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Abstract: Software maintenance and evolution enclose a broad set of actions that aim to improve both functional and
non-functional concerns of a software system. Among the non-functional concerns, energy consumption is
getting more and more traction in the industry, no matter the software is mobile or deployed in the cloud. In
this context, the impact of code refactorings on energy consumption remains unclear, though. In particular,
while the state of the art investigated the impact of some specific code refactorings on dedicated benchmarks,
we miss an assessment that those apply to more comprehensive and complex software. To address this threat,
this paper studies the evolution of the energy consumption of 7 open-source software developed for more than
5 years. Then, by focusing on the impact on energy consumption of changes involving code refactorings, we
intend to assess the effects induced by such code refactorings in practice. For all these software systems we
studied, our empirical results report that the code refactorings we mined do not substantially impact energy
consumption. Interestingly, these results highlight that i) structural code refactorings bring energy-preserving
changes to the code, and ii) major energy variations seem to be related to functional and computational code
evolutions.

1 INTRODUCTION

Software energy consumption has gained a substan-
tial significance in the last decade, both for research
and industrial contexts (Verdecchia et al., 2017; Pinto
et al., 2016; Rodriguez, 2017; Chowdhury et al.,
2019; Fonseca et al., 2019). Hence, many researchers
and practitioners started caring about the energy ef-
ficiency of software, beyond performance and hard-
ware concerns (Cruz et al., 2017; Pinto et al., 2014;
Manotas et al., 2016; Manotas et al., 2013). Being
integrated into mobile or cloud environments, soft-
ware systems are trying to minimize their resource
consumption to reduce battery consumption or opera-
tional cost.

In this context, the impact of software develop-
ment techniques on energy consumption has been ex-
plored by the state of the art—including code compi-
lation, static code analysis, code refactorings—which
is the focus of this paper. Source code refactorings
can be described as the application of acknowledged
rules to improve one or many aspects of a software
system, such as its clarity, maintenance, code smells,

without impacting its functional behavior (Kerievsky,
2004; Abid et al., 2020).

Yet, code refactorings have also been consid-
ered as a mean to improve the performance and/or
energy efficiency in a more or less automated
way (Gottschalk et al., 2013; Anwar et al., 2019; Cruz
et al., 2017; Morales et al., 2018; Cruz and Abreu,
2017; Bree and Cinnéide, 2020). The large major-
ity of the literature that has been published in this
domain—especially for mobile application (Palomba
et al., 2019; Gottschalk et al., 2013; Anwar et al.,
2019; Linares-Vásquez et al., 2014)—based their
study on a predefined set of refactoring rules, design
patterns, or code smells. In most of these studies,
the authors measure and analyze the effect of atomic
code changes on the total energy efficiency of the soft-
ware under study, before concluding on their effect.
While this process may deliver interesting insights on
the impact of specific code refactorings on the en-
ergy consumption of a code snippet, there is still no
guarantee that the identified code refactorings are fre-
quently applied during the lifespan of a software sys-
tem. Some refactorings could be very advantageous
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but are rarely applied which limits their impact on the
energy efficiency of the software.

In this paper, we thus consider an alternative ap-
proach to study the impact of code refactorings on the
energy efficiency of legacy software systems. We fo-
cus on acknowledged refactoring rules mostly issued
from Martin Fowler’s book (Fowler, 1999), which
are mostly structure-oriented rules (such as Extract
Method) dealing with code architecture and organi-
zation for server-side applications rather than imple-
mentation and computation changes (such as Sub-
stitue Algorithm). Instead of selecting a set of code
refactorings a priori and evaluate them against some
dedicated benchmarks, we extract these code refac-
torings from established open-source projects. More
specifically, we mine the history of code refactorings
that have been applied to these projects in the past,
and we measure the impact of the commits that in-
clude acknowledged code refactorings on the overall
energy consumption. This approach aims to detect the
code refactorings that have been broadly applied, and
their observable impact on energy efficiency in prac-
tice. By doing so, we believe that mined code refac-
torings are most likely to reflect an effective impact of
code refactoring on energy consumption, compared
to the study of a fixed set of refactoring candidates.
This study, therefore, aims to answer the following
research questions:

RQ 1: How does the energy consumption of software
evolve over time?

RQ 2: How do code refactorings contribute to the
evolution of software energy consumption?

Furthermore, beyond answering these two questions,
the paper comes with a set of contributions that can
be summarized as:

1. Proposing a new empirical approach to study the
impact of source code refactorings on the energy
consumption of software systems,

2. Investigating the contribution of code refactorings
to the global evolution of software energy con-
sumption,

3. Providing a detailed description of the most ap-
plied code refactorings and their impact on energy
consumption,

4. Validating the code refactoring effects on energy
consumption through statistical tests and micro-
benchmarking.

The remainder of this paper is organized as follows.
Section 2 introduces the experimental protocol (hard-
ware, projects, tools, and methodology) we adopted in
this study. Section 3 analyzes several experiments we
conducted to mine the code refactorings and evaluate

their impact on the energy consumption, as well as the
results we observed during these experiments. Sec-
tion 4 discusses the related work about source code
refactoring contributions to reduce software energy
consumption. Finally, Sections 5 and 6 cover the va-
lidity threats and our conclusions, respectively.

2 EXPERIMENTAL PROTOCOL

This section describes our detailed experimental envi-
ronment, encompassing the hardware configuration,
the studied projects/benchmarks and a detailed de-
scription of our experimental methodology.

