GRASP: Graph-based Mining of Scientific Papers

Navid Nobani1,2, Mauro Pelucchi3, Matteo Perico4, Andrea Scrivanti3 and Alessandro Vaccarino3
1Dept. of Informatics, Systems & Communication, University of Milan-Bicocca, Milan, Italy
2Digital Attitude, Milan, Italy
3CRISP Research Center, University of Milan-Bicocca, Milan, Italy
4Oròbix, Bergamo, Italy

Abstract: Over the past two decades, academia has witnessed numerous tools and search engines which facilitate the retrieval procedure in the literature review process and aid researchers to review the literature with more ease and accuracy. These tools mostly work based on a simple textual input which supposedly encapsulates the primary keywords in the desired research areas. Such tools mainly suffer from the following shortcomings: (i) they rely on textual search queries that are expected to reflect all the desired keywords and concepts, and (ii) shallow results which makes following a paper through time via citations a cumbersome task. In this paper, we introduce GRASP, a search engine that retrieves scientific papers starting from a sub-graph query provided by the user, offering (i) a list of time papers based on the query and (ii) a graph with papers and authors as vertices and edges being cited and published-by. GRASP has been created using a Neo4j graph database, based on DBLP and AMiner corpora provided by their API. Acting performance evaluation by asking ten computer science experts, we demonstrate how GRASP can efficiently retrieve and rank the most related papers based on the user’s input.

1 INTRODUCTION

Nowadays, thanks to various online libraries which index and provide scientific papers of different fields, researchers seldom have problems with finding the desired sources. However, paradoxically, the abundance of such sources, while theoretically should play a role in favor of the researcher, practically will give her hundreds or thousands of new resources which in the best case demand a considerable amount of time to be processed manually.

A common procedure used in literature review may consist of the following iterative steps: (i) finding preliminary keywords related to the research field; (ii) using these keywords to find new papers and articles; (iii) filtering out the unrelated sources by gradually going through contents of each source (e.g. abstract, conclusion); (iv) finding articles which cite or have been cited by this work.

Following this procedure requires a considerable amount of time for the researcher, since the third and fourth steps are not always straight-forward. Moreover, to filter the articles as related/unrelated, one often needs to read at least the sections such as abstract or conclusion.

In this paper, we propose GRASP, a research tool which facilitates researchers’ process of literature review and exploration. Starting from user input (customized sub-graph query and a list of partitions), GRASP builds a network of related documents based on mining and scoring a corpus of articles. The scope is to provide a set of articles (connected via citations), both as a ranked list and a graph, which contains the interconnected and influential works to the user’s query. Figure 1 depicts a graphical overview of the GRASP tool.

![Figure 1: A graphical overview of GRASP.](image-url)
Contribution. The contribution of this work is twofold:

1. Knowledge Graph: we provide a rich network of connected papers through citation relations which in turn can be used as the backbone of graph-based scholarly tools providing various applications such as search engines and recommender systems.

2. Working Demo (Video Available): we implemented our tool and evaluated its performance through a user study among university researchers. A video of a working example is provided Online1.

The paper is organized as follows. Section 2 discusses some related work, section 3 presents an organic overview of GRASP system and section 4 introduces concepts, definitions and problems. Section 5 gives a look at the big scholarly data, by describing the data warehouse of GRASP. Section 6 discusses the retrieval technique, the scoring method and some hints about GRASP. Section 7 presents the experimental evaluation of our technique, while section 8 draws conclusions and future work.

2 RELATED WORK

GRASP works in the context of Big Scholarly Data. Nowadays, many online repositories for Big Scholarly Data are available, and many powerful analysis tools were developed to help researchers and students to access them and run queries to extract the required information (Xia et al., 2017).

In the Big Data context, storing and processing a high volume of unstructured data is a recurring challenge. In particular, in the tools dealing with this type of data, the aspects of data analytics that provide researchers with a series of solutions able to quickly extract information from these repositories become of particular relevance.

GRASP can be considered as an hybrid application since on one hand it applies text analysis tools to retrieve the required information from the text, and on the other hand, it uses a knowledge graph (see section 4) to generate a ranked list of documents matching the user’s criteria. For this reason, it falls into the categories of Research Management and Recommendation Systems as outlined by (Khan et al., 2017).

