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Abstract: A mobile crane equipped with a lattice boom system is widely used to lift the heavy load on construction sites. 
Even though the lattice structure can provide strong support with limited mass, the inertia force of the lattice 
boom is still not neglectable, so is the heavy lifting load. Therefore, the dynamic response of the lattice boom 
is important but also time-consuming due to a large number of degrees of freedom. In engineering, the truss 
beam is often simplified as a continuous beam, but because of the noncontinuity of the truss, this direct 
modelling method cannot truly reflect the actual dynamics of the truss. In this paper, a detailed Super Truss 
Element formulation for nonlinear truss elements is proposed to reduce the number of degrees of freedom. 
The formulation uses nonlinear spatial Timoshenko Beam based on co-rotational coordinate and dynamic 
condensation approach with three assumptions. After parameterizing the characteristics of the Super Truss 
Element, a nonlinear method for the calculation of the mass matrix and force vector in a large displacement 
and rotation is developed. A dynamic simulation of the spatial motion of the lattice boom crane is performed 
and the results are analysed. 

1 INTRODUCTION 

Among the large number of cranes developed for 
various tasks, mobile cranes are particularly flexible 
in their application possibilities. Truck-mounted 
cranes, mobile cranes, railway cranes, and crawler 
cranes are different cranes equipped with a boom 
system, their booms can be designed as telescopic or 
truss booms. Compared with the continuous boom 
structure, the crane with a truss boom has a higher 
load capacity under the same mass due to the 
optimization of its structure. It is suitable for lifting 
tasks with special requirements for lifting height and 
radius. It is mainly used for large-scale factory 
construction, steel, and building construction. 
(Kleeberger 1996) 

The form of cranes is diverse and complex. In the 
design process, simulation and proofreading for 
different types of cranes under different load cases are 
required, which causes many calculations. As a kind 
of engineering machinery, mobile cranes need to lift 
a large load and move. Considering the mass of the 
hoisting cargo and the boom structure, dynamics 
calculations should be done, especially for some 
extreme conditions in the holistic capacity sheet. The 

dynamic modeling of lattice boom becomes difficult 
due to the unevenness of cross-section and a large 
number of nodes and elements. Previously there are 
mainly two modeling methods:  

1. Modeling of each element of the lattice boom. 
The model will be closer to the actual lattice boom, 
but due to a large number of nodes, the overall model 
has a large number of degrees of freedom (Günthner 
und Kleeberger 1997). This decreases the solution 
speed and efficiency.  

2. Modeling the entire lattice boom with a 
continuous flexible beam element. This method can 
greatly reduce the number of degrees of freedom and 
accelerate the calculation of the system, but without 
the necessary theoretical basis, the accuracy of the 
model will be decreased.  

Therefore, a scientific reduction method that 
accelerates the model calculation and makes the 
number of degrees of freedom small is urgently 
needed. 

For truss boom, there is a static condensation 
method, which condenses the stiffness and gravity of 
the truss beam to the nodes on the end section. This 
method is only suitable for the static reduction of 
linear models (Kleeberger und Hübner 2006). 
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For dynamics reduction, the Craig-Bampton 
method is often used. It converts the dynamic 
equations from the time domain into the frequency 
domain to obtain information such as the natural 
frequency of the system (Koutsovasilis und 
Beitelschmidt 2007). However, for nonlinear models, 
it is very difficult to convert them to the frequency 
domain (Kammer et al. 2015). 

In this paper, a super truss element with only two 
nodes is proposed based on three assumptions. Under 
the premise that the total energy of the super truss 
element is the same as the actual truss model, this 
element can condense the mass matrix and force 
vector of each flexible body, normally each pipe, in 
the truss. Therefore, the number of degrees of 
freedom of the entire truss can be reduced to 12 and 
solving speed of dynamic calculation can be 
increased. 

2 SUPER TRUSS ELEMENT 

2.1 Spatial Timoshenko Beam based on 
Co-rotational Formulation 

The large deformation of the truss element is caused 
by the cumulative effects of small deformation from 
elements in the truss. Therefore, we model each 
element in the truss as a short beam with small linear 
deformation. Here spatial Timoshenko beam based on 
co-rotational formulation is used to model the beam 
element of the truss. 

2.1.1 Co-rotational Coordinate 

The co-rotational coordinate describes the position of 
the element without deformation. The deformation of 
any point on the element is based on the co-rotational 
coordinate. 

The co-rotational coordinate 𝒒୆ can be defined by 
the coordinates of the two ends of the element, where 
the script “B” represents the co-rotational coordinate 
system (base coordinate system), the script “e” 
represents the element coordinate system and the 
script “I” represents the inertial coordinate system. 
 𝒒୆ = ൣ 𝒓୆ ୍ ୘ 𝝋୆୘൧୘ = 𝒒୆(𝒒ୣ) 𝒒ୣ = ሾ𝒒ଵ୘ 𝒒ଶ୘ሿ୘ 

(1)

 
where 𝒓୆ ୍  is the position vector of the origin point of 
co-rotational coordinate expressed in inertial 
coordinate, and 𝝋୆  is the Cartesian vector for co-
rotational coordinate. 

The relationship between the generalized velocity d𝒒୆  and acceleration d𝒒ሶ ୆  of the co-rotational 
coordinate and the generalized velocity d𝒒ୣ  and 
acceleration d𝒒ሶ ୣ of the end-point coordinates can be 
expressed as d𝒒୆ = ൣ 𝒓ሶ ୆୍ ୘ 𝝎୆ ୆୘൧୘ = 𝑻୆d𝒒ୣ d𝒒ሶ ୆ = 𝑻୆d𝒒ሶ ୣ + 𝑻ሶ ୆d𝒒ୣ 

(2)

𝒒୆ , 𝑻୆  and 𝑻ሶ ୆  can be determined according to the 
definition of co-rotational coordinate system. 