2.1 Hardware Environment

For all of our experiments, we used a Core i7 ma-
chine (i7-6600U CPU @ 2.60GHz) with a total of 4
processing units to measure the energy consumption
and mine the refactoring rules from the projects un-
der study. The machine ran a 18.04.4 LTS Ubuntu,
with a 4.15.0-88-generic Linux kernel. We also
used OPENJDK, version 1.8.0 242, to run most of
our Java experiments—i.e., run both old and recent
versions—except for the OkHttp project where we had
to use OPENJDK, version 11.0.6. By using the same
machine to conduct all the experiments, we guar-
antee the least energy consumption variation and a
controlled impact of the hardware configuration, as
recommended in (Ournani et al., 2020), especially
to measure small differences in energy consumption.
Therefore, the machine has been configured accord-
ing to guidelines of (Ournani et al., 2020) to mitigate
the energy consumption variation to the minimum and
produce accurate results that can be faithfully com-
pared.

2.2 Projects under Study

Regarding the subjects of our study, our main crite-
rion was to select established projects with a consider-
able commit history, that have been existing for years,
and with an active community. This study exclusively
focuses on Java projects to limit the search space and
unify our experimental setup, but also because code
refactorings may differ from a language/paradigm to
another. We then tried to diversify our dataset by
considering projects that cover a large spectrum of
features and operations including, JSON and XML
conversions, HTTP client, graph processing, data col-
lections, etc. Because of the longitudinal nature of
our study, we considered projects that have a stable
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Table 1: List of selected open-source projects.
Project Description # commits 1st commit
OkHttp Java HTTP client 4,684 05-2011
JGraphT Graph objects and algorithms provider 3,158 07-2003
XStream XML↔ Java objects serialization 2,736 10-2003
JFlex Java lexical analyzer generator 1,741 02-2003
Gson JSON↔ Java objects serialization 1,485 08-2008
Eclipse-Collections Eclipse Java collections 1,374 12-2015
Google-Http Google HTTP client library for Java 868 05-2011
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Figure 1: CDF of code refactorings per commit.

interface, and in which the main functions are non-
ambiguously identified, so we can run the same mea-
surements across different generations and versions of
the studied projects.

Based on the above criteria, Table 1 summarizes
the projects that we considered for this study, along
with the number of commits at the time that this pa-
per was written, and the date of the first commit. Es-
tablished projects with a higher number of commits
increase the chances to mine a representative set of
commits including code refactorings. All the projects
we selected have been hosted on GitHub since at least
2015. We note that the Git creation date only gives an
overview of how long has the project been on GitHub
and is different from the project creation date. Some
projects, such as Gson, exists on GitHub since March
2015, but we still can checkout commits from 2003.

2.3 Methodology & Tools

Our experimental methodology is a process that in-
cludes extraction, evaluation, and validation steps.
Figure 2 depicts the main steps we followed to an-
alyze each selected project. We start our process
by cloning the public repository of the project from
GitHub. Then, for each commit, we mine the code
refactorings of the project using the REFACTORING-
MINER tool and we summarize them into a JSON
file. REFACTORINGMINER is an open-source re-
search project (Tsantalis et al., 2018; Tsantalis et al.,
2020) that analyses a project commit by commit and
extracts the type and count of refactorings for each
commit in a JSON format. It helps in detecting and
visualizing 55 different types of refactoring in its ver-

sion 2.0, which is the version we used in this study.1

Once we extract the code refactorings that have
been applied per commit on the master branch, we
select the commits to be reproduced to measure their
energy consumption. The selection method takes into
account the refactorings count and types in each com-
mit. We consider commits with at least 20 refac-
torings so we can expect a significant impact of the
refactorings on the energy consumption. Figure 1
depicts the cumulative distribution function (CDF)
that shows the frequency of commits per refactorings
count (commits with more than 200 refactorings have
been omitted for clarity). For most of the studied
projects, one can see that 20% of the commits have
more than 20 refactorings. This ensures having a de-
cent number of the most relevant commits that can be
reproduced and evaluated. The commits that contain
only one type of refactoring are very rare, we thus
also consider commits with a mix of code refactor-
ings, and deduce the impact of each refactoring rule
a posteriori.

Then, we rebuild the project Java archive (JAR)
for each of the previously selected commits to be
ready for the test/run phase. To be able to run
and evaluate the compiled JAR, we need to pro-
vide a task to execute for each project. We can-
not trust running the tests provided within projects as
they can substantially change from a commit to an-
other and might include/exclude functionalities that
appear/disappear between commits, which does not
constitute a fair comparison criterion. Instead, we
wrote our own JMH benchmarks for each project,
which is a ”Java Microbenchmark Harness for build-
ing, running, and analyzing nano/micro/milli/macro
benchmarks written in Java and other languages tar-
geting the JVM”.2 The purpose of each benchmark is
to test the main functionality of each project to ensure
the same measurement conditions for all commits.
Hence, through JMH benchmarking, we can deliver—
for each project—experiments to compare the energy
consumption of commits, while testing the main func-
tionalities of the project. The main test functional-
ity for Gson and XStream is JSON and XML to Java
objects serialization and deserialization, respectively.
For both OkHttp and Google-Http projects, we con-
sider the core HTTP verbs (GET, POST, DELETE) with
a local server to eliminate any network bias. For
JGraphT, we consider the operations of graph cre-
ation, shortest path computation, max-flow computa-
tion, and discarding random edges. We also tested
JFlex with lexical analyzer generation, and Eclipse-
Collections with the core operations on the different

1https://github.com/tsantalis/RefactoringMiner
2https://openjdk.java.net/projects/code-tools/jmh/
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mutable and immutable collections (lists, maps, sets),
inspired from (Pinto et al., 2016; Samir Hasan et al.,
2016). Using JMH for writing benchmarks has many
advantages, such as the easy management of run and
warm-up iterations, and the prevention of dead code
removal from the JIT using the concept of black-
hole (Rodriguez-Cancio et al., 2016).