In the past four decades the mining of scientific texts has been targeted by numerous number of researches in the context of Natural Language Processing (NLP) and related fields (Schäfer et al., 2008) use NLP techniques to extract factual relations from scientific texts, while (Williams et al., 2014) introduce a method for information extraction and document clustering of academic texts. (Schäfer and Kiefer, 2011) introduce a semantic search, citation classification of scientific papers.

(i) Information Extraction, Classification, and Clustering of the Documents. For instance, in their work (Schäfer et al., 2008) use NLP techniques to extract factual relations from scientific texts, while (Williams et al., 2014) introduce a method for information extraction and document clustering of academic texts. (Schäfer and Kiefer, 2011) introduce a semantic search, citation classification of scientific papers.

(ii) Computing Similarity Ranks of Academic Papers as computing citation-based impact measures (Hoang et al., 2010) and creating a relatedness score done (Effendy et al., 2014).

(iii) Focusing on Authors, their Works and Networks they belong to (Citation Graphs and Citation Networks). For example (Cesarini et al., 2018) models DBLP as a graph and explores authors, their relations and similarity with other authors. In a similar work (Mercorio et al., 2019) create a graph network of authors and their academic publications. (Tran et al., 2012) use an LDA based topic modeling in order to facilitate author matching within two different databases. Both (Za and Spagnolletti, 2013) and (Zhao and Strotmann, 2015) present network citation solutions that use Graph modelling to investigate citation patterns and sub-networks.

(iv) Big Scholarly Data Integration and Automatic Extraction of Information. (Williams et al., 2014) and (Ororbia et al., 2015) describe CiteSeerX and how it integrates data from across the Web and performs automatic extraction, clustering, entity linking and name disambiguation on that data.

A recent work incorporating a network of papers selected according to a topic is Connected Papers2 which creates a graph of similar papers based on mutual citations and allows researchers to have a navigable overview of the existing works related to a specific field of studies. The main difference between Connected Papers and GRASP is the scope: GRASP is not a general purpose system but rather it’s built to support the literature review process with a scientific framework. GRASP is able to run tailored queries on specific partitions of a big scholarly data warehouse, and give in output a network of related documents based on mining and scoring a corpus of articles. Moreover, there are substantial differences regarding the ranking algorithm that helps and guides our users to start the literature review process from the most influential works related to the initial query.

While some former works address generating a graph database or network from scientific papers aim-

1https://youtu.be/waKVJgTwqf4

2https://www.connectedpapers.com/
ing at creating relations among authors and their works, to the best of our knowledge, none of these works elaborate on retrieval of the linked papers (via citation) through time.

3 THE GRASPSYSTEM

As described in Figure 1, the user provides as input to the system a sub-graph query and a set of partitions. GRASP uses the sources to furnish as output a citation graph and the paper list. Sub-graph Query. A sub-graph query (or a group of Family items) is a JSON which consists of one or more components (see Figure 2). These components aim to narrow down the research results by providing a recipe which assists GRASP to arrive to the most related results, through relative, alternative, reinforcing and not-related terms (see Definition 3 for more details).

Partitions. Partitions are keywords (i.e. fields of study) which aim to reduce the number of documents analysed and ranked by the system.

Scoring. After applying a primarily filter using the partitions, GRASP utilizes the sub-graph query to score the remaining documents based on the provided families and considering the title and the body of each document (see section 6.1). Upon scoring the documents in the database, the following outputs will be generated:

Citation Graph. A visual output as the representation of a graph which in turn depicts how authors and their publications are connected through publish and reference edges (see Figure 4).

Paper List. As the second output GRASP provides a list of publications sorted by the scoring function described above, together with their rank and a link to the publication source.

4 CONCEPTS, DEFINITIONS, PROBLEM

Before introducing concepts, we go through some definitions about the data model behind GRASP. The data warehouse of our system is built on a graph database, as this databases present relationships more efficiently, specially dealing with interconnected data and their flexibility due to their schema-free nature (Angles and Gutierrez, 2008).

Definition 1: Directed Labeled Multi-graph. Simplifying, a Directed labeled multi-graph \(G\) is defined by the following tuple:

\[G = (N, E, ln, le) \]

- \(N\) is the set of nodes;
- \(E\) is the set of edges;
- \(ln\) is the set of node labels, each node could have one or more labels;
- \(le\) is the set of edge labels;

Each node \(n\) from \(N\) has a set of property \(P'\). An edge \(e\) from the set \(E\) represents a relation between a node \(n'\) and a node \(n''\). Each \(e\) has a set of property \(P''\).

\[\]

Definition 2: Knowledge Base. With \(KB = \{p_1, p_2, p_3, \ldots\}\), we refer the Knowledge base of Documents. Each \(d\) is described by a set of property (e.g. title, abstract, ...) and it is represented as a node \(n\) of \(N\) in \(G\) (see Definition 1).