2.1.2 The Formulation of Deformation 

According to the Timoshenko beam assumption, the 
deformation of any point on the section 𝑐 is caused by 
the centroid translational deformation of the section 𝒖ୡ୆  and the section rotational deformation 𝝍ୡ୆ . The 
actual deformation of this point 𝒖୆  can be obtained 
by the difference between the position vector before 
deformation 𝒓 ୍ ∗ and the after deformation 𝒓 ୍ , 
 𝒓୍ ∗ = 𝒓୆୍ + 𝑹୆( 𝒓ୡ୆ + 𝒕ୡ ) 𝒓୍ = 𝒓୆୍ + 𝑹୆൫ 𝒓ୡ୆ + 𝒖ୡ୆ + 𝑹ୢ,௖ 𝒕ୡ ൯ (3)

 
where 𝒓ୡ୆  is the relative position of cross-section 𝑐 
to the original point of co-rotational coordinate, and 𝒕ୡ ୘ = ሾ0 𝑦ୡ 𝑧ୡ ሿ  is the relative position of any 
point on cross-section 𝑐 to the sectional centre. 𝒓ୡ୆  
and 𝒕ୡ  are constant for each cross-section. 

Here we use the hypothesis of small rotational 
deformation. The subscript “d” represents the 
deformation coordinate. The rotation matrix 𝑹ୢ,ୡ for 
axis-angle rotation vector 𝝍ୡ୆  can be written as: 
 𝑹ୢ,௖ ≈ 𝑰 + 𝝍෩ ୡ୆  (4)
 
where 𝒂෥ represents the skew symmetric matrix of the 
corresponding vector 𝒂. 

Thus, the deformation can be approximated as 
 𝒖୆ = 𝑹୆୘( 𝒓୍ − 𝒓୍ ∗) ≈ 𝒖ୡ୆ + 𝝍෩ ୡ୆ 𝒕ୡ  (5)
 

The deformation coordinate of the end point 𝒒ୢ,ୣ୬ୢ can be expressed by the following formula 
 ቊ 𝒖ୣ୆ = 𝑹୆୘( 𝒓ୣ୍ − 𝒓୆୍ ) − 𝒓ୣ୆ 𝝍ୣ୆ = 𝝍ୣ୆ ൫𝑹୆୘𝑹ୣ൯ = 𝝍ୣ୆ ൫𝑹ୢ,ୣ൯ 𝒒ୢ,ୣ୬ୢ = ൣ 𝒖ଵ୆ ୘ 𝝍ଵ୆ ୘ 𝒖ଶ୆ ୘ 𝝍ଶ୆ ୘൧୘

 
(6)
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The velocity and acceleration of the deformation 
at the end point can be expressed by element 
coordinate. 
 d𝒒ୢ,ୣ୬ୢ = 𝑻ୢ,ୣ୬ୢd𝒒ୣ= ൣ 𝒖ሶ ଵ୆ ୘ 𝝕ଵ ଵ୘ 𝒖ሶ ଶ୆ ୘ 𝝕ଶ ଶ୘൧୘

 
(7)

d𝒒ሶ ୢ,ୣ୬ୢ = 𝑻ୢ,ୣ୬ୢd𝒒ሶ ୣ + 𝑻ሶ ୢ,ୣ୬ୢd𝒒ୣ (8)
 
where 𝝕୧ ୧  represent the angular velocity of the 
angular deformation 𝝍୧୆  . 𝑻ୢ,ୣ୬ୢ  and 𝑻ሶ ୢ,ୣ୬ୢ  can be 
obtained through equation (6). 

The deformation coordinate 𝒒ୢ,𝐜 is defined as 
 𝒒ୢ,௖ = ൣ 𝒖ୡ୆ ୘ 𝝍ୡ୆ ୘൧୘

 (9)

2.1.3 Kinematics of Points on the Beam 

The velocity and acceleration of the point on the beam 
after the deformation is depend on the generalized 
velocity and acceleration of co-rotational coordinate 
and deformation coordinate, which can be written as 
 𝒓ሶ ୍ = ൫𝑯୲ + 𝑯୰,୲൯ ൤ d𝒒୆d𝒒ୢ,ୡ൨ 𝒓ሷ ୍ = ൫𝑯୲ + 𝑯୰,୲൯ ൤ d𝒒ሶ ୆d𝒒ሶ ୢ,ୡ൨+ ൫𝑫୲ + 𝑫୰,୲൯ ൤ d𝒒୆d𝒒ୢ,ୡ൨ (10)

 
where 𝑯୲  and 𝑫୲  provide the translational velocity 
and acceleration of the beam cross-section. They can 
be formulated as 
 𝑯୲ = ሾ𝑯୲,୆ 𝑯୲,ୢ,ୡሿ 𝑫୲ = ሾ𝑫୲,୆ 𝑫୲,ୢ,ୡሿ (11)

 
in which 
 𝑯୲,୆ = ሾ𝑰 −𝑹୆( 𝒓෤ୡ୆ + 𝒖෥ୡ୆ )ሿ 𝑫௧,஻ = ሾ𝟎 −𝑹୆ 𝝎෥ ୆୆ ( 𝒓෤ୡ୆ + 𝒖෥ୡ୆ )ሿ 𝑯௧,ௗ,௖ = ሾ𝑹୆ 𝟎ሿ 𝑫௧,ௗ,௖ = ሾ2𝑹୆ 𝝎෥ ୆୆ 𝟎ሿ
 

And 𝑯୰,୲ and 𝑫୰,୲ provide the rotational velocity 
and acceleration of the beam cross-section around the 
axis where 𝒕ୡ  is located 
 𝑯୰,୲ = 𝑯୰( 𝒕ୡ ) = ሾ𝑯୰,୲,୆ 𝑯୰,୲,ୢ,ୡሿ 𝑫୰,୲ = 𝑫୰( 𝒕ୡ ) = ሾ𝑫୰,୲,୆ 𝑫୰,୲,ୢ,ୡሿ (12)

 

in which 
 𝑯୰,୲,୆ = ൣ𝟎 −𝑹ୡ 𝒕෤ୡ 𝑹ୢ,ୡ୘ ൧ 𝑯୰,୲,ୢ,ୡ = ሾ𝟎 −𝑹ୡ 𝒕෤ୡ ሿ𝑫୰,୲,୆ = ൣ𝟎 −𝑹୆ 𝝎෥ ୆୆ 𝑹ୢ,ୡ 𝒕෤ୡ 𝑹ୢ,ୡ୘ 𝒕෤ୡ ൧ 𝑫୰,୲,ୢ,ୡ = ൣ𝟎 −൫2𝑹୆ 𝝎෥ ୆୆ 𝑹ୢ,ୡ + 𝑹ୡ 𝝕෥ୡ ୡ൯ 𝒕෤ୡ ൧ 
2.1.4 The Formulation of Strain and Stress 