Once the JMH benchmark was written , we com-
pute the coverage of the project by the benchmark
using Jacoco (https://www.eclemma.org/jacoco).The
purpose is not to cover all of the project classes and
methods, as we only want to test the main functional-
ity of the project. However, the coverage computation
allows us to save all the classes and methods that are
covered by our benchmark. Thus, only the commits
with refactoring on these classes (given by Refactor-
ingMiner) and methods are considered for the evalua-
tion. Of course, this operation requires applying more
checks (using git diff) to ensure that the changes of
the commit x are limited to the extracted refactor-
ings and nothing else susceptible to affect the per-
formance or the energy consumption. Hence, this
step ensures that the selected commits only contains
refactoring that are being stressed by our benchmark.

The next step is to run the benchmarks for each
of the JAR files compiled from relevant commits. To
highlight the effect that code refactorings may have
on energy consumption, we build and run the com-
mit x that includes the code refactorings, but also the
commit x-1 on the main branch, so we can compare
the energy consumption and infer the impact of refac-
torings.

The percentage of reproduced commits, which
designates the ratio of successfully built and ran com-
mits in regards to the total count of selected com-
mits (Gson: 95%, XStream: 80%, OkHttp V3 & V4:
90%, Google-Http: 15%, JGraphT: 25%, JFlex: 40%,
Eclipse-Collections: 50%). Most of the unsuccessful
projects’ rebuilds are due to deprecated and invalid
references.

During the execution of the experiments, we use
Intel RAPL to acquire the global energy consump-
tion (Khan et al., 2018; Desrochers et al., 2016),
which is one of the most accurate available tools to re-
port the CPU/DRAM global energy consumption. We
thus evaluate the energy consumption of every com-
mit x and we compare it to its x-1 commit. We run ev-
ery JMH benchmark for multiple iterations on a fixed
amount of time (enough time to run the benchmark
at least one), and we extract between 100 and 1,000
energy measurements depending on the duration of
each iteration. Thus, different commits can run a dif-
ferent amount of iterations within the time allowed to
the JMH benchmark execution. This is why we con-

sider the energy consumption of iterations rather than
the whole benchmark, in order to have a correct es-
timation of the energy consumption for that commit.
Then, we use the bootstrap method (Efron, 2000) to
randomly build 100 subsets from the main set of mea-
surements, and we compute the mean and standard
deviation of these subsets. We end-up with 100 mea-
sures of averages and we use the median of these val-
ues for better accuracy and less bias.

The checked results are then used to build global
statistics of the most efficient refactoring rules across
the selected commits of all projects. We also pay spe-
cial attention to the commits of each project that ex-
hibit the most energy difference, when exceeding a
threshold of 5%. This threshold is computed from the
minimum CPU energy consumption variation and the
computed standard deviation of the experiments (Our-
nani et al., 2020).

This additional check of those commits consists
of applying a more detailed git diff analysis on the
results of the previous step to understand every single
occurrence of the detected refactorings and project the
results and that there is no other changes that may af-
fect the energy efficiency. Another check consists of
an extra micro-benchmarking phase, where we pre-
pare and execute the extracted refactorings to confirm
and validate the effect they could have on the energy
efficiency of the project/software. We also applied the
Wilcoxon rank sum test (or Student test when possi-
ble) to check the statistical significance of the regis-
tered difference in the energy consumption between
the commit x and the commit x-1, with a null hy-
pothesis of the energy consumption of the commit x
and x-1 being equal with a 5% certainty. During our
experiments, we were careful not to fall in the bench-
marking crimes described in (van der Kouwe et al.,
2018), so we can conduct robust and reproducible ex-
periments and evaluations with a focus on energy con-
sumption.

Most of our experimental setup is made available
on GitHub, including all the used JMH Benchmarks,
JSON extraction results, micro-benchmarks, CSV of
measurements, scripts, etc.3

3 REFACTORING IMPACT
ANALYSIS

In this section, we aim at answering our research
questions with a clear conclusion on whether refac-
toring has a substantial impact on the evolution of

3https://anonymous.4open.science/r/c3d38dca-1ab2-
4814-ba07-b182120c5739
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Figure 2: Methodology of refactoring analysis.

software energy consumption over time. We, there-
fore, conducted a set of experiments and validations
to investigate the effect of structural refactoring on the
evolution of software energy consumption.

3.1 Software Energy Consumption
Evolution

The first step is to investigate the evolution of soft-
ware energy consumption over time. Figure 3 depicts
the evolution of energy consumption for the projects
Google-Http, XStream, JGraphT, and Eclipse Collec-
tions, for which we run the main releases and report
on the energy consumption measured over time, by
focusing on the main functions stressed by our JMH
benchmarks.