As described in (Jarke et al., 1989), a \(KB\) is a representation of heuristic and factual information, in the form of facts, assertions and deduction rules. GRASP needs two features to extract information from its KB:

- An Inference engine that playing the role of an interpreter;
- A Man-machine interface that transfers queries from and answers to the user.

GRASP uses a particular form of KB, a Knowledge Graph\(^3\). In GRASP Knowledge Graph nodes are entities with different types and attributes, meanwhile, edges are relations of different types.

\[\]

Definition 3: Sub-graph Query. With

\[O = \{f_1 : \{F, I, N, D, V, A\}, f_2 : \{F, I, N, D, V, A\}, \ldots\} \]

we define a Sub-graph Query \(O\). The Sub-graph Query \(O\) defines a domain of research interests composed by a list of items \(f_i\).

\[f_i \rightarrow \{p_1, p_2, p_3, \ldots\} = P_i \]

Each item \(f_i\) generates a list of phrases using alternatives and variations, we call each generated list of phrases a Phrases Set \(P_i\). Each \(p_i\) identifies a relevant phrase for the domain of research interests. The concept of relevant phrase is one key of the technique: the search space is expanded, by adding information

\[\]

\(^3\)In 1960, Semantic Networks were defined as representation frameworks that can capture a wide range of entities. Knowledge Graph is a variant of semantic network with added constraints. The particular feature of a Knowledge graph is the ability to encode structured information of entities and their rich relations.
related to the relevant phrases, on the basis of relations present in the knowledge graph.

To generate the list of phrases, each f_i is characterized by the following specification planned by the researcher during the initial phase of the literature review:

(i) F is the family name related to the field of study;
(ii) $I \in (0,1]$ (Importance) identifies with a value the weight of f;
(iii) N (Needs) describe the mandatory context where f is considered valid for the research purpose;
(iv) D (Drugs) identify the not-mandatory terms that improve the relation between an item with F;
(v) V (Variations) with respect to the field of study;
(vi) A (Alternatives) to the defined field of study.

Figure 2 presents an example of a small sub-graph to mining papers related to the domain of the artificial intelligence. In this case our domain research if artificial intelligence, where the F family is represented by MODEL, which in this case identifies a model in our domain as representing the context expressed by the needs (i.e. ai); this family has importance 0.8 for our research domain; expert systems, learning system and AI path are not-mandatory terms that improve the relationship between the retrieve documents and the MODEL family; artificial intelligence, machine learning, artificial intelligence system are alternatives for the MODEL family in the AI domain; with respect to the field of study, we will use terms such as er and caution calculate new variations for our research domain. □

Definition 4: Family. With

$$\mathcal{F} = \{(P,N,D,I) \text{ s.t. } P \text{ Phrases Set}\}$$

we define a Family \mathcal{F}. A Family \mathcal{F} is a set of research document characterized by same field of study (i.e. the same Family name F).

Each \mathcal{F} is defined by the following attributes:

(i) P is a Phrases Set generated by an item f of the Sub-graph Query with his variations V and alternatives A;
(ii) N represents the sets of Needs N of the item f;
(iii) D is the sets of Drugs D of the item f;
(iv) I is the importance of of each phrase generated by f within his Family \mathcal{F}.

We can now specify the concept of Query, to illustrate our approach to sub-graph query-based mining a Knowledge base of Scientific Papers.

Definition 5: Query. Given a Document d and the sub-graph query Q, a query q is a couple of $q <d, O>$. □

Problem 1: Given a knowledge base KB of scientific documents and a query q, return the result set $RS = \{d_1, d_2, \ldots\}$, that contains documents d_i retrieved in $KB d_i \in KB$ such that d_i satisfies query q. □

5 DATA

To build the knowledge base of scientific papers we used the citation network dataset from DBLP\(^4\) and ArnetMiner\(^5\); the former gives the citation network, the latter adds further data, such as the field of study, by searching and performing data mining operations against academic publications on the Internet, using social network analysis to identify connections between researchers, conferences, and publications (Tang et al., 2008). This allows ArnetMiner(or AMiner) to provide services such as expert finding, geographic search, trend analysis, reviewer recommendation, association search, course search, academic performance evaluation, and topic modeling.