The strain at this point is defined using linear Green-
Lagrange strains, which is defined as the derivative of 
the deformation with respect to the coordinate. 
 𝜀୧୨୆ = 12 ቆ𝜕 𝑢୧୆𝜕 𝑥୨ୡ + 𝜕 𝑢୨୆ 𝜕 𝑥୧ୡ ቇ (13)

 
in details 
 

⎩⎪⎨
⎪⎧ 𝜀୶୶୆ = 𝑢ୡ୆ ′ − 𝜃ୡ୆ ′ 𝑦ୡ + 𝜓ୡ୆ ′ 𝑧ୡ 𝜀୶୷ ୆ = 12 ( 𝑣ୡ୆ ′ − 𝜑ୡ୆ ′ 𝑧ୡ − 𝜃ୡ୆ )𝜀୶୸ ୆ = 12 ( 𝑤ୡ୆ ′ + 𝜑ୡ୆ ′ 𝑦ୡ + 𝜓ୡ୆ )𝜀୷୷୆ = 𝜀୷୸୆ = 𝜀୸୸୆ = 0

 

 
where 
 𝒖ୡ୆ = ሾ 𝑢ୡ୆ 𝑣ୡ୆ 𝑤ୡ୆ ሿ் 𝝍ୡ୆ = ሾ 𝜑ୡ୆ 𝜓ୡ୆ 𝜃ୡ୆ ሿ் 
 
and ( )ᇱ = 𝜕( ) 𝜕 𝑥ୡ ⁄ . 

Through the constitutive relationship between 
stress and strain, we can get 
 𝜎୧୨୆ = ቊ𝐸 𝜀୧୨୆ , i = j𝐺 𝜀୧୨୆ , i ≠ j (14)

2.1.5 The Virtual Power of Beam Element 

The virtual internal power of the element can be 
expressed as 
 𝛿𝑝୧୬୲ = − ම ෍ ෍ 𝛿 𝜀ሶ୧୨ ୆ 𝜎୧୨ ୆ ୨୧ d𝑉௏  

         = − න 𝛿𝒒ሶ ୢ,ୡᇱ୘ ൫𝑯ଵ𝒒ୢ,ୡᇱ + 𝑯ଶ𝒒ୢ,ୡ൯d𝑠௅
଴  

+ න 𝛿𝒒ሶ ୢ,ୡ୘ ൫𝑯ଷ𝒒ୢ,ୡᇱ + 𝑯ସ𝒒ୢ,ୡ൯d𝑠௅
଴  (15)
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The integration by parts is used to deal with the 
first part of the integration 

 𝛿𝑝୧୬୲ = −𝛿𝒒ሶ ୢ,ୡ୘ ൫𝑯ଵ𝒒ୢ,ୡᇱ + 𝑯ଶ𝒒ୢ,ୡ൯ห଴௅        + න 𝛿𝒒ሶ ୢ,ୡ୘ ൫−𝑯ଵ𝒒ୢ,ୡᇱᇱ + (𝑯ଷ − 𝑯ଶ)𝒒ୢ,ୡᇱ௅
଴ + 𝑯ସ𝒒ୢ,ୡ൯d𝑠 

(16)

 
The virtual inertial power of the beam element 

can be expressed as 
 𝛿𝑝୧୬ୣ = − ම 𝛿 𝒓ሶ ୍ ୘𝜌 𝒓ሷ ୍ d𝑉 

௏  

= − න 𝛿 ൤ d𝒒୆d𝒒ୢ,ୡ൨୘ ൬𝑴୆,ୡ ൤ d𝒒ሶ ୆d𝒒ሶ ୢ,ୡ൨௅
଴ + 𝑫୆,ୡ ൤ d𝒒୆d𝒒ୢ,ୡ൨൰ d𝑠 (17)

 
The mass matrix and damping matrix regarding to 

co-rotational coordinate and deformation coordinate 
of cross-section 𝑐 can be formulated as 
 𝑴୆,ୡ = 𝜌𝐴𝑯୲୘𝑯୲ + 𝜌𝐼୷𝑯୰,୷୘ 𝑯୰,୷+ 𝜌𝐼୸𝑯୰,୸୘ 𝑯୰,୸ 𝑫୆,ୡ = 𝜌𝐴𝑯୲୘𝑫୲ + 𝜌𝐼୷𝑯୰,୷୘ 𝑫୰,୷+ 𝜌𝐼୸𝑯୰,୸୘ 𝑫୰,୸ (18)

 
in which 
 𝑯୰,୷ = 𝑯୰൫ 𝑦ୡ 𝒈୷൯ , 𝑯୰,୸ = 𝑯୰( 𝑧ୡ 𝒈୸) 𝑫୰,୷ = 𝑫୰൫ 𝑦ୡ 𝒈୷൯ , 𝑫୰,୸ = 𝑫୰( 𝑧ୡ 𝒈୸) 
 
where  
 𝒈୷ = ሾ0 1 0ሿ୘ 𝒈୸ = ሾ0 0 1ሿ୘ 
 

The virtual external power of the beam element 
caused by gravity 𝒈 ୍   can be expressed as 
 𝑝ୣ୶୲,୥ = ම 𝛿 𝒓ሶ ୍ ୘𝜌 𝒈 ୍ d𝑉 

௏  

= 𝜌𝐴 න 𝛿 ൤ d𝒒୆d𝒒ୢ,ୡ൨୘ 𝑯୲୘d𝑠௅
଴ 𝒈 ୍  (19)

2.1.6 Discretization 

To avid shear lock, one complex shape function is 
proposed (Bazoune et al. 2003). 
 𝒒ୢ,ୡ = 𝑵ୡ𝒒ୢ,ୣ୬ୢ (20)