Except for JGraphT, one can observe that energy
consumption tends to decrease over time for most of
the projects. One can mention a 10% decrease in 12
months for the Google-Http project (cf. Figure 3a),
a 10% decrease in 4 years for the Eclipse Collections
project (cf. Figure 3c), and a very substantial decrease
of 50% in 6 years for the XStream project (cf. Fig-
ure 3d).

Then, to have a more concrete look on the evolu-
tion of energy consumption per commit, we select the
Gson project to reproduce the evolution of its energy
consumption along the full commit history. Given the
large number of involved commits, we consider the
full set of commits of the Gson project (12 years)
with a span of 25—i.e., we build, run, and measure
the energy consumption every 25th commits. Figure 4
depicts the evolution of energy consumption for the

Gson project with a total of 57 successfully repro-
duced commits, out of 60. The line plot validates and
confirms the results shown in Figure 3.Most notably,
one can observe a reduction of 82% from the highest
to the lowest consumption commit within 12 years of
the project’s lifespan—i.e., the energy consumption
became 5 times lower. One can also see a more sud-
den energy consumption reduction between commits
600 and 900. This requires further investigation in the
future.

To answer RQ1, we can conclude that software
energy consumption can evolve drastically over
time. For the analyzed target systems, in spite
of fluctuations, the energy consumption has de-
creased non-negligibly for 4 systems and grown
for one.

Given the previous results reported by the litera-
ture, the remainder of this paper aims to closely study
and assess the impact of code refactoring on such ob-
served evolutions.

3.2 Refactoring Rules Impact

To dive into the effective impact that code refactor-
ing may have on software energy consumption, we
further tracked and analyzed the evolution of the en-
ergy consumption on commits where code refactor-
ings were detected. Thus, in our study, we consider
the full commit history of 7 open-source projects,
and we analyze the impact on energy consumption of
commits including code refactorings, as described in
Section 2.

Once we select commits with code refactorings
and rebuild them, we run the JMH benchmarks that
have been prepared for each project to compare the
energy consumption of a commit x that came with the
refactorings and the previous commit x-1 of the mas-
ter branch.

Then, we report on global statistics from the raw
measurements we obtained from each project, thus es-
tablishing a summary of the most used code refactor-
ings and their impact.

3.2.1 Global Code Refactoring Statistics

The purpose of this step is to highlight the most
used/impactful code refactorings. While it is easy to
identify the most used code refactorings by counting
the number of occurrences of each refactoring rule
and the commits they appear in, there is no consen-
sus on how to measure the effective impact of code
refactorings on energy consumption, if any. The large
majority of commits comes with a set of code refac-
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Figure 3: Energy consumption evolution of Google-Http, XStream, JGrapht, and Eclipse Collections.
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torings of many types, and even if these refactorings
can impact the energy consumption, there is no trivial
way to isolate such an impact for each type of refac-
toring. Thus, we consider 3 indicators to capture the
energy impact of refactoring. The first indicator, Im-
pact in Commits (IC), is the ratio between the num-
ber of commits where the refactoring had a positive
or negative impact—i.e., the commit x containing this
refactoring consume more or less energy than the pre-
vious commit x-1—and the total number of commits
containing this refactoring. Equation 1 therefore com-
putes IC for a rule r ∈ R by exploring all the commit
history C of a given project:

IC(r) =
∑c∈C count positive negative(c,r)

∑c∈C count(c,r)
(1)

This indicator can be then enhanced by taking into
account the occurrences—or weights—of each refac-
toring rule in a commit. In other words, considering
the refactoring weight consists of using the number of
occurrences of each refactoring type within a commit
rather than only counting the commit as 1 if it con-
tains at least a refactoring.

WIC(r) =
∑c∈C count positive negative(c,wr)

∑c∈C count(c,wr)
(2)

Nevertheless, this indicator is not enough to eval-
uate the energy impact of refactoring. Indeed, in-
cluding the weight of refactorings in commits sup-
poses that all refactorings impact energy consumption
equally, which may not be true, as we assume that the
occurrence of a refactoring r1 can have a bigger im-
pact than many occurrences of a refactoring r2.

The 2nd and 3rd indicators are δ% and δ|%| that
indicate the mean of the energy consumption of every
commit x containing the refactoring minus the energy
consumption of commits x-1, and the mean of the
absolute value of the energy consumption of every
commit x containing the refactoring minus the energy
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consumption of commits x-1, respectively, ‖Cr‖ be-
ing the commits in the commit history C where refac-
toring r occurred.

δ%(r) =
∑

Cr
x=1(Ex−Ex−1)

‖Cr‖
(3)

δ|%|(r) = ∑
Cr
x=1|Ex−Ex−1|
‖Cr‖

(4)

where Ex and Ex−1 represent the mean energy con-
sumption of the commit x that includes at least the
refactoring r, and the energy consumption of the com-
mit x-1, respectively. These indicators are comple-
mentary to reflect the impact of the code refactorings
on the energy consumption. Therefore, we consider
an aggregate indicator that combines the previous in-
dicators to capture the energy impact of refactorings
across commits. This indicator, named Refactoring
Impact (RI) builds on the previous indicators: the
higher WIC and δ|%|, the most impactful the refactor-
ing r is. However, if the difference δ|%|−δ% is high,
it means that the refactoring r has an unpredictable
effect on the energy consumption and may affect the
energy consumption positively or negatively. This is
a negative effect and could mean that the refactoring
does not have any impact at all. On the other hand,
the more commits we have with the refactoring r, the
more certain we are of the effect that it could have.
Thus, we use the exponential function in Equation 5
so the denominator cannot be null.

