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Abstract: The computation of Lyapunov functions to determine the basins of attraction of equilibria in dynamical sys-
tems can be achieved using linear programming. In particular, we consider a CPA (continuous piecewise
affine) Lyapunov function, which can be fully described by its values at the vertices of a given triangulation.
The method is guaranteed to find a CPA Lyapunov function, if a sequence of finer and finer triangulations
with a bound on their degeneracy is considered. Hence, the notion of (h,d)-bounded triangulations was intro-
duced, where h is a bound on the diameter of each simplex and d a bound on the degeneracy, expressed by
the so-called shape-matrices of the simplices. However, the shape-matrix, and thus the degeneracy, depends
on the ordering of the vertices in each simplex. In this paper, we first remove the rather unnatural dependency
of the degeneracy on the ordering of the vertices and show that an (h,d)-bounded triangulation, of which the
ordering of the vertices is changed, is still (h,d∗)-bounded, where d∗ is a function of d, h, and the dimension of
the system. Furthermore, we express the degeneracy in terms of the condition number, which is a well-studied
quantity.

1 INTRODUCTION

Lyapunov stability theory is of essential importance
in dynamical systems and control theory and is stud-
ied in practically all textbooks and monographs on
linear and nonlinear systems, cf. e.g. (Zubov, 1964;
Yoshizawa, 1966; Hahn, 1967) or (Sastry, 1999;
Vidyasagar, 2002; Khalil, 2002) for a more modern
treatment. The canonical candidate for a Lyapunov
function for a physical system is its (free) energy.
In particular, a dissipative physical system must ap-
proach the state of a local minimum of the energy.

For general dynamical systems, however, there
is no analytical method to obtain a Lyapunov func-
tion. For this reason, various methods for the numer-
ical generation of Lyapunov functions have emerged.
To name a few, in (Vannelli and Vidyasagar, 1985;
Valmorbida and Anderson, 2017) the numerical gen-
eration of rational Lyapunov functions was studied,
in (Parrilo, 2000; Chesi, 2011; Anderson and Pa-
pachristodoulou, 2015) sum-of-squared (SOS) poly-
nomial Lyapunov functions were parameterized us-
ing semi-definite optimization, see also (Ratschan and

a https://orcid.org/0000-0003-1421-6980
b https://orcid.org/0000-0003-0073-2765

She, 2010; Kamyar and Peet, 2015) for other ap-
proaches using polynomials, and in (Giesl, 2007) a
Zubov type PDE was approximately solved using col-
location. For more numerical approaches cf. the re-
view (Giesl and Hafstein, 2015b).

In (Julian et al., 1999; Marinósson, 2002) linear
programming was used to parameterize continuous
and piecewise affine (CPA) Lyapunov functions. In
this approach, a subset of the state space is first tri-
angulated, i.e. subdivided into simplices, and then a
number of constraints are derived for a given nonlin-
ear system, such that a feasible solution to the re-
sulting linear programming problem allows for the
parametrization of a CPA Lyapunov function for the
system.

In (Hafstein, 2004; Hafstein, 2005; Giesl and Haf-
stein, 2014) it was proved that this approach always
succeeds in computing a Lyapunov function for a gen-
eral nonlinear system with an exponentially stable
equilibrium, if the simplices are sufficiently small and
non-degenerate. The proof of this fact used the con-
cept of (h,d)-bounded triangulations, see Definition
3.1, where h > 0 is an upper bound on the diame-
ters of the simplices and d > 0 quantifies the degen-
eracy of the simplices. For the definition of (h,d)-
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bounded triangulations one must consider triangula-
tions, of which the order of the vertices of each sim-
plex has been fixed.

The first main contribution of this paper is to show
that if T is an (h,d)-bounded triangulation in Rn,
n ≥ 2, then any triangulation consisting of the same
simplices as T , but with a different ordering of the
vertices, is an (h,d∗)-bounded triangulation with

d∗ = d(1+d
√

n−1).

Thus, the property that a triangulation is (h,d)-
bounded depends essentially on the simplices of the
triangulation T , and not the ordering of the vertices of
the simplices. Note that the case n = 1 is trivial and
any ordering of the vertices gives an (h,d)-bounded
triangulation of the line.

The second main contribution is a characteriza-
tion of (h,d)-bounded triangulations using the con-
dition number of the shape-matrices of the simplices,
cf. Definition 4.2. The advantage of this characteri-
zation is that the condition number of a matrix is a
more familiar concept than the degeneracy as defined
in Definition 3.1.