With this shape function, the integration part of 
internal power become zero (Luo 2008). So that the 
internal power can be written as 
 𝛿𝑝୧୬୲ = −𝛿𝒒ሶ ୢ,ୣ୬ୢ୘ 𝑵ୡ୘(𝑯ଵ𝑵ୡᇱ + 𝑯ଶ𝑵ୡ)ห଴௅𝒒ୢ,ୣ୬ୢ (21)

 
Additionally, using the relationship between 

deformation coordinate of end point, co-rotational 
coordinate and generalized coordinate of the beam, 
we can get 
 ൤ d𝒒୆d𝒒ୢ,ୡ൨ = 𝑵୆,ୣ୬ୢ𝑻୆,ୣ୬ୢd𝒒ୣ ൤ d𝒒ሶ ୆d𝒒ሶ ୢ,ୡ൨ = 𝑵୆,ୣ୬ୢ𝑻୆,ୣ୬ୢd𝒒ሶ ୣ +𝑵୆,ୣ୬ୢ𝑻ሶ ୆,ୣ୬ୢd𝒒ୣ 

(22)

 
in which 
 𝑵୆,ୣ୬ୢ = ൤𝑰 𝟎𝟎 𝑵ୡ൨ 𝑻୆,ୣ୬ୢ = ൤ 𝑻୆𝑻ୢ,ୣ୬ୢ൨ 𝑻ሶ ୆,ୣ୬ୢ = ቈ 𝑻ሶ ୆𝑻ሶ ୢ,ୣ୬ୢ቉ 

 
The virtual total power of Spatial Timoshenko 

Beam can be written as 
 𝛿𝑝ୣ = −𝛿d𝒒୘ୣ(𝑴ୣd𝒒ሶ ୣ + 𝑭ୣ) (23)
 

The mass matrix regarding to generalized 
coordinate of beam element can be written as 
 𝑴ୣ = 𝑻୆,ୣ୬ୢ୘ න 𝑵୆,ୣ୬ୢ୘ 𝑴୆,ୡ𝑵୆,ୣ୬ୢd𝑠௅

଴ 𝑻୆,ୣ୬ୢ (24)

 
The force vector regarding to generalized 

coordinate of beam element can be written as 
 𝑭ୣ = 𝑫ୣd𝒒ୣ + 𝑭୧୬୲,ୣ + 𝑭ୣ୶୲,ୣ,୥ (25)

 
in which 
 𝑫ୣ = 𝑻୆,ୣ୬ୢ୘ න 𝑵୆,ୣ୬ୢ୘ ൫𝑴୆,ୡ𝑵୆,ୣ୬ୢ𝑻ሶ ୆,ୣ୬ୢ௅

଴ + 𝑫୆,ୡ𝑵୆,ୣ୬ୢ𝑻୆,ୣ୬ୢ൯d𝑠 𝑭୧୬୲,ୣ = 𝑻ୢ,ୣ୬ୢ୘ 𝑵ୡ୘(𝑯ଵ𝑵ୡᇱ + 𝑯ଶ𝑵ୡ)|଴௅𝒒ୢ,ୣ୬ୢ 𝑭ୣ୶୲,ୣ,୥ = −𝑻୆,ୣ୬ୢ୘ න 𝑵୆,ୣ୬ୢ୘ 𝑯୲୘𝜌𝐴d𝑠௅
଴ 𝒈 ୍  
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2.2 Super Truss Element 

2.2.1 Assumptions 

In order to reduce the number of degrees of freedom 
of the truss element, we propose three assumptions so 
that each beam in the truss element can be expressed 
by the coordinates of the two end sections. These 
assumptions can be acceptable when the truss is long 
and the deformation is uniform and small. 

Assumption 1: Rigid End Section. When the truss is 
long, the deformation is mainly along the length of 
the truss, while the deformation of the end section is 
relatively small. In reality, the truss is often 
strengthened on the end section, making the stiffness 
of the end section larger, so we can consider the end 
section of the truss to be rigid (Wang et al. 2015). The 
rigid end section of the truss means the position 
vector from the section node to any point on the end 
section in this section coordinate is constant 

Assumption 2: Geometric Continuity of Main 
Beam. We assume that after the main beam is 
deformed, the position vector of its cross-section 
centre is continuous. Moreover, the arc-length 
derivative of position vector remains parallel to the 
normal direction of the cross-section. 

Assumption 3: Rigid Connection. The rigid 
connection hypothesis refers to the relative rotation 
angles of different beam elements connected to the 
same node in the local coordinate of this end point of 
the beam, which remain unchanged before and after 
deformation. In reality, riveting or welding is often 
used to connect the beam element, and the stiffness of 
the nodes will be strengthened, so this assumption is 
in line with the actual situation. 

2.2.2 Parameterization 

Truss Elements and Truss Order. In this paper, the 
truss is defined by nodes (cross section nodes, internal 
nodes), planes (cross section, sub-beam planes) and 
beam elements (cross section beams, main beams, 
sub-beams). 

The configuration of the sub-beams is defined by 
the connection form and the truss order. The sub-
beam connection form refers to the position of the 
internal nodes connected by the sub-beam. Truss 
order refers to the ratio of the total length of the main 
beam to the minimum element length divided by the 
sub-beams. 

 
Figure 1: Definition of truss elements and truss order. 

Parameters of Cross Section Nodes. According to 
the rigid end section assumption, we only need to 
define the position vector from the section node to 
any point on the end section in this section coordinate. 

Moreover, the posture of the section node can be 
expressed by the angle of the end section.  

Parameters of Cross Section Beams. The cross 
section beams of a certain cross section 𝑠  can be 
defined by the cross-section nodes. 

According to the definition of beam element 
above, it is required that the x-axis of the beam must 
be parallel to the line connecting the two ends of the 
beam when there is no deformation. 

The generalized coordinates of the section node 
can be expressed by the generalized coordinates of 
the end section 

 𝒏୶ୱ୍ = Δ 𝒓ୱ୍ ‖Δ 𝒓ୱ ୍ ‖⁄  Δ 𝒓ୱ୍ = 𝒓୩୍ − 𝒓୪ ୍  
(26)

 
in which s ∈ 𝒮, k, l ∈ 𝒞.  