RI(r) =
WIC(r)×δ|%|(r)

eδ|%|(r)−δ%(r)
×‖Cr‖ (5)

Table 2 shows the computed indicators for a total
of 25 mined refactoring rules. We note that the com-
mits that could not be reproduced and those where the
refactorings are parts of classes that are not tested by
our benchmark have already been discarded and not
displayed in Table 2. Before analyzing the results we
excluded all the code refactorings with a low number
of occurrences and/or commits (less than 20 Coun-
txCommits). For example, code refactorings that oc-
curred only a couple of times and/or only in one or
two commits cannot be faithfully studied due to insuf-
ficient data. Then, we highlight (in Cyan) the refac-
toring rules that have the best values for the previous
indicators, which are very likely the refactorings with
the most impact on energy consumption. The 4 refac-
toring rules with the most number of occurrences and
commits, with a minimal IC of 30%, are ”add method
annotation”, ”rename parameter”, ”add class annota-
tion”, and ”move class”. These refactoring rules are
also those that exhibit the highest RI, and thus, are
most likely to be the most impactful on energy con-
sumption. However, we still have to assess that these

refactoring rules have an effective impact on the evo-
lution of energy consumption. Thus, we conducted a
more detailed study on the commits with the highest
impact to validate the effect of code refactorings on
energy consumption.

3.2.2 Diving into the Most Impactful Commits

With the most impactful commits, we refer to com-
mits where we observed the most substantial energy
differences between the commits x and commit x-1.
To select these commits, we fix a threshold of 5% in
energy consumption difference. This threshold was
fixed based on the CPU energy consumption varia-
tion (Ournani et al., 2020) and the standard deviation
of the many executions we ran on the same test, which
is often around 4% to 5%. A total of 7 commits have
been retrieved from the projects Gson, JFlex, Eclipse-
Collections and JGraphT (no other refactoring com-
mit with a minimal impact of 5% has been observed
among the other projects). We note that our exper-
imental setup would highlight any effect that these
refactoring could have caused on energy consump-
tion. Indeed, the execution of a JMH code, which
uses the compiled JAR for the commit x, is composed
of numerous warmup and standard iterations. Each it-
eration itself consists of running the benchmark many
thousands of times for several seconds, so the effect
that difference between the commits x and x-1 could
be noticed, if any.

Table 3 reports on the most impactful commits
including code refactorings. For each commit, we
can see the type and number of refactorings extracted
using REFACTORINGMINER (Tsantalis et al., 2018;
Tsantalis et al., 2020), the measured energy consump-
tion difference, a short description of the refactoring-
related changes that have been observed within the
commits, and the computed p-value of the Wilcoxon
test.

First, the commit ID is the first 6 digits of the git
hash that can be used to access the commit and repro-
duce our experiments/results. The energy consump-
tion (EC) difference represents the percentage of dif-
ferences between the average measure of commits x
and x-1 (after applying the bootstrapping as we com-
pute the average of multiple subsets built from the
main set of values). The next 2 columns contain the
extraction results of the REFACTORINGMINER tool.
They include the type and count of each refactor-
ing the tool was able to extract. We notice that the
rules that we identified as most impactful in the previ-
ous phase (add method annotation, rename parame-
ter, add class annotation, and move class) are—most
of the time—part of the extracted rules in theses com-
mits that have shown the highest differences in energy
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Table 2: The observed impact of mined refactoring rules.

Refactoring Count CountxCommits IC WIC δ%(r) δ|%|(r) RI

add method annotation 10120 80960 30.77% 43.41% 1.13% 2.14% 7.34

change variable type 101 606 16.67% 14.95% 0.24% 1.32% 1.17

rename parameter 45 180 33.33% 71.69% -0.07% 1.82% 5.12

change parameter type 42 168 11.76% 17.07% -0.03% 1.20% 0.81

change attribute type 26 130 16.67% 9.39% 0.12% 1.35% 0.63

add class annotation 63 216 33.33% 63.53% 1.30% 2.20% 2.77

move class 40 120 30.00% 54.28% 0.77% 2.21% 3.55

change return type 28 112 14.81% 19.93% 0.14% 1.11% 0.88

move method 33 99 21.43% 19.10% 0.59% 1.76% 1.00

rename variable 21 84 25.00% 18.24% 0.46% 1.44% 1.04

move attribute 18 54 25.00% 18.81% -0.07% 1.92% 1.06

extract method 37 37 20.00% 71.87% 0.08% 1.24% 0.88

pull up method 32 32 33.33% 38.90% 0.03% 1.97% 0.75

rename class 6 24 25.00% 13.71% 1.14% 1.51% 0.82

add attribute annotation 8 16 20.00% 15.12% 0.64% 1.14% 0.34

rename attribute 5 15 30.00% 8.77% 0.55% 1.62% 0.42

add parameter 6 12 16.67% 6.55% 0.82% 1.47% 0.19

merge parameter 6 6 100.00% 100.00% 6.00% 6.00% 6.00

extract class 2 4 33.33% 11.14% 0.72% 2.62% 0.57

extract variable 3 3 11.11% 10.52% 0.49% 0.91% 0.10

remove method annotation 1 1 11.11% 0.77% 0.71% 1.40% 0.01

rename method 1 1 11.11% 2.20% 0.32% 1.10% 0.02

modify method annotation 1 1 33.33% 7.99% 2.50% 2.50% 0.20

move & rename method 1 1 20.00% 13.17% -0.32% 2.32% 0.30

merge attribute 1 1 100.00% 100.00% 6.00% 6.00% 6.00

consumption, with add annotation and move class be-
ing the most common. Sometimes, they are the only
detected code refactorings, that we could suspect to
be responsible for the energy consumption variation,
as in commit #b9dfbc of Eclipse Collections.