The paper is organized as follows. After intro-
ducing some notations, we define triangulations, CPA
functions, shape-matrices of simplices, and (h,d)-
bounded triangulations in Section 2. In Section 3
we outline the algorithm to compute CPA Lyapunov
functions and explain the relevance of (h,d)-bounded
triangulations for the algorithm. In Section 4 we
prove our main results in Proposition 4.1, 4.4 and 4.5,
before we give conclusions in Section 5.

1.1 Prerequisites and Notation

N0 denotes the set {0,1,2, . . . ,}. For a vector x ∈ Rn

and p≥ 1 we define the norm ‖x‖p = (∑n
i=1 |xi|p)1/p.

We also define ‖x‖∞ = maxi∈{1,...,n} |xi|. We will re-
peatedly use the norm equivalence relation

‖x‖p ≤ ‖x‖q ≤ nq−1−p−1‖x‖p for p > q.

The induced matrix norm ‖ · ‖p is defined by ‖A‖p =
max‖x‖p=1 ‖Ax‖p. Clearly ‖Ax‖p ≤ ‖A‖p‖x‖p. For
a matrix A we write AT for its transpose. Recall that
‖A‖1 = ‖AT‖∞ = maxi ‖ai‖1, where ai are the column
vectors of A, and the norm equivalences

1√
n
‖A‖p ≤ ‖A‖2 ≤

√
n‖A‖p

for A ∈ Rn×n and p ∈ {1,∞}. The condition number
κp of a nonsingular matrix A ∈ Rn×n with respect to
the norm ‖ · ‖p is defined as κp(A) := ‖A‖p‖A−1‖p.

We utilize a bold-face font for (column) vectors,
e.g. x ∈ Rn×1 = Rn. For a vector x we write xi or [x]i

for its ith component. We denote by e1,e2, . . . ,en the
standard orthonormal basis of Rn and by I the identity
matrix. We denote the interior of a set S ⊂ Rn by S◦
and its closure by S .

If B ∈ Rn×n and u,v ∈ Rn, then

uvTBuvTB = (vTBu)uvTB

because vTBu ∈ R. From this simple observation the
very useful Sherman-Morrison lemma on the rank 1
correction A+uvT of an invertible matrix A follows,
cf. (Sherman and Morrison, 1950).

Lemma 1.1 (Sherman-Morrison). Let A ∈ Rn×n be
invertible and u,v ∈ Rn. Then(

A+uvT)−1
= A−1− A−1uvTA−1

1+vTA−1u
,

provided 1+vTA−1u 6= 0. Furthermore, we have the
following identity:

det
(
A+uvT)= (1+vTA−1u

)
detA.

The determinant identity can be seen from

(I +xvT)x = (1+vTx)x

and

(I +xvT)z = z for z ∈ Rn with vTz = 0.

Thus, the eigenvalues of (I + xvT) are 1 + vTx and
(n−1)-times 1, we have det(I +xvT) = 1+vTx, and
it follows with x = A−1u that

det
(
A+uvT)= detA ·det

(
I +A−1uvT)

=
(
1+vTA−1u

)
detA.

2 TRIANGULATIONS AND CPA
FUNCTIONS

In this section we will introduce triangulations and
CPA functions as well as the definition of (h,d)-
bounded triangulations.

Definition 2.1. We define the following :

i) The convex-combination of vectors
x0,x1, . . . ,xm ∈ Rn, denoted

co{x0,x1, . . . ,xm},

is the set of all sums
m

∑
i=0

λixi, where
m

∑
i=0

λi = 1

and ∀ i : 0≤ λi ≤ 1.
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ii) The vectors x0,x1, . . . ,xm ∈ Rn are said to be
affinely-independent if

m

∑
i=0

λixi = 0 and
m

∑
i=0

λi = 0

implies λ0 = λ1 = · · ·= λm = 0.
iii) If x0,x1, . . . ,xm ∈ Rn are affinely-independent,

then the set S = co{x0,x1, . . . ,xm} is called an
m-simplex. The vectors x0,x1, . . . ,xm are called
the vertices of S. The set of vertices for
an m-simplex is sometimes denoted by veS =
{x0,x1, . . . ,xm}. In Rn an n-simplex is often re-
ferred to as just a simplex.

iv) For an m-simplex S, define its diameter as:

diam(S) := max
x,y∈S
‖x−y‖2.