In addition, we define that the z-axis of cross 
section beam is perpendicular to the cross section, 
that is, the same as the x-axis of the cross-section 
coordinate. 
 𝒏୸ୱ୍ = 𝒏୶୧୍  (27)
 
in which i ∈ ℰ.  

Therefore, the rotation matrix of the nodes at both 
ends of the end beam can be defined as 
 𝑹ୱ = ሾ 𝒏୶ୱ୍ 𝒏୷ୱ୍ 𝒏୸ୱ ୍ ሿ (28)
 

According to assumption of rigid end section or 
rigid connection, the relative rotation angle between 
the coordinate system of the nodes at both ends of the 
cross-section beam and the coordinate system of the 
end section is constant under deformation. 
 𝑹୧୘𝑹ୱ → 𝝋୧,ୱ୧ = constant (29)
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Parameters of Main Beams, Sub-beam Planes and 
Internal Nodes. Main beam is defined by the two 
cross section nodes of different end section. 

The x-axis of the main beam is along the length 
of the main beam 
 𝒏୶୫ ୍ = Δ 𝒓୫ ୍ ‖Δ 𝒓୫ ୍ ‖⁄  Δ 𝒓୫ ୍ = 𝒓୩ ୍ − 𝒓୪ ୍  (30)

 
in which m ∈ ℳ 

The sub-beams must be located on the surface 
formed by the two main beams. We only discuss the 
situation where two main beams form a plane, which 
is basically the same in practical applications. The 
direction of the sub-beam plane and the z-axis of the 
main beam in this sub-beam plane is defined by its 
normal vector. 
 𝒌୥ ୍ = 𝒏୶୫ ୍ × 𝒏௫୬ூ  𝒏୸୫,୥ ୍ = 𝒏୸୬,୥ ୍ = 𝒌୥ ୍  (31)

 
in which n ∈ ℳ, g ∈ 𝒫. 

The main beams belonging to different sub-beam 
planes will have different directions defined in each 
sub-beam plane.According to the rigid connection 
assumption, the relative rotation angle between the 
end node of the main beam and the cross-section node 
is constant. 
 𝝋୫,୥୧ = 𝝋୫,୥୧ ൫𝑹୧୘𝑹୫,୥൯ (32)
 

With the assumption of geometric continuity of 
the main beam, the direction of the internal nodes on 
the main beam is the same as the direction of the main 
beam when it is not deformed. 
 
Parameters of Sub-beams. The sub-beam is defined 
by the main beam and the location of end nodes on 
the main beam. 

The x-axis of the sub-beam is defined as the unit 
vector from the internal node on main beam 1 point 
to the internal node on main beam 2. 
 𝒏୶୦ ୍ = Δ 𝒓୦ ୍ ฮΔ 𝒓୦ ୍ ฮൗ  Δ 𝒓୦ ୍ = 𝒓୫,୮ ୍ − 𝒓୬,୯ ୍  

(33)

 
in which h ∈ ℬ, p, q ∈ ℐ. 

The z-axis of the sub-beam is defined as the 
normal direction of the sub-beam plane. 
 𝒏୸୦ ୍ = 𝒌୥ ୍  (34)
 

According to the rigid connection assumption, the 
relative rotation angle between the end point 
coordinate of the sub-beam and the corresponding 
main beam coordinate is constant and must be along 
the normal direction of the sub-beam plane. 
 𝑹୫୘ 𝑹୦ → 𝝋୦,୫୫ = 𝜑୦,୫୫ 𝒌୥ ୍  (35)

2.2.3 Calculation 

The dynamics calculation of the super truss element 
is composed of the following modules: cross section 
node, internal node, cross section beam, main beam 
and sub-beam. 

 

 
Figure 2: Flow chart of dynamic calculation of super truss 
element. 

From the dynamic calculation flow chart, it can be 
found that the calculations of the cross-section beam, 
the main beam and the sub-beams do not affect each 
other. Parallel calculation can effectively reduce the 
single-step calculation time of the super truss 
element. 

Cross Section Nodes. According to the assumption 
of rigid end section, the position of the cross-section 
nodes can be calculated. Moreover, the posture of the 
section nodes can be expressed by the angle of the end 
section. Therefore, the generalized coordinates of the 
section node can be expressed by the generalized 
coordinates of the end section 

Calculate cross section node coordinate

Mass  = MainBeamMass  + CrossSectionMass  
+ SubBeamMass

Force = MainBeamForce + CrossSectionForce 
+ SubBeamForce

Start
Super Truss Element Mass&Force

Calculate Internal Node coordinate
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CrossSectionMass,
CrossSectionForce
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𝒒୩ = ቈ 𝒓୩ ୍𝝋୩቉ = ቈ 𝒓୧ ୍ + 𝑹୧ 𝒓୧,୩୧ 𝝋୧ ቉ 𝑹୧ = 𝑹(𝝋୧) 
(36)

 
The generalized velocity and acceleration of the 

cross-section node can be expressed as 
 d𝒒୩ = ൣ 𝒓ሶ ୩ ୍ ୘ 𝝎୩୩ ୘൧୘ = 𝑻୩d𝒒ୣ d𝒒ሶ ୩ = 𝑻୩d𝒒ሶ ୣ + 𝑻ሶ ୩d𝒒ୣ 

(37)

 
in which 
 𝑻୩ = 𝑻୩୧ 𝑻୧ 𝑻ሶ ୩ = 𝑻ሶ ୩୧ 𝑻୧ 
 
where 
 𝑻୩୧ = ൤𝑰 −𝑹௜ 𝒓෤௜,௞௜ 𝟎 𝑰 ൨ 𝑻ሶ ୩୧ = ൤𝟎 −𝑹୧ 𝝎෥ ୧୧ 𝒓෤୧,୩୧ 𝟎 𝟎 ൨ 

 
and 𝑻୧ is the selection matrix of the end section. 
 𝑻୧ = ൜ሾ𝑰 𝟎ሿ, i = 1ሾ𝟎 𝑰ሿ, i = 2 

 
Internal Nodes. Here the main deformation of the 
main beam is considered to be caused by bending. 
Thus, the deformation in axial direction is ignored 
(Zhang et al. 2015). The global position vector of 
centreline is obtained by employing the Hermite 
interpolation. The velocity and acceleration of the 
centroid can be expressed as 
 𝒓ሶ ୮ ୍ = 𝑻୰d𝒒୫ 𝒓ሷ ୮ ୍ = 𝑻୰d𝒒ሶ ୫ + 𝑻ሶ ୰d𝒒୫ 