For our work we used the v11 version (Sinha et al., 2015), containing 4,107,340 papers and 36,624,464 citation relationships.

As specified in section 4, we choose a graph-based approach that enable us to generate an easy representation of relationships, while achieving higher performance and flexibility.

To obtain this scope, we choose to build the knowledge base on top of Neo4j (Robinson et al., 2015) that uses the Cypher declarative query language (Francis et al., 2018) to query the graph.

\(^4\)https://dblp.org/

\(^5\)https://www.aminer.org/
The knowledge base data model is represented in Figure 3. Raw data are processed and transformed to fit the data model structure, and loaded into a Neo4j graphDB instance; in this way we are able to use Cypher to query the knowledge base. The relationships shown in the data model are created as specified in (Sinha et al., 2015), directly form the dataset; then we have the following labels for each type of node:

- **Author**: is an author of one or more Papers; is identified by id, and has a name;
- **Paper**: is the main label of the model; can references to other Papers, is published on a venue, and can have Fields of study (FOS); is identified by an id, and its mostly relevant attributes are title, year, abstract;
- **Venue**: can be a conference, journal, workshop or book, with their specific attributes; common attributes are id and name;
- **Field of Study (FOS)**: is the fields of study, coming from MAG database (Sinha et al., 2015) and extracted using NLP techniques; a Paper can have more than one FOS, with the associated score.

6 METHODOLOGY

The following section describes the formulas used to calculate the scoring values of a document with respect to a phrase and to a Family.

Document. A document \(d \) is a couple formed by title and body.

\[
\begin{align*}
\text{Title}_d &= \{ \langle p_1, \ldots, p_t \rangle \text{ s.t. } p_t \text{ phrase} \} \\
\text{Body}_d &= \{ \langle p_1, \ldots, p_c \rangle \text{ s.t. } p_i \text{ phrase} \}
\end{align*}
\]

Thus,

\[
\text{Document } d = (\text{Title}_d, \text{Body}_d)
\]

For scoring purposes, we applied TF-IDF (term frequency-inverse document frequency) formula to the corpus of the documents.

\[
\text{TFIDF}_d = \{ \langle p_i, r(p_i) \rangle \text{ s.t. } p_i \in \text{Body}_d \text{ and } r(p_i) \text{ TF-IDF rank of } p_i \text{ in } \text{Body}_d \}
\]

We recall that a Family \(\mathcal{F} \) is a collection of Phrases Set \(P \) with related features: Needs, Drugs and Importance.

\[
\mathcal{F} = \{ (P, N, D, I) \text{ s.t. } P \text{ Phrases Set} \}
\]

6.1 Scoring

The definition of the Document scoring formula considers the composition of four weights functions:

- Title scoring function;
- Body scoring function;
- Needs coefficient;
- Drugs coefficient.

Title scoring function of a Phrases Set \(P \) and document \(d \):

\[
T(P, d) = \frac{|\text{Title}_d \cap P|}{|\text{Title}_d|}
\]

Body scoring function of a Phrases Set \(P \) and document \(d \):

\[
B(P, d) = \begin{cases}
\frac{1}{|P|} \sum_{p \in P} \left(1 - \frac{r(p)}{\text{TFIDF}_p} \right) & \text{if } \text{Body}_p \cap P \neq \emptyset \\
0 & \text{otherwise}
\end{cases}
\]

Finally, as scoring functions, drugs and needs related to a Phrases Set \(P \) and document \(d \) can be represented as:

\[
\begin{align*}
N(d) &= \begin{cases}
\frac{|N \setminus \text{Body}_d|}{N} & N \neq \emptyset \\
1 & \text{otherwise}
\end{cases} \\
D(d) &= \begin{cases}
1 + \frac{|D \setminus \text{Body}_d|}{|D|} & D \neq \emptyset \\
1 & \text{otherwise}
\end{cases}
\end{align*}
\]

Thus the overall scoring function of the Document \(d \) with respect to the an element of a Family \(\mathcal{F} \) given by \((P, N, D, I)\) (here represented using only \(P \)) is:

\[
s(P, d) = (T(P, d) + B(P, d)) \cdot D(d) \cdot N(d)
\]