We now define a triangulation. For our purposes it
is advantageous to have the order of the vertices of ev-
ery simplex in the triangulation fixed, similar to (Giesl
and Hafstein, 2015a). The reason for this becomes
clear when we introduce shape-matrices of simplices.
For an n-tuple of vertices C = (x0,x1, . . . ,xn) we de-
fine coC = co{x0,x1, . . . ,xn}.
Definition 2.2 (Triangulation). Let I be a set of
indices. A triangulation T = {Sν}ν∈I in Rn is a
set of n-simplices Sν with ordered vertices Cν =(
xν

0,x
ν
1, . . . ,x

ν
n
)

for all ν ∈ I, such that

Sµ∩Sν = coveSµ∩ coveSν = co(veSµ∩veSν) (1)

for all µ,ν ∈ I. The domain of T is defined as

DT :=
⋃
ν∈I

Sν

and its complete set of vertices is denoted by

VT :=
⋃
ν∈I

veSν.

Further, we define the diameter of T as

diam(T ) := supS∈T diam(S).

Given a triangulation T a continuous and piece-
wise affine function, i.e. CPA function, can be defined
by fixing its values at VT .

Definition 2.3 (CPA function). Let T be a triangula-
tion in Rn. We denote by CPA[T ] the set of all contin-
uous functions

V : DT → R
that are affine on each simplex Sν ∈ T , i.e. for each
Sν ∈ T there exists a vector wν ∈ Rn and a number
aν ∈ R such that

V (x) = wT
ν x+aν ∀x ∈ Sν.

Let V ∈ CPA[T ] and x ∈ DT . Then there is a
simplex S = co(x0,x1, . . . ,xn) ∈ T such that x ∈ S.
Further, x has a unique representation as the convex
combination of the vertices of S, i.e. there are unique
numbers λx

i ∈ [0,1], i = 0,1, . . . ,n, such that

x =
n

∑
i=0

λ
x
i xi and

n

∑
i=0

λ
x
i = 1.

It is not difficult to see that

V (x) =
n

∑
i=0

λ
x
i V (xi).

Hence, each V ∈ CPA[T ] is completely determined
by its values in the vertex set VT .

To have concrete examples of triangulations use-
ful for the CPA algorithm we recall the definition of
the standard triangulation Tstd as given in (Albertsson
et al., 2020); for a graphical representation see Figure
1.
Definition 2.4 (The Standard Triangulation of Rn).
The Standard Triangulation is a triangulation Tstd =
{Sν}ν∈I with indices ν = (z,σ,J) ∈ Nn

0 × Sym(n)×
{−1,+1}n =: I and vertices Cν = (xν

0,x
ν
1, . . . ,x

ν
n)

given by:

xν

k = RJ

(
z+

k

∑
l=1

eσ(l)

)
= RJz+RJ uσ

k . (2)

Here, J = (J1,J2, . . . ,Jn)
T ∈ {−1,+1}n and RJ =

diag(J) ∈ Rn×n is a matrix corresponding to the re-
flection specified by J ∈ {−1,+1}n. Further, Sym(n)
denotes the set of the permutations σ : {1,2, . . . ,n}→
{1,2, . . . ,n} and

uσ

k =
k

∑
l=1

eσ(l).

We now define the shape-matrix of a simplex, of
which the vertices are in a particular order. This is
needed to define (h,d)-bounded triangulations. Then
we explain the importance of shape-matrices in com-
puting CPA Lyapunov functions in Section 3.
Definition 2.5. For an n-simplex S of a triangulation
with vertices Cν = (x0,x1, . . . ,xn) its shape-matrix
XS is defined by

XS :=


(x1−x0)

T

(x2−x0)
T

...
(xn−x0)

T

 ∈ Rn×n.

Notice, that because S in the definition of a shape-
matrix is an n-simplex, its vertices x0,x1, . . . ,xn are
affinely independent vectors, so the shape matrix XS
is nonsingular.
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Figure 1: The standard triangulation Tstd in R2 on [−5,5]2.

Remark 2.6. Important for computing CPA Lya-
punov functions is not the shape-matrix itself but the
quantity ‖X−1

S ‖p, where usually p = 2, but for some
applications p = 1 or p = ∞ are more appropriate.
Because all norms on the finite-dimensional vector
space Rn×n are equivalent there is no fundamental
difference between these norms. It is tempting to as-
sume that the quantity ‖X−1

S ‖p could be related to
the determinant of XS, because (n!)−1|detXS| is well
known to be the volume of the simplex and does not
depend on the choice of x0 or the order of the dif-
ferences xi − x0 in the shape-matrix. However, as
e.g. shown in (Golub and van Loan, 2013, §2.6.3),
there is no correlation between ‖X−1

S ‖p and |detXS|.
Let us give a short discussion on detXS, because

we will need it later.