We apply 3 different validation measures to con-
firm whether the impact is effectively caused by the
refactoring. The first validation is through detailed git
diff checks of the 7 selected commits to assess that
the refactorings have been faithfully applied. We re-
mind that we already made sure that these refactor-
ings only concerns classes and methods that are being
stressed by the JMH benchmarks, and do not contain
other changes that can be responsible for the energy
consumption difference. For example, we do not sus-
pect adding some code documentation to alter the en-
ergy consumption, yet we do suspect changing a data
structure, a loop, or a code snippet to do so.

In the second validation step, we conduct a statis-

tical validation through Wilcoxon rank sum test (as
Student test could not be applied due to variables
not following a Gaussian distribution) to compare the
commits x and x-1 averages. With a risk of 5%, we
reject the null hypothesis of the means of the exe-
cutions of commits x and x-1 being equal. For the
p-value commit #f1074b being higher than 0.05, we
cannot reject the possibility that the average is equal
in both commits. The same goes for the commits
#033164, #b34361, #b9dfbc where we cannot accept
that the means of the commits x and x-1 are statisti-
cally different.

The remaining commits—being #827717,
#45bf2d, and #298b7a—mainly contain the add
annotation and move class refactorings. We thus
achieve our third validation step through ded-
icated micro-benchmarking. We first build a
micro-benchmark to check the effect that every
encountered annotation may have(@override,
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Table 3: A deeper look into the most impactful commits.

Project Commit ID EC diff Refactoring Count Git diff p-value

Gson
#82771f 5.5%

add method annotation 23 Adding @SuppressWarnings("unused") and
@SuppressWarnings("unchecked") to methods,
classes and variables that appear in the call trace of the
JMH code with no other changes that might impact
the energy consumption.

0.018add class annotation 3

modify method annotation 1

add attribute annotation 1

#45bf2d 6.8% add method annotation 3 Adding @SuppressWarnings("unchecked") to
methods and moving classes (project reorganization)
that appear in the call trace of the JMH code.

0.000
move class 30

JGraphT

#033164 6%

merge attribute 1

Some code restructuring, reorganization and class
movement that that appear in the call trace of the JMH
code. No other changes suspected of impacting the en-
ergy consumption were detected

0.056

change parameter type 1

rename parameter 9

move method 22

rename class 1

extract class 1

move attribute 15

move class 8

merge parameter 6

change variable type 19

change attribute type 1

#f1074b 5%

add method annotation 1
Adding @Override annotation and the renaming of
some attributes/parameters. However these changes
does not appear in the call trace of the JMH code.

0.2add class annotation 60

rename class 2

rename attribute 1

change variable type 16

rename parameter 4

JFlex #b34361 5%
add method annotation 53 Adding @Override annotation to methods that appear

in the call trace of the JMH code with no other changes
that might impact the energy consumption.

0.054
move & rename method 1

rename class 1

Eclipse Collections
#b9dfbc 6% add method annotation 9944

Adding @override annotation to methods that ap-
pear in the call trace of the JMH code with no other
changes.

0.4

#298b7a 5% add method annotation 73
Adding @override annotation to methods that appear
in the call trace of the JMH code, but too many changes
unrelated to refactoring were found.

0.01

@SuppressWarnings("unchecked"),
@SuppressWarnings("unused")) and ran hun-
dreds of millions times each, on classes, methods
and variables to check whether it has an effect on the
energy consumption. The results—as expected—did
not have any effect (about 1% difference that we
cannot consider due to CPU energy variations (Our-
nani et al., 2020)) on energy consumption, as
annotations are not supposed to have a substantial
impact on the generated bytecode that would be
executed by the JVM. This would invalidate the fact
that the observed energy consumption difference is
mainly related to the add annotation refactoring in
the commits that only contain this type of refac-

toring, such as #827717, #b9dfbc, and #298b7a.
The second micro-benchmark concerns the move
class refactoring, where we measured the energy
consumption for several scenarios, after moving
some classes/interfaces around and reorganizing
the structure of the micro-benchmark. The results
showed a difference in energy consumption of up
to 8%, with an average standard deviation of 5%.
The move class refactoring—which is often ac-
companied with the rename refactorings—indicates
a code reorganization that might have an impact.
While the observed impact through the JMH exper-
iments or with micro-benchmarking might not be
substantial, it would be beneficial to be aware that
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restructuring/reorganizing a project could have an
impact on energy consumption, and thus compare the
before/after energy consumptions to track that effect.
Unfortunately, we could not detect any specific
pattern or guidelines on when the code reorganization
or restructuring would impact positively or negatively
the energy consumption. Hence, we can only faith-
fully retain the commit #45bf2d of the Gson project
among the commits of Table 3, where the 30 move
class refactoring could have been responsible of 2%
of energy consumption difference as the standard
deviation of the measures is 5%.