(38)

 
In order to determine the angle coordinates, we 

use the cardan angle to describe the angle change 
relative to the end of Section 1 
 k z→𝜃ଵ  y→𝜓ଵ  x→𝜑ଵ  p k z→𝜃ଵଶଵ 

y→𝜓ଵଶଵ 
x→𝜑ଵଶଵ l 

 
So that the rotation matrix of cross section can be 

formulated as 
 𝑹୮ = 𝑹୩𝑹୸( 𝜃ଵ )𝑹୷( 𝜓ଵ )𝑹୶( 𝜑ଵ ) (39)
 

According to Hermite Interpolation, the unit 
normal vector of the cross-section can be expressed 
by 
 𝒏୶୮୍ = 𝒓ᇱ୮୍ ‖ 𝒓ᇱ୮୍ ‖⁄  (40)
 

The unit normal vector of the cross-section can 
also be expressed through the relative rotation angle 
to end section 1 
 𝒏୶୮୍ = 𝑹୩𝑹୸( 𝜃ଵ )𝑹୷( 𝜓ଵ )𝒈୶ (41)
 

Since the relative rotation angle is small, 
according to the monotonicity of the sin-function near 
zero position, two parameters of the cardan angle can 
be obtained by the following formula 
 𝜓ଵ = − sinିଵ൫𝒈୸୘𝑹୩୘ 𝒏୶୮ ୍ ൯ 𝜃ଵ = sinିଵ ቆ𝒈୷୘𝑹୩୘ 𝒏୶୮ ୍cos 𝜓ଵ ቇ 

(42)

 
The torsion angle in the x direction is obtained by 

linear interpolation 
 𝜑ଵ = 𝜉 𝜑ଵଶଵ  𝜑ሶଵ = 𝜉 𝜑ሶ ଵଶଵ  (43)
 

The torsion angle from end section 1 to end 
section 2 can be obtained by solving following 
equation 
 𝑹୪ = 𝑹୩𝑹୸( 𝜃ଵଶଵ )𝑹୷( 𝜓ଵଶଵ )𝑹୶( 𝜑ଵଶଵ ) (44)
 

The solution is 
 𝜑ଵଶଵ = sinିଵ ቆ𝒈୸୘𝑹୩୘𝑹୪𝒈୶cos 𝜓ଵଶଵ ቇ 𝜓ଵଶଵ = − sinିଵ൫𝒈୸୘𝑹୩୘𝑹୪𝒈୶൯ 𝜃ଵଶଵ = sinିଵ ቆ𝒈୷୘𝑹୩୘𝑹୪𝒈୶cos 𝜓ଵଶଵ ቇ 

(45)

 
in which 𝒈୶ = ሾ1 0 0ሿ୘. Angular deformation vector related to cardan angle can be written as 𝝋ଵ = ሾ 𝜑ଵ 𝜓ଵ 𝜃ଵ ሿ୘ (46)
 According to the relationship between rotation matrix and the Cartesian rotation vector, the rotation vector 𝝋୮  of cross section can be obtained by 
 𝑹୮ → 𝝋୮ (47)
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The angular velocity and angular acceleration of section 𝑐 can be written as 
 𝝎୮୮ = 𝑻னd𝒒୫ = 𝑹஦୘ 𝝎୩୩ + 𝑻஦ 𝝋ሶଵ  𝝎ሶ ୮୮ = 𝑹஦୘ 𝝎ሶ ୩୩ − 𝝎෥ ୮୮ 𝑹஦୘ 𝝎୩୩ + 𝑻ሶ ஦ 𝝋ሶଵ  +𝑻஦ 𝝋ሷଵ = 𝑻னd𝒒ሶ ୫ + 𝑻ሶ னd𝒒୫ (48)

 
in which the rotation matrix and angular velocity with 
subscript φ should be calculated using cardan angle 

The generalized coordinate and generalized 
velocity of internal node of main beam can be 
obtained by 
 𝒒୮ = ൣ 𝒓୮ ୍ ୘ 𝝋୮୘൧୘

 d𝒒୮ = ൣ 𝒓ሶ ୮ ୍ ୘ 𝝎୮ ୮୘൧୘ = 𝑻୮୫d𝒒୫ d𝒒ሶ ୮ = 𝑻୮୫d𝒒ሶ 𝐦 + 𝑻ሶ ୮୫d𝒒୫ 

(49)

 
where 
 𝑻୮୫ = ሾ𝑻୰୘ 𝑻ன୘ ሿ୘ 𝑻ሶ ୮୫ = ሾ𝑻ሶ ୰୘ 𝑻ሶ ன୘ ሿ୘ 
 

According to the definition of the main beam, the 
coordinate of end point of the main beam can be 
represented by the end node coordinate of super truss 
element. 
 d𝒒୫ = 𝑻୫d𝒒ୣ d𝒒ሶ ୫ = 𝑻୫d𝒒ሶ ୣ + 𝑻ሶ ୫d𝒒ୣ 

(50)

 
where 
 𝑻୫ = ሾ𝑻୩୘ 𝑻୪୘ሿ୘ 𝑻ሶ ୫ = ሾ𝑻ሶ ୩୘ 𝑻ሶ ୪୘ሿ୘

 
Therefore, the internal node coordinate can be 

written by the coordinate of the super truss beam 
element. 
 d𝒒୮ = 𝑻୮d𝒒ୣ      d𝒒ሶ ୮ = 𝑻୮d𝒒ሶ ୣ + 𝑻ሶ ୮d𝒒ୣ (51)

 
where 
 𝑻୮ = 𝑻୮୫𝑻୫ 𝑻ሶ ୮ = 𝑻୮୫𝑻ሶ ୫ + 𝑻ሶ ୮୫𝑻୫ 

Cross Section Beam Elements. According to the 
parameters of the definition of cross section nodes, 
the coordinate of the end point of the cross-section 
beam is depend only on cross section node. 
 𝒒ୱ୩ = ቈ 𝒓ୱ୩ ୍𝝋ୱ୩቉ = ቈ 𝒓୩ ୍𝝋୧ + 𝑹୧ 𝝋ୱ,୧୧ ቉ (52)