Remark 2.7. That |detXS| does not depend on the
choice of x0 or the order of the differences xi −
x0 in the shape-matrix follows from a volume ar-
gument, but can also be seen algebraically. Let
xa

i = (1,xT
i )

T ∈ Rn+1 be the vectors xi ∈ Rn aug-
mented with 1 in the first position. Define Xa =(
xa

0 xa
1 · · ·xa

n
)T ∈ R(n+1)×(n+1). Defining A = (ai j) ∈

R(n+1)×(n+1) through

aii = 1 for i = 1, . . . ,n+1,
ai1 =−1 for i = 2, . . . ,n+1, and
ai j = 0 otherwise,

gives

AXa = (xa
0,x

a
1−xa

0, . . . ,x
a
n−xa

0)
T

=


1 xT

0
0 (x1−x0)

T

...
...

0 (xn−x0)
T

 .

Laplace expansion on the first row of A and the first
column of AXa gives

detA = 1 and det(AXa) = 1 ·detXS,

i.e. detXa = detXS. Choosing a different base vector
x0 and rearranging the order of the differences xi−
x0 corresponds to choosing a permutation matrix P ∈
R(n+1)×(n+1), cf. the discussion after Definition 4.2,
and considering the matrix APXa. Since

|detAPXa|= |detXa|= |detXS|
the proposition follows.

3 CONSTRUCTION OF CPA
LYAPUNOV FUNCTIONS

Let us explain in detail why the quantity ‖X−1
S ‖p is

of so much interest in our application of computing
CPA Lyapunov functions. To prove that the algo-
rithm in (Giesl and Hafstein, 2014) always succeeds
in computing a CPA Lyapunov functions for any sys-
tem ẋ = f(x), f ∈ C2(Rn,Rn), with an exponentially
stable equilibrium at the origin, one uses the fact that
there exists a C2 Lyapunov function W for the sys-
tem. This function W is used to prove that the linear
programming problem in the algorithm has a feasible
solution for a suitable triangulation.

In the proof in (Giesl and Hafstein, 2014) W is
approximated on S = co(x0,x1, . . . ,xn) by its interpo-
lation WCPA on S: With

x =
n

∑
i=0

λ
x
i xi ∈ S

as the unique convex combination of the vertices, we
set

WCPA(x) =
n

∑
i=0

λ
x
i W (xi).

While this obviously approximates the values of W
well on a simplex S with a small diameter h :=
diam(S), e.g. using

|W (x)−WCPA(x)| ≤
n

∑
i=0

λ
x
i |W (x)−WCPA(xi)|

≤ h ·max
z∈S
‖∇W (z)‖2,
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this is not sufficient for the proof, because we addi-
tionally need ∇WCPA to closely approximate ∇W at
the vertices xi, cf. the proof of Theorem 5 in (Giesl
and Hafstein, 2014).

It is not difficult to show that ∇WCPA is the con-
stant vector X−1

S w, where

w =


W (x1)−W (x0)
W (x2)−W (x0)

...
W (xn)−W (x0)

 ,

for all x ∈ S◦, cf. Remark 9 in (Giesl and Hafstein,
2014). From this one obtains by Taylor expansion,
cf. (19) in (Giesl and Hafstein, 2014),

[w−XS∇W (x0)]i = (xi−x0)
THW (zi)(xi−x0) (3)

for i = 1,2, . . . ,n, where HW is the Hessian matrix of
W and the zi are points in S.

Now

‖∇WCPA−∇W (xi)‖p ≤ ‖X−1
S w−∇W (x0)‖p

+‖∇W (x0)−∇W (xi)‖p

and the term ‖∇W (x0)−∇W (xi)‖p is small if the di-
ameter h of the simplex S is small because W ∈ C2.
The term ‖X−1

S w−∇W (x0)‖p, however, is not neces-
sarily small even though the diameter h of the simplex
S is small. But we have

‖X−1
S w−∇W (x0)‖p ≤ ‖X−1

S ‖p‖w−XS∇W (x0)‖p,

and the ith entry of the vector w−XS∇W (x0) can be
bounded using (3),

| [w−XS∇W (x0)]i |= |(xi−x0)
THW (zi)(xi−x0)|

≤ h2 · supz∈S‖HW (z)‖2.