We finally conclude that structure-oriented refac-
toring has no substantial impact on the energy con-
sumption of the main functionality of 7 projects that
have been existing for at least 5 years with a total of
16,046 commits. We argue that it could be applied to
improve the code quality with no negative impact on
software energy consumption. Although, comparing
the energy consumption before and after the changes
is always a good practice to keep track of its evolu-
tion.

To answer RQ2, we conclude that code refactor-
ing rules are mostly ”safe” operations that have
no substantial impact on software energy con-
sumption. Developers should not fear structure-
oriented refactorings, especially regarding how
little is the impact they could have compared
to the real energy consumption evolution of
projects, registered while answering RQ1.

4 RELATED WORK

In this section, we review the state of the art of green
software design efforts related to code refactorings.

Desktop Applications. Achieving software energy
efficiency through refactorings has been studied for
desktop applications and server-side applications.
Pinto et al. discuss 12 contributions taken from the
state of the art on the refactoring that can be applied
to improve software energy efficiency (Pinto et al.,
2015). This literature review was conducted on the
papers that were published in 8 of the top software
engineering conferences prior to 2015. It summa-
rizes some interesting information and practices re-
lating to CPU offloading, HTTP requests, I/O opera-
tions, DVFS techniques, etc. Sahin et al. also studied
the impact of 6 refactoring rules on a total of 197 se-
lections found in 9 Java applications. Their results
showed that the impact of applying the refactoring
could be statically significant, but is not very consis-
tent across the software and platform versions. They

suggested that knowledge on the energy consumption
impact of refactoring rules could be integrated within
IDEs to help developers building less energy-bleeding
software.

In a more detailed study of the impact of only one
refactoring rule ”inline method” on 3 Java applica-
tions, (W G P Silva et al., 2010) reported that the im-
pact on the execution time and energy consumption
that was expected to be positive, was not always true.

Rather than looking for green refactoring rules
reducing software energy consumption, some prac-
titioners chose to conduct wider studies that ap-
ply on a much larger set of refactorings to cap-
ture a subset of ”green” rules. This is exactly what
the authors of (Jae-Jin Park et al., 2014) pursued:
They prepared C++ micro-benchmarks of 63 refac-
toring techniques/design patterns suggested by Martin
Fowler (10., 1999), then ran experiments and isolated
a set of green refactoring rules based on the micro-
benchmarks for C++.

The authors of (Kumar et al., 2017) focused on
investigating the impact of Java coding practices,
which include primitive data types, operations on
strings, usage of exceptions, loops, and arrays. Us-
ing RAPL (Khan et al., 2018), they measure the
energy consumption of code snippets and micro-
benchmarks and presented some minor observations,
such as string concatenation consuming less than
StringBuilder and StringBuffer, static variables
consume 60% more energy compared to instance vari-
ables, etc.

Mobile Applications. In another context, the reduc-
tion of software energy consumption through refac-
toring actions has also been explored in the con-
text of mobile applications. EARMO proposes
a multi-objective refactoring approach to automat-
ically improve the architecture of mobile applica-
tions (Morales et al., 2018). The authors conducted
an empirical study to measure the negative impact of
8 anti-patterns on 20 open-source applications. They
then used a multi-objective search-based approach,
called EARMO, to correct up-to 84% of the anti-
patterns on the tested applications and increase the
battery lifespan by up-to 29 minutes. However, their
statistical analyses with a significance level of 5%
only showed that half of the rules can impact energy
efficiency in some cases. Moreover, the CPU/chip en-
ergy variation has not been taken into account for the
significance level.

Other works also considered energy efficient
refactoring for mobile applications (Gottschalk et al.,
2013). In particular, the authors of (Rodriguez, 2017)
presented some early experiments on different micro-
benchmarks and discussed many coding aspects with
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a focus on implementation techniques, such as how to
iterate on a matrix, avoid operations with immutable
data types, evaluating strings, or the use the more
specific numeric data types to save battery life. An-
war et al. (Anwar et al., 2019) also gave concrete
examples on how to save some battery time through
refactoring. They achieved a maximum of 10% of en-
ergy savings by refactoring the DuplicatedCode and
TypeChecking code smells.

Cruz et al. (Cruz and Abreu, 2017) studied the ef-
fect of 8 of the best performance-based practices on
the energy efficiency of 6 Android applications. The
results of the experiments showed that some patterns,
such as ViewHolder, DrawAllocation, WakeLock, Ob-
seleteLayoutParam need to be taken into account for
a better design of energy-efficient applications, with
a reported impact of 4.5% for the Writeily Pro app.
The authors also proposed the LEAFACTOR tool to
improve the energy efficiency of Android applications
by automatically refactoring the source code to fix the
above patterns (Cruz et al., 2017). The process was
applied on a set of 140 open-source Android appli-
cations and yielded a total of 222 refactorings, which
were submitted as pull requests, with 16 successfully
merged pull requests. Unfortunately, the paper does
not discuss any further energy enhancements of the
applied LEAFACTOR refactorings on the original ap-
plications. While the reported impact is still rela-
tively small, most of the covered patterns are related
to screen/sensors usage that are very specific to mo-
bile applications and cannot be generalized.

