinations of these only three 
transformations generating the space. 

As highlighted above, how music evolves over 
time is a key issue in transformational music theory. 
Consequently, these kinds of transformations have 
been sometimes described as metaphors of motion by 
music theorists (Attas, 2009). Musical software like 
Tonnetz allows to perceptually reify this metaphor, 
and therefore to observe and potentially describe the 
way a user conceives them. 

5.2 Adapting Tonnetz for Empirical 
Psychology Experiences 

We are currently developing a variant of the standard 
Tonnetz, in order to collect quantitative and 
qualitative data for discussing the cognitive features 
of human interaction with its environment. Several 
chord sequences will be submitted to listeners of 
different expertise, in the double format of sounds and 
coloured patterns. All these sequences are 
parsimonious (i.e. any pair of contiguous triads share 
two of their three respective pitches), but the last triad 
does not necessarily follow a parsimonious 
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movement, as it happens for instance in the sequence 
of Figure 13. There, pitch names on the vertices will 
be erased to avoid potential bias, and the first six 
chords are associated with red (for major chords) and 
blue triangles (for minor chords). When the last chord 
sounds, six new triangles are illuminated in a third 
colour (yellow). Participants are asked to choose, 
according to their subjective intuition, the yellow 
triangle that fits best with the sound stimulus. The 
task will be presented twice: for the first time, the 
participant is unaware of what the Tonnetz is, whereas 
the second attempt is performed after a short video 
tutorial. The device stores, for each sequence, the 
user’s response time and the selected triangle 
matching with its triad for a quantitative comparison 
with the correct one. In addition, a follow-on 
questionnaire will be aimed at qualitatively grasping 
the mental strategies brought into play when 
elucidating the answer. 

 

 

Figure 13: Top: A musical sequence among those planned 
for the cognitive experiences with our adaptation of 
Tonnetz. Bottom: Partial screenshot when executing the 
sequence. We provide the pitch names for a better 
understanding of this figure, although they will not be 
shown during the tests. 

We currently test the viability of the protocol with 
a few individuals. Our goal is to run it with different 
populations. First, we are going to compare subjects 
whose cognitive styles are supposed to be very 
contrasting from each other. Following the E-S theory 
(Baron-Cohen, Knickmeyer, and Belmonte, 2005), 
we may distinguish between “the capacity to respond 
to feeling states of other individuals” (empathizing 
cognitive style) and the “capacity to respond to 
regularities of objects and events” (systemizing 

cognitive style). The E-S theory has been applied to 
the musical domain, (Kreutz, Schubert, and Mitchel, 
2008) leading to the development of music 
empathizing (ME) and music systemizing (MS) 
scales as emerging from principal component 
analysis procedures. Questions aimed at distinguish 
between the two groups concerned thoughts about the 
emotional state of the composer or the performers 
when listening to the music, the importance ascribed 
to physics and acoustics of musical instruments, 
music structure, or the different layers of instruments 
and voices. 

In our study, we are going adapt the ME-MS 
scales to the participants’ mother languages (Schubert 
et al., 2014) for a population of trained musicians and 
scientific professionals to explore some potential 
specificities in achieving a “mathemusical” goal. 
While no significant difference between these groups 
is awaited at a first stage without training, we expect 
to disclose a number of correlations between the 
preferred cognitive style and the amount and 
specificity of the improvements, after some training 
at a second stage. In a follow-on experiment, a group 
of university students will be involved, adhering to a 
very similar protocol. In the future, we plan to 
consider the dual representation of the Tonnetz, as 
well as musical sequences related to non-standard 
Tonnetze or even more general related structures 
(Tymoczko, 2012). 

6 CONCLUSIONS 

In this paper we have shown how geometry-based and 
interactive web environments such as Tonnetz can 
be useful for supporting “mathemusical” learning and 
research activities. Within the larger SMIR project, 
the main goal was to develop a dissemination plan 
through several “mathemusical” workshops and 
exhibitions, suitable for pedagogical applications. 
Our activities primarily targeted high-school and 
university students, but were also conceived for larger 
audiences.  

Besides this outreach achievement, the SMIR 
project disclosed new interesting research questions 
belonging to the areas of psychology and cognition. 
These questions are currently addressed by the 
ProAppMaMu project, focusing on how the more 
complex geometrical representations implemented in 
Tonnetz are processed during an active listening. In 
order to tackle this cognitive component of the SMIR 
project, we are adapting this web environment by 
integrating a series of perceptual tests which are 
aimed at better understanding how these geometrical 
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representations are processed by the listeners. These 
tests will start by observing small populations with 
different musical and scientific skills, but will soon be 
generalized to larger groups. Our experimental 
approach may hopefully shed some light on the way 
in which some geometrical models of music theory 
could be used to reinforce educational strategies, even 
those beyond music education. They will surely 
enhance existing learning techniques within the 
exciting context of a musically driven mathematical 
education. 
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