Because of this, the proof in (Giesl and Hafstein,
2014) that the CPA method always succeeds in com-
puting a Lyapunov function if one exists, uses a se-
quence of finite triangulations Tk where the simplices
become smaller, i.e. h→ 0 as k→ ∞, but also such
that h2 · ‖X−1

S ‖p→ 0 as k→∞, or, as a sufficient con-
dition, that h · ‖X−1

S ‖p ≤ d is bounded.
Now note that when we scale down the sim-

plex S, i.e. multiply the vertices of S with a number
0 < s < 1, then diam(sS) = sdiam(S) and ‖X−1

sS ‖p =

s−1‖X−1
S ‖p. This leads to the following strategy of

obtaining a suitable sequence of triangulations Tk for
proving that the algorithm in (Giesl and Hafstein,
2014) succeeds in computing a Lyapunov function on
any compact set C , that is contained in the basin of at-
traction of the equilibrium at the origin. For simplic-
ity we ignore some adaptations that have to be made
close to the equilibrium, but do not change the main
idea of the proof:

We have that diam(Tstd) =
√

n and from Remark
2 in (Hafstein and Valfells, 2017) we know that
supS∈Tstd

‖X−1
S ‖p ≤ 2 for p = 1,2,∞. Fix a constant

s fulfilling 0 < s < 1 and define

Tk := {skSν : (skSν)∩C ◦ 6= /0}
for k ∈ N0. Then for each k ∈ N0, Tk consists of a
finite number of simplices, we have

diam(Tk) = sk√n

and

supskS∈Tk
diam(skS)‖X−1

skS‖p ≤ sk√n · s−k2 = 2
√

n.

Thus
diam(Tk)→ 0

as k→ ∞ and

supskS∈Tk
diam(skS)‖X−1

skS‖p ≤ 2
√

n =: d

is bounded. Hence, it follows that WCPA and ∇WCPA
approximate W and ∇W arbitrarily close on C for suf-
ficiently large k.

With identical argumentation an arbitrary se-
quence of triangulations Tk such that

• diam(Tk)→ 0 for k→ 0 and

• there is a bound d such that
supS∈Tk

diam(S)‖X−1
S ‖p ≤ d holds for all

k ∈ N0

can be used in the proof in (Giesl and Hafstein, 2014).
The situation explained above led to the def-

inition of the degeneracy of a triangulation and
(h,d)-bounded triangulations in (Giesl and Hafstein,
2015a).
Definition 3.1. We define the degeneracy of the tri-
angulation T to be the quantity

supS∈T diam(S)‖X−1
S ‖2,

where XS is the shape-matrix of S. We say that the tri-
angulation T is (h,d)-bounded for constants h,d >
0, if diam(T )< h and the degeneracy of T is bounded
by d, i.e. supS∈T diam(S)‖X−1

S ‖2 ≤ d.

4 MAIN RESULTS

As explained in the last section, the algorithm seeks
to find a sequence of triangulations Tk such that each
triangulation Tk is (hk,d)-bounded, where hk → 0 as
k→ ∞ and d > 0 is a constant independent of k.

Our first main result is Proposition 4.1, which
shows that the concept of (h,d)-bounded triangula-
tions can equivalently be formulated in terms of the
norm and the condition number of the shape-matrices
of the triangulation.
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Proposition 4.1. Let S = co(x0,x1, . . . ,xn) be a sim-
plex and XS be its corresponding shape-matrix. Then

1
n
‖XS‖2 ≤ diam(S)≤ 2

√
n‖XS‖2

and
1
n

κ2(XS)≤ diam(S)‖X−1
S ‖2 ≤ 2

√
nκ2(XS).

Proof. Fix i, j ∈ {0,1, . . . ,n} such that diam(S) =
‖xi − x j‖2 and k ∈ {1,2, . . . ,n} such that ‖XS‖∞ =
‖xk−x0‖1. Then we have

‖XS‖∞ = ‖xk−x0‖1 ≤
√

n‖xk−x0‖2

≤
√

n‖xi−x j‖2 =
√

n diam(S)

and

diam(S) = ‖xi−x j‖2 ≤ ‖xi−x0‖2 +‖x j−x0‖2

≤ ‖xi−x0‖1 +‖x j−x0‖1 ≤ 2‖XS‖∞.

Hence,

‖XS‖2 ≤
√

n‖XS‖∞ ≤ ndiam(S)

≤ 2n‖XS‖∞ ≤ 2n
√

n‖XS‖2

and

κ2(XS) = ‖XS‖2‖X−1
S ‖2 ≤ ndiam(S)‖X−1

S ‖2

≤ 2n
√

nκ2(XS).