Once the scoring function for the elements of a family is defined, it is possible to introduce the scoring function of the document \(d \) with respect to an entire family \(\mathcal{F} \). To avoid unbalances related to different family sizes, only elements of the family with Phrases...
Set that have not-empty intersection with the body of the document are taken into account in this evaluation. For simplicity, we represent an element \((P, N, D, I)\) using only \(P\). Given a family \(\mathcal{F}\) and a document \(d\), we define \(S\) the scoring function of the document \(d\) with respect to the family \(\mathcal{F}\) as:

\[
S(\mathcal{F}, d) = \sum_{P \in \mathcal{F}} s(P, d) \cdot \frac{1}{|\{P \in \mathcal{F} : \text{Body}_d \cap P \neq \emptyset\}|}
\]

In addition, for queries containing multiple families we can define a Total Rank calculation for a document \(d\) as the product of scoring functions for all families \(\{\mathcal{F}\}_{\mathcal{F} \in \mathcal{O}}\):

\[
\prod_{\mathcal{F} \in \mathcal{O}} \max(S(\mathcal{F}, d), \varepsilon), \quad \varepsilon > 0
\]

7 RESULTS

7.1 User Evaluation Methodology

GRASP was developed and tested on several use cases. The results of those cases were passed to a pool of experts (PhD students and researchers) for a model evaluation. Two sets of metrics are adopted, both inspired by Information Retrieval performance metrics (see (Butcher S., 2016; Dupret, 2011)).

The first one is focused on the overall consistency of documents extracted by **GRASP**, despite of the grade of coherence. It is based on the following metrics:

- Precision at \(k\) Documents (P@\(k\));
- Precision at R (P@R);
- Average Precision (AP).

The second one is more focused on the grade of properness and appropriateness of documents extracted by **GRASP**, based on the following metrics:

- Discounted Cumulative Gain (DCG);
- Normalized Discounted Cumulative Gain (nDCG).

7.2 Evaluated Use Cases

In this section, some user evaluation cases are reported with associated evaluation metrics. Each use case adopts its own sub-graph.

The evaluation process of the system is structured as following:

(i) Sub-graph query authoring;
(ii) Choice of partitioning keys;
(iv) Executing a selection query on the knowledge database;
(v) Application of our scoring technique;
(vi) Evaluation of results with ten university researchers.

The research question we addressed can be summarized as follows: *can the result be effectively used for the literature overview process? Is the document returned by the system actually relevant to the search domain and query? Is the position of the document within the list returned by **GRASP** correct? In other words, is the ranking of documents with respect to their relevance to the research domain?*

As far as evaluation is concerned, the results of the scoring phase are subject to validation by ten university researchers who have calculated the indicators as indicated in section 7.1. The evaluation phase is focused on the 10 most relevant papers, extracted by **GRASP**.

![Figure 4: Working example - Computer Vision and Deep Learning (the original figure is available here http://tiny.cc/93gwtz).](image-url)

GRASP was then evaluated on eight different scenarios:

(i) **Artificial Intelligence** & **Natural language processing**;
(ii) **Computer Vision and Deep Learning** (Figure 4);
(iii) **Data Quality and KDD Processes**;
(iv) **Robotics and Autonomous systems**;
(v) **Function as a Services and cloud computing**;
(vi) **Big Data and New Data warehouse**;
(vii) **Map-Reduce for econometric**;
(viii) **Programming language and type-safe challenge**.

For each scenario, each expert provided evaluations on coherence and properness. For example, for **Computer Vision and Deep Learning**, the following Families, partitions and ontology has been provided:

1. **Families** = ["COMPUTERVISION", "DEEPLEARNING"]
2. **Partition** = ["computer vision", "image recognition"].

For more details, please refer to the original document.
The table 1 reports the output.

Table 1: Top 5 output papers applied to the example described above.

<table>
<thead>
<tr>
<th>TITLE</th>
<th>TOTAL RANK</th>
<th>COMPUTER VISION</th>
<th>DEEP LEARNING</th>
</tr>
</thead>
<tbody>
<tr>
<td>A massively parallel architecture for a self-organizing neural pattern recognition machine</td>
<td>9295</td>
<td>98.2472</td>
<td>94.6083</td>
</tr>
<tr>
<td>Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis</td>
<td>8091.76</td>
<td>98.298</td>
<td>82.3186</td>
</tr>
<tr>
<td>Measuring invariances in Deep Networks</td>
<td>7202.72</td>
<td>90.2564</td>
<td>79.803</td>
</tr>
<tr>
<td>Recognizing lower face action units for facial expression analysis</td>
<td>6422.5</td>
<td>73.8933</td>
<td>86.9158</td>
</tr>
<tr>
<td>Tracking faces</td>
<td>6112.99</td>
<td>73.4586</td>
<td>83.2168</td>
</tr>
</tbody>
</table>

7.3 Evaluation Results

Results have been summarized evaluating Mean and Standard Deviation for:

- Normalized Discounted Cumulative Gain (nDCG).