Beyond the State of the Art. While energy varia-
tion and measurement errors inherently represent a
serious threat to the accuracy of the previous works
considered in this paper, our results do not contra-
dict observations reported in the context of mobile
applications. Indeed, our study focuses on assessing
the energetic impact of structure-oriented code refac-
torings that have been mined from 7 long-existing
Java desktop projects. While the comparison with
other works that focused os a assessing the ener-
getic impact of a set of code refactoring rules on dif-
ferent scenarios may be not completely fair due to
the eventual differences of the considered refactor-
ing rules and type of applications, we still noticed
that the registered impact for server/desktop applica-
tions of structure-oriented refactorings is usually less
than 5% (Jae-Jin Park et al., 2014) (Moreira et al.,
2020) and sometimes not even stable (W G P Silva
et al., 2010). This is highly related to the energy vari-
ation (Ournani et al., 2020). Otherwise, code refac-
torings can have a different impact on mobile ap-
plications as discussed by Palomba et al. (Palomba
et al., 2019), Linares-Vasquez et al. (Linares-Vásquez

et al., 2018) Iannone et al. (Iannone et al., 2020) and
Agolli et al. (Agolli et al., 2017), as they can directly
impact alternative hardware resources, such as the de-
vice display and sensors, with a more effective impact
on energy consumption. Yet, we propose an empirical
methodology to analyze the impact of refactorings on
the energy consumption of any software. We thus be-
lieve that our methodology would deserve to be con-
sidered in the context of server applications in order to
assess more specific code refactorings applied along
the lifespan of such software systems.

5 THREATS TO VALIDITY

There are a couple of issues that can impact the ac-
curacy of our results. First, our analysis highly de-
pends on the REFACTORINGMINER tool and its abil-
ity to extract every single occurrence of each of the
55 refactorings it supports. Moreover, there are some
other refactorings, not listed among the 55, that have
not been extracted and thus considered in our study,
especially those related to implementation and com-
putation details and those that cannot be discovered
automatically. During our experiments, we use Intel
RAPL to measure energy consumption. It is one of
most accurate tools to measure CPU and DRAM en-
ergy consumption (Desrochers et al., 2016), but only
reports on the global energy consumption, which in-
cludes the OS and the other processes running with
the software system under study. We thus conducted
experiments on a minimal OS setup and disabled
all optional daemons and services, along with other
guidelines and best practices in order to reduce the
error margin and the CPU energy variation to the min-
imum (Ournani et al., 2020).

We also focused on running benchmarks that last
for many seconds (around 150 sec for Gson, 450 sec
for XStream, 330 sec for OkHttp, 290 sec for Google-
Http, 780 sec for JGraphT, 720 sec for JFlex, and
600 sec for Eclipse Collections), so we can obtain
trustful and robust evaluations of the potential impact
of changes between commits with an overall continu-
ous execution time of experiments that exceeded 100
hours.

The manual steps in our study remain the design
of the JMH benchmarks and some checks of the git
diffs. In the first case, we tried to write benchmarks
that stress the main purpose or functionality of each
project, so we can ensure that the comparison is based
on the same functionalities that are available on all
commits and versions. While this is moderately easy
for some projects, such as Gson or XStream, it is
much more complicated for other projects, such as
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Eclipse Collections where many collections and op-
erations are available and can change. We tried in
this case to cover many functionalities that are avail-
able in most commits, even if it requires some ad-
justments and adaptation when projects are restruc-
tured / reorganized between versions. Regarding git
diff, we gave the major importance to the commits
with the most impact, as it is not possible to metic-
ulously check all the changes on all the selected com-
mits. Another threat may be related to our selection
of the commits with the most refactoring to have a
reasonable execution time. Even if selected commits
are most likely to be the most impactful. It results in
a low number of selected commits among the global
set of commits.

6 CONCLUSION

This paper describes an investigation of the effective
impact of code refactoring on software energy con-
sumption. We analysed 7 open-source Java projects
and extracted 55 possible types of refactorings over
all the commits, with more than 10k commits. We
then selected the commits with the most refactorings
and evaluated the impact that could had those refac-
torings on the energy consumption. This process en-
sures the evaluation of the effective impact that refac-
toring has for established projects that have existed
for at least 5 years.

Overall, our results showed that structure-oriented
refactorings have no substantial impact on the en-
ergy consumption on Java server-side software. This
means that structure-oriented code refactorings can
be safely applied to improve the maintainability and
readability of source code with no significant penalty
on the energy consumption of Java projects. When it
comes to reducing software energy consumption, we
believe that developers’ efforts should be directed to-
wards other software aspects and implementation op-
timizations rather than structure-oriented refactoring,
such as data structures, used algorithms, I/O,etc.For
the Gson project, we noticed that even the commits
with a lot of refactorings have no effective impact on
the evolution of software energy consumption. How-
ever, the energy consumption of the Json serializa-
tion/deserialization features decreased by 4-fold in 3
years and 5-fold in 12 years. This highlights that the
reduction in energy consumption of the project over
time, is not driven by refactorings.

We believe that our approach can also be used to
study/discover other refactoring rules, and extend our
results to alternative projects, maybe for other lan-
guages than Java. Most importantly, this should mo-

tivate future works to validate that refactorings can be
safely applied with no side effect on energy consump-
tion, yet investigate the commits and the nature of
code changes that increase/decrease energy consump-
tion.
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