Thus, a triangulation T is (h,d)-bounded for
some constants h,d > 0, if and only if there exists
constants h∗,d∗ > 0 such that

‖XS‖2 ≤ h∗ and κ2(XS)≤ d∗ for all S ∈ T ,

where XS is the shape-matrix corresponding to the
simplex S ∈ T . In either case we define it to be uni-
formly regular:

Definition 4.2 (Uniformly regular triangulations). A
triangulation T in Rn consisting of simplices with or-
dered vertices is said to be uniformly regular if there
exist constants h,d > 0 such that

diam(S)≤ h and diam(S)‖X−1
S ‖2 ≤ d

for all S ∈ T , or equivalently if there exist constants
h∗,d∗ > 0 such that

‖XS‖2 ≤ h∗ and κ2(XS)≤ d∗

for all S ∈ T . Here XS denotes the shape-matrix of
the simplex S.

We will now prepare our second main result,
showing that a uniformly regular triangulation does
not depend on the order of the vertices in Proposition
4.4. Given a permutation α ∈ Sym(n) of the numbers
{1,2, . . . ,n}, the permutation matrix Pα ∈Rn×n is de-
fined through

Pαek = eα(k) for k = 1,2, . . . ,n.

It is not difficult to see that P−1
α = PT

α and ‖Pα‖p =

‖P−1
α ‖p = 1 for p ∈ {1,2,∞}. Note that left-

multiplication by Pα permutes the rows- and right-
multiplication permutes the columns of a vector
or a matrix, e.g. with x = (x1,x2, . . . ,xn)

T and
xα =

(
xα(1),xα(2), . . . ,xα(n)

)T we have Pαx = xα and
xTPα = xT

α.
We have the following simple result.

Lemma 4.3. Let X ,P,Q ∈ Rn×n be matrices, P,Q
nonsingular, and ‖ · ‖ any sub-multiplicative matrix
norm. If

‖Q‖= ‖Q−1‖= ‖P‖= ‖P−1‖= 1,

then
‖QXP‖= ‖X‖.

In particular,

‖PαXPβ‖p = ‖X‖p for p ∈ {1,2,∞}

and for any permutation matrices Pα,Pβ ∈ Rn×n.

Proof. The first statement follows immediately from

‖X‖= ‖Q−1QXPP−1‖ ≤ ‖Q−1‖‖QXP‖‖P−1‖
= ‖QXP‖ ≤ ‖Q‖‖X‖‖P‖= ‖X‖.

The second statement follows immediately from the
comments above the lemma.

In the next proposition we show one of our main
results, namely that if a triangulation in Rn, n ≥ 2,
is (h,d)-bounded for some particular ordering of the
vertices of the simplices, then it is (h,d∗)-bounded
for any ordering with d∗ = d(1+d

√
n−1). The case

n = 1 is trivial with d∗ = d.

Proposition 4.4. Let T = {coCν}ν∈I be an (h,d)-
bounded triangulation in Rn, n ≥ 2, and let T ∗ =
{coC∗ν}ν∈I be a triangulation consisting of the same
simplices as T , but with a (possibly) different order-
ing of the vertices. Then T ∗ is (h,d∗)-bounded, where
d∗ = d

(
1+d

√
n−1

)
.

Proof. Let S = co(x0,x1, . . . ,xn) ∈ T , with shape-
matrix XS = (x1−x0,x2−x0, . . . ,xn−x0)

T. Then
S = co(xβ(0),xβ(1), . . . ,xβ(n)) is also a simplex in T ∗,
where β is a permutation of {0,1, . . . ,n}. If β(0) = 0,
then the shape-matrix X∗S of S in T ∗ has the same
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rows as the shape-matrix XS of S in T , just in a (pos-
sibly) different order. Then it follows immediately by
Lemma 4.3 that ‖(X∗S )−1‖2 = ‖X−1

S ‖2 and then

diam(S)‖(X∗S )−1‖2 ≤ d ≤ d(1+d
√

n−1) =: d∗.

If β(0) 6= 0, then there is an i ∈ {1,2, . . . ,n} such that
β(i) = 0. Define α ∈ Symn through α(i) = β(0) and
α(k) = β(k) for k 6= i and denote by Pα the permu-
tation matrix defined through Pαek = eα(k). Then we
have

X∗S = RiPαXS︸ ︷︷ ︸
=:A

+u(x0−xα(i))
T︸ ︷︷ ︸

=:vT

, (4)

where

Ri := I−2eieT
i and u :=

n

∑
k=1
k 6=i

ek.