Summarized results are presented in Table 2.

Table 2: Summarized results for GRASP Evaluation.

<table>
<thead>
<tr>
<th></th>
<th>P@R</th>
<th>DCG@k</th>
<th>iDCG@k</th>
<th>nDCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 1</td>
<td>0.83±0.14</td>
<td>4.51±1.09</td>
<td>5.37±1.00</td>
<td>0.84±0.11</td>
</tr>
<tr>
<td>Case 2</td>
<td>0.92±0.15</td>
<td>7.43±1.43</td>
<td>8.34±0.61</td>
<td>0.88±0.11</td>
</tr>
<tr>
<td>Case 3</td>
<td>0.84±0.07</td>
<td>7.02±0.70</td>
<td>7.54±0.57</td>
<td>0.93±0.02</td>
</tr>
<tr>
<td>Case 4</td>
<td>0.93±0.05</td>
<td>7.72±0.98</td>
<td>7.91±0.87</td>
<td>0.98±0.02</td>
</tr>
<tr>
<td>Case 5</td>
<td>0.95±0.04</td>
<td>6.95±1.05</td>
<td>7.25±0.91</td>
<td>0.96±0.03</td>
</tr>
<tr>
<td>Case 6</td>
<td>0.80±0.18</td>
<td>6.27±1.98</td>
<td>7.31±2.16</td>
<td>0.84±0.12</td>
</tr>
<tr>
<td>Case 7</td>
<td>0.83±0.07</td>
<td>4.50±1.00</td>
<td>5.34±1.24</td>
<td>0.85±0.07</td>
</tr>
<tr>
<td>Case 8</td>
<td>0.89±0.05</td>
<td>6.42±1.10</td>
<td>7.68±0.97</td>
<td>0.95±0.04</td>
</tr>
</tbody>
</table>

P@R: We can observe that the system performs well with all the evidences. We have a positive peak at Case 2, Case 4 and Case 5 and the lowest values for Case 6.

- It tends to be high (greater than 0.90) when the domain, and sub-graph delivery, is narrower.

- In the case where the search domain is wider and the sub-graph’s contours are less defined, it tends to lower around 0.83. For example, the Big Data and New Data warehouse is wider and it includes several sub-domains (eg. machine learning, data models, NoSql database that are not in scope of the case) that decrease precision.

DCG: emphasizes the position of the single document in the array of returned documents. As you can see from the results, we have very good DGC values (>7) on 37.5% of results. The negative cases are Case 1, Case 7 and Case 8. Normalized Discounted Cumulative Gain measures our effectiveness among results of various scenarios. nDCG metric doesn’t penalize bad documents so our scoring algorithm is able to achieve high performance with a degree major of 0.9 in 50% of cases. Generally, GRASP Evaluation highlights two main patterns of our scoring method:

- the algorithm can achieve the best results when we evaluate the overall list of documents returned by the system; because GRASP is always able to correctly detect and sort relevant documents;

- GRASP assigns a wrong rank to documents that are relevant for a part of the domain (i.e. only for a single family that has a high value of relevance); it doesn’t perform well distinguishing between uniform and skewed performance across the domain of interest.

6The full evaluation is available here http://tiny.cc/93gwtz
8 CONCLUSION AND FUTURE WORK

In this paper, we addressed the problem of performing an efficient literature review considering the numerous quantity of articles, papers and documents to be retrieved and mined in, to filter them based on the usefulness and retrieval of the other sources that refer to or cited by the target document. The proposed solution is able to identify the path of the linked sources which can contribute to the research topic provided by the researcher as an input in the form of a simplistic sub-graph.

As the future works, we are currently working to improve GRASPy:

• increasing the number of user study participants to increase the robustness of the evaluations;
• a more in-depth analysis of the competitor solutions;
• enhancing the way the sub-graph query is mapped on the graph;
• considering more robust information retrieval methods utilizing zone indexes and n-gram tokenizing;
• generating time-anchored graphs which show the path through the years.

REFERENCES

Cesarini, M., Mercorio, F., Mezzanzanica, M., Moscato, V., and Picariello, A. (2018). GraphDBLP Released: Querying the Computer Scientists Network as a Graph. CEUR.