The generalized velocity and acceleration of the end 
point of the cross-section beam can be expressed as 
 d𝒒ୱ୩ = ቈ 𝒓ሶ ୱ,୩୍ 𝝎ୱ୩ ୩ୱ ቉ = 𝑻ୱ,୩d𝒒ୣ d𝒒ሶ ୱ୩ = 𝑻ୱ,୩d𝒒ሶ ୣ + 𝑻ሶ ୱ,୩d𝒒ୣ (53)

 
where 
 𝑻ୱ,୩ = 𝑻ୱ,୩୩ 𝑻୩ 𝑻ሶ ୱ,୩ = 𝑻ୱ,୩୩ 𝑻ሶ ୩ 𝑻ୱ,୩୩ = ൤𝑰 𝟎𝟎 𝑹୘( 𝝋ୱ,୧୧ )൨ 

 
According to the definition of end beam, the 

generalized coordinates of end beam can be expressed 
as 
 𝒒ୱ = ൣ𝒒ୱ୩୘ 𝒒ୱ୪ ୘൧୘

 d𝒒ୱ = ൣd𝒒ୱ୩୘ d𝒒ୱ୪ ୘൧୘ = 𝑻ୱd𝒒ୣ d𝒒ሶ ୱ = 𝑻ୱd𝒒ሶ ୣ + 𝑻ሶ ୱd𝒒ୣ 

(54)

 
where 
 𝑻ୱ = ൣ𝑻ୱ,୩୘ 𝑻ୱ,୪୘ ൧୘ 𝑻ሶ ୱ = ൣ𝑻ሶ ୱ,୩୘ 𝑻ሶ ୱ,୪୘ ൧୘ 
 

The mass matrix and force vector of the cross-
section beam need to be calculated through the 
generalized coordinates of the cross-section beam, 
and then converted to the super truss element 
coordinate. The virtual power of the cross-section 
beam can be written as 
 δ𝑝ୱୣ = −δd𝒒ୱ୘(𝑴ୱୱd𝒒ሶ ୱ + 𝑭ୱୱ) = −δd𝒒୘ୣ(𝑴ୱୣd𝒒ሶ ୣ + 𝑭ୱୣ) (55)

 
where 
 𝑴ୱୣ = 𝑻ୱ୘𝑴ୱୱ𝑻ୱ𝑭ୱୣ = 𝑻ୱ୘൫𝑴ୱୱ𝑻ሶ ୱd𝒒ୣ + 𝑭ୱୱ൯ 
 
Main Beam Elements. Considering that internal 
nodes will transmit force and moment, it is necessary 
to segment the main beam according to the position 
of the internal nodes (sub main beam), in order to 
meet the virtual power principle. The generalized 
coordinate of sub main beam can be obtained directly 
using the generalized coordinate of internal nodes. 
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d𝒒୫ = 𝑻୫d𝒒ୣ d𝒒ሶ ୫ = 𝑻୫d𝒒ሶ ୣ + 𝑻ሶ ୫d𝒒ୣ (56)

 
where 
 𝑻୫ = ൣ𝑻୮୘ 𝑻୯୘൧୘ 𝑻ሶ ୫ = ൣ𝑻ሶ ୮୘ 𝑻ሶ ୯୘൧୘ (57)
 
The virtual power of sub main beam can be written as 
 δ𝑝୫ୣ = −δd𝒒୫୘ (𝑴୫୫d𝒒ሶ ୫ + 𝑭୫୫)          = −δd𝒒୘ୣ(𝑴୫ୣd𝒒ሶ ୣ + 𝑭୫ୣ) (58)

 
where 
 𝑴୫ୣ = 𝑻୫୘ 𝑴୫୫𝑻୫ 𝑭୫ୣ = 𝑻୫୘ ൫𝑴୫୫𝑻ሶ ୫d𝒒ୣ + 𝑭୫୫൯ 
 
Sub-beam Elements. According to the internal 
nodes connected by the sub-beam and the constant 
relative rotation between the end points of the sub-
beam and the internal nodes, the generalized 
coordinates of the end points of the sub-beam can be 
obtained through the internal nodes. 

The generalized velocity and acceleration of the 
sub-beam endpoint can be expressed as 
 d𝒒୦୮ = 𝑻୦,୮d𝒒ୣ d𝒒ሶ ୦୮ = 𝑻୦,୮d𝒒ሶ ୣ + 𝑻ሶ ୦,୮d𝒒ୣ (59)

 
where 
 𝑻୦,୮ = 𝑻୦,୮୮ 𝑻୮ 𝑻ሶ ୦,୮ = 𝑻୦,୮୮ 𝑻ሶ ୮ 𝑻୦,୮୮ = ൤𝑰 𝟎𝟎 𝑹୘( 𝝋୦,୮୮ )൨
 

Therefore, the generalized coordinates of sub-
beam can be written as 
 d𝒒୦ = 𝑻୦d𝒒ୣ d𝒒ሶ ୦ = 𝑻୦d𝒒ሶ ୣ + 𝑻ሶ ୦d𝒒ୣ (60)

 
where 
 𝑻୦ = ൣ𝑻୦,୮୘ 𝑻୦,୯୘ ൧୘

 𝑻ሶ ୦ = ൣ𝑻ሶ ୦,୮୘ 𝑻ሶ ୦,୯୘ ൧୘
 

 
The virtual power of sub-beam can be written as 

 δ𝑝୦ୣ = −δd𝒒୦୘൫𝑴୦୦d𝒒ሶ ୦ + 𝑭୦୦൯         = −δd𝒒୘ୣ൫𝑴୦ୣd𝒒ሶ ୣ + 𝑭୦ୣ൯ 
(61)

 

where 
 𝑴୦ୣ = 𝑻୦୘𝑴୦୦𝑻୦𝑭୦ୣ = 𝑻୦୘൫𝑴୦୦𝑻ሶ ୦d𝒒ୣ + 𝑭୦୦൯ 

3 SIMULATION AND ANALYSIS 

3.1 Model of a Lattice Boom System 

This lattice boom system of a mobile crane consists 
of a main boom, a derrick boom, strut tie rods and 
ropes. The model is created using rigid-flexible 
multibody dynamics method.  