To show (4) we first calculate the left-hand side to be

X∗S =



(
xβ(1)−xβ(0)

)T

...(
xβ(i−1)−xβ(0)

)T

(
xβ(i)−xβ(0)

)T

(
xβ(i+1)−xβ(0)

)T

...(
xβ(n)−xβ(0)

)T



=



(
xα(1)−xα(i)

)T

...(
xα(i−1)−xα(i)

)T

(
x0−xα(i)

)T

(
xα(i+1)−xα(i)

)T

...(
xα(n)−xα(i)

)T


.

For the right-hand side of (4) we have

A = RiPα

 (x1−x0)
T

...
(xn−x0)

T



= Ri


(
xα(1)−x0

)T

...(
xα(n)−x0

)T



=



(
xα(1)−x0

)T

...(
xα(i−1)−x0

)T

−
(
xα(i)−x0

)T

(
xα(i+1)−x0

)T

...(
xα(n)−x0

)T


and

uvT =



(
x0−xα(i)

)T

...(
x0−xα(i)

)T

0T

(
x0−xα(i)

)T

...(
x0−xα(i)

)T


This shows (4). Now

|detA|= |det(RiPαXS)|= |detRi| · |detPα| · |detXS|
= 1 ·1 · |detXS|= |detXS|

and by Remark 2.7 we have |detXS|= |detX∗S | 6= 0.
Note that 1+ vTA−1u 6= 0. Indeed, otherwise we

have

0 = u(1+vTA−1u)
= (A+uvT)A−1u
= X∗S A−1u,

which is a contradiction because X∗S and A−1 are in-
vertible and u 6= 0.

Thus we obtain by Lemma 1.1 that∣∣1+vTA−1u
∣∣= ∣∣∣∣det(A+uvT)

detA

∣∣∣∣= |detX∗S |
|detXS|

= 1.
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Further, again by Lemma 1.1, we obtain that∥∥(X∗S )−1∥∥
2 =

∥∥∥∥A−1− A−1uvTA−1

1+vTA−1u

∥∥∥∥
2

≤ ‖A−1‖2
(
1+‖A−1‖2‖uvT‖2

)
.

It is easy to see that

‖uvT‖2 = max
‖x‖2=1

‖uvTx‖2

≤ max
‖x‖2=1

|vTx|‖u‖2

≤ ‖v‖2
√

n−1

= ‖x0−xα(i)‖2
√

n−1

≤ diam(S)
√

n−1,

and by Lemma 4.3 we have ‖A−1‖2 =

‖X−1
S P−1

α R−1
i ‖2 = ‖X−1

S ‖2, from which∥∥(X∗S )−1∥∥
2 ≤ ‖X

−1
S ‖2

(
1+‖X−1

S ‖2 diam(S)
√

n−1
)

≤ ‖X−1
S ‖2

(
1+d

√
n−1

)
and then

diam(S)
∥∥(X∗S )−1∥∥

2 ≤ d
(

1+d
√

n−1
)
=: d∗

follows.
Since the simplex S ∈ T ∗ was arbitrary, we have

shown that T ∗ is (h,d∗)-bounded.

The following proposition is a direct consequence
of Proposition 4.4.

Proposition 4.5. Assume Tk, k ∈N0, is a sequence of
triangulations in Rn, such that Tk is (hk,dk)-bounded,
and hk → 0 as k→ ∞ and dk ≤ d for all k ∈ N0. Let
T ∗k , k ∈N0, be a sequence of triangulations such that
T ∗k consists of the simplices of Tk, but with a (pos-
sibly) different ordering of the vertices of the sim-
plices. Then there are constants d∗k ,d

∗ such that T ∗k is
(hk,d∗k )-bounded, k ∈ N0, and d∗k ≤ d∗ for all k ∈ N0.

Proof. The case n = 1 is trivial and the case n ≥ 2
is obvious from Proposition 4.4 with d∗k = dk(1 +

dk
√

n−1) and d∗ = d∗(1+d∗
√

n−1).

We have shown that one can talk about an (h,d)-
bounded triangulation T = {coCν}ν∈I , where Cν =
{x0,x1, . . . ,xn} for every ν ∈ I. That is, the vertices
Cν do not have to be ordered n-tuples and can be
sets. The understanding is then that no matter how
the vertices of the simplices are ordered, the resulting
triangulation in Rn is (h,d)-bounded in the sense of
Definition 3.1. Similarly, if T = {coCν}ν∈I , where
Cν = (x0,x1, . . . ,xn) is an ordered n-tuple for every

ν ∈ I, we can be sure that the corresponding triangu-
lation, where the Cνs are changed into sets, is (h,d∗)-
bounded in this new sense with d∗ = d(1+d

√
n−1).

Thus, one can define for triangulations, of which
the vertices of the simplices are not necessarily or-
dered
Definition 4.6 (Uniformly regular triangulations). A
triangulation T in Rn consisting of simplices Sν =
coCν, Cν := {x0,x1, · · · ,xn} is said to be uniformly
regular if there exist constants h,d > 0 such that for
any ordering of the vertices Cν of the simplices Sν ∈ T
we have

diam(S)≤ h and diam(S)‖X−1
S ‖2 ≤ d

for all S ∈ T , or equivalently if there exist constants
h∗,d∗ > 0 such that

‖XS‖2 ≤ h∗ and κ2(XS)≤ d∗

for all S ∈ T . Here XS denotes the shape-matrix of
the simplex S with respect to the ordering chosen.

5 CONCLUSIONS

Sequences of triangulations of Rn having uniform
upper bounds on the diameters and degeneracy of
the simplices are important for the CPA algorithm
to compute continuous and piecewise affine (CPA)
Lyapunov functions for nonlinear systems (Hafstein,
2004; Hafstein, 2005; Giesl and Hafstein, 2014).

In this paper we have eliminated the dependence
of the degeneracy on the ordering of the vertices of
the simplices in the triangulation. Thus, the degen-
eracy can be defined for the simplices as geometrical
objects. Further, we have provided a characterization
of the degeneracy in terms of the condition number of
the shape-matrices.

ACKNOWLEDGEMENT

The research done for this paper was partially sup-
ported by the Icelandic Research Fund (Rannı́s) grant
number 163074-052, Complete Lyapunov functions:
Efficient numerical computation, which is gratefully
acknowledged.

REFERENCES

Albertsson, S., Giesl, P., Gudmundsson, S., and Hafstein,
S. (2020). Simplicial complex with approximate ro-
tational symmetry: A general class of simplicial com-
plexes. J. Comput. Appl. Math., 363:413–425.

ICINCO 2021 - 18th International Conference on Informatics in Control, Automation and Robotics

556



Anderson, J. and Papachristodoulou, A. (2015). Advances
in computational Lyapunov analysis using sum-of-
squares programming. Discrete Contin. Dyn. Syst. Ser.
B, 20(8):2361–2381.

Chesi, G. (2011). Domain of Attraction: Analysis and Con-
trol via SOS Programming. Lecture Notes in Control
and Information Sciences, vol. 415, Springer.

Giesl, P. (2007). Construction of Global Lyapunov Func-
tions Using Radial Basis Functions. Lecture Notes in
Math. 1904, Springer.

Giesl, P. and Hafstein, S. (2014). Revised CPA method to
compute Lyapunov functions for nonlinear systems. J.
Math. Anal. Appl., 410:292–306.

Giesl, P. and Hafstein, S. (2015a). Computation and verifi-
cation of Lyapunov functions. SIAM Journal on Ap-
plied Dynamical Systems, 14(4):1663–1698.

Giesl, P. and Hafstein, S. (2015b). Review of computa-
tional methods for Lyapunov functions. Discrete Con-
tin. Dyn. Syst. Ser. B, 20(8):2291–2331.

Golub, G. and van Loan, C. (2013). Matrix Computations.
John Hopkins University Press, 4 edition.

Hafstein, S. (2004). A constructive converse Lyapunov the-
orem on exponential stability. Discrete Contin. Dyn.
Syst. Ser. A, 10(3):657–678.

Hafstein, S. (2005). A constructive converse Lyapunov
theorem on asymptotic stability for nonlinear au-
tonomous ordinary differential equations. Dynamical
Systems: An International Journal, 20(3):281–299.

Hafstein, S. and Valfells, A. (2017). Study of dynamical
systems by fast numerical computation of Lyapunov
functions. In Proceedings of the 14th International
Conference on Dynamical Systems: Theory and Ap-
plications (DSTA), volume Mathematical and Numer-
ical Aspects of Dynamical System Analysis, pages
220–240.

Hahn, W. (1967). Stability of Motion. Springer, Berlin.
Julian, P., Guivant, J., and Desages, A. (1999). A

parametrization of piecewise linear Lyapunov func-
tions via linear programming. Int. J. Control, 72(7-
8):702–715.

Kamyar, R. and Peet, M. (2015). Polynomial optimization
with applications to stability analysis and control – an
alternative to sum of squares. Discrete Contin. Dyn.
Syst. Ser. B, 20(8):2383–2417.

Khalil, H. (2002). Nonlinear systems. Pearson, 3. edition.
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