The configurations of body model type and joint 
are shown in Figure 3. 

 
Figure 3: Element Type (left, real model) and Joint 
Configuration (right, calculation model). 

The lattice boom system has now three drives: 1. 
crane rotates along z-axis. 2. lift rope changes its 
length. 3. angle of main boom changes. 

The types of the truss elements are shown in 
Figure 4. 

 
Type 1 Type 2 Type 3

  
Type 4 Type 5 Type 6

Figure 4: Different Types of Super Truss Element. 
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3.2 Dynamics Tests for Truss Element 

If we fix one end of the super truss element and apply 
force or torque on the other end, the displacement of 
the free end can reflect the stiffness of the truss beam. 
Here in Figure 5 only the curves of external force or 
torque and strain of Type 2 are shown as an example. 

 
(a) Axial Stretch (b) Axial Compression

 
(c) x-Axis Twist 

 
(d) y-Axis Bending (e) z-Axis Bending

Figure 5: Strain-stress curves under different deformation 
states for super truss element Type 2. 

(a) Axial Stretch (b) x-Axis Twist

(c) y-Axis Bending (d) z-Axis Bending

Figure 6: Deformation in different states for super truss 
element Type 2. 

It can be seen from the curve in Figure 5 that the 
stresses and strains by axial force and bending are 
linear. The torsion in the x-axis will cause the strain 
in the axial direction, which is caused by the main 
beam rotating around the axis of super truss element 
instead of its own axis. This also makes the equivalent 
torsional stiffness in x-axis of the truss not constant. 
The continuous beam model cannot express this 
phenomenon. The state after the deformation of the 
super truss element under various conditions is shown 
in Figure 6. 

If we let the both end of the super truss element 
free and add same force or torque on both ends. The 

velocity change of the super truss element can be used 
to determine the mass parameter. 

From Figure 7, the angular velocity change can be 
seen as linear to time. However, only the translational 
velocity change in x-Axis is linear to time. In fact, due 
to the discontinuity and asymmetry of the truss, it is 
difficult to express the mass matrix of the truss 
through a continuous beam model. Especially for 
non-rectangular trusses, the determination of its 
equivalent mass will become very difficult. 

(a) x-Axis Translation (b) x-Axis Rotation

(c) y-Axis Rotation (d) z-Axis Rotation

Figure 7: Time-Velocity curves under different force or 
torque states for super truss element Type 2. 

3.3 Load Lifting 

(a) Static State (b) Final State

Figure 8: Start State (a) and Final State (b) for lifting. 

The actual motion of the crane must be relatively 
smooth. In order to simulate smooth motion, we will 
use the motion function in (Gao et al. 2020) to lift the 
load. The start state and final state for lifting is shown 
in Figure 8. 

The translational displacement and velocity in z-
axis are shown in Figure 9. 
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Figure 9: translational displacement and velocity in z-axis 
for lifting. 

3.4 Combined Motion 

In practice, the motions of the mobile cranes in the 
operation can be specified as three kinds, lifting, 
slewing, and luffing. The slewing means the boom 
system and the turntable (super-structure) rotates 
along the vertical slewing axis. The luffing means to 
change the distance between the payload and the 
slewing axis by changing the elevation angle of the 
boom. In this section, we also designed the lifting 
state under the simultaneous action of multiple drives. 
The combined motion can be divided into 4 stages:  

 
Figure 10: Combined Drive Function. 

1.   0 -   25s: lifting stage 
2. 25 -   50s: lifting + slewing stage 
3. 50 -   75s: lifting + slewing + luffing stage 
4. 75 - 100s: lifting + luffing stage 

 
(a) Static State (b) Final State 

Figure 11: Start State (a) and Final State (b) for combined 
motion. 

During the movement, the position and speed of 
the load are shown in Figure 12. From the figure, we 
can find that in the only lifting stage, the position of 
the load changes smoothly, and the speed has only a 
small vibration. The slewing of the crane has little 
effect on the vertical motion of the load. The position 
of the load changes smoothly in the horizontal 
direction, but speed begins to fluctuate greatly. The 
luffing motion of the crane has a greater influence on 
the vertical direction of the lifting, the fluctuation of 
the speed in the vertical direction becomes larger, and 
there is a big vibration in the horizontal direction. 

 
Figure 12: Translational Position and Velocity of the Load. 

For some kinds of loads, the stability of its posture 
is also very important. Therefore, in addition to the 
position change of the load, we also need to consider 
the angle change when it is moving. The angle change 
is shown in Figure 13. We can find that in the overall 
movement, the angle of the load does not change 
much (the maximum angle change is less than 1 
degree). Among them, the angle change caused by the 
forward motion of the crane is relatively the largest, 
and the angular velocity of the load vibrates violently. 
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Figure 13: Posture and Angular Velocity of the Load. 

4 CONCLUSION AND OUTLOOK 

In order to reduce the complexity of truss beam 
modelling in this paper a super truss element for 
dynamic calculation is proposed. Based on three 
assumptions, a parameterization method for truss 
beams is established, and a dynamic calculation 
method for super truss elements is proposed.  

Through the stiffness experiment of super truss 
elements, a reasonable method to determine the 
properties of truss beams is given, and the problem of 
using continuous beam elements to simulate truss 
beam elements has been discovered. Finally, through 
the crane movement, the feasibility of using super 
truss element modelling was confirmed. 

The following topics are considered as further 
research: 

1) Although the super truss element can greatly 
reduce the number of degrees of freedom, it is still 
needed to calculate each member of the truss beam in 
each time step. This makes the single-step calculation 
time of the ODE solver very large. Parallel computing 
and other methods of accelerating computing to 
reduce computing time will be studied in the future. 

2) The parameterization method in this paper is 
only suitable for general simple truss models. At 
present, in the direction of lighter and miniaturized 
machinery, more complex truss models are widely 
used. These trusses may no longer meet the three 
assumptions in this paper when they are deformed. 
Therefore, a completer and more general truss model 
is urgently needed. 
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