Involving Humans in the Cryptographic Loop: Introduction and Threat
Analysis of EEVEHAC

Julius Hekkala!, Sara Nikula', Outi-Marja Latvala! and Kimmo Halunen??
YWTIT Technical Research Centre of Finland, Kaitovayldi 1, Oulu, Finland
2University of Oulu, Faculty of Information Technology and Electrical Engineering, Oulu, Finland

3 National Defence University, Department of Military Technology, Helsinki, Finland

Keywords:

Abstract:

Human Understandable Cryptography, Visualizable Cryptography, Narrative Authentication, Secure Channel.

Our digital lives rely on modern cryptography that is based on complicated mathematics average human users

cannot follow. Previous attempts at adding the human user into the cryptographic loop include things like
Human Authenticated Key Exchange and visualizable cryptography. This paper presents our proof-of-concept
implementation of these ideas as a system called EEVEHAC. It utilizes human capabilities to achieve an end-
to-end encrypted channel between a user and a server that is authenticated with human senses and can be used
through untrusted environments. The security of this complete system is analyzed. We find that the combina-
tion of the two different systems into EEVEHAC on a theoretical level retains the security of the individual
systems. We also identify the weaknesses of this implementation and discuss options for overcoming them.

1 INTRODUCTION

Modern cryptographic systems protect users and ser-
vices from many threats such as loss of confidential
information or unauthorized access. However, for the
human end users these cryptographic protections are
opaque and it is very hard for them to gain informa-
tion on whether the cryptographic protocol has been
correctly executed in human understandable terms.

There are many methods that could provide some
human understandable elements to cryptography, e.g.,
visual cryptography (Naor and Shamir, 1994). But,
there is more to trusting cryptography than visually
decrypting some outcomes. For example, key gen-
eration and exchange are important procedures that
have great impact on the security of a system, and
human-compatible functions (Boldyreva et al., 2017)
provide first solutions to this problem. An interested
reader can read a recent review by Halunen and Lat-
vala (2021) for more examples of cryptography and
human abilities.

Despite the promising developments on individual
components that try to make cryptography more hu-
man friendly, there has not been a complete system
that combines all the needed aspects for an encrypted
communications channel. In this paper we introduce
and provide a threat analysis of EEVEHAC (End-
to-End Visualizable Encrypted and Human Authen-

Hekkala, J., Nikula, S., Latvala, O. and Halunen, K.
Involving Humans in the Cryptographic Loop: Introduction and Threat Analysis of EEVEHAC.
DOI: 10.5220/0010517806590664

ticated Channel), a system that combines Human Au-
thenticated Key Exchange (HAKE) (Boldyreva et al.,
2017) and a visualizable encryption scheme (Forte
et al., 2014). Even though these concepts have been
studied in former papers, no papers discussing them
as an integrated system have been published.

The paper is organized as follows. Section 2 con-
tains an overview of the whole system, and a threat
model for the whole system is presented. In section
3, the HAKE utilising stories and colors and its threat
analysis is presented. Section 4 covers the visualiz-
ably encrypted channel, threats related to it and its
security analysis. Section 5 includes security analysis
of the whole EEVEHAC system. Finally, discussion
and conclusion sections close our paper.

2 OVERVIEW OF EEVEHAC

EEVEHAC utilizes HAKE by Boldyreva et al. (2017)
in establishing keys between a server and a mobile
device. The keys are used in visualizable encryption,
which is utilized in establishing a secure channel be-
tween the human user and the server, via an untrusted
terminal. This channel can be used for, e.g., perform-
ing a simple PIN authentication. Figure 1 presents
a schematic overview of the EEVEHAC system and
Figures 2 and 4 showcase our implementation.

659

In Proceedings of the 18th International Conference on Security and Cryptography (SECRYPT 2021), pages 659-664

ISBN: 978-989-758-524-1

Copyright (© 2021 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

SECRYPT 2021 - 18th International Conference on Security and Cryptography

P e shouldersurfing o "attacker carris}s
1 l ' the message
HAKE HAKE
user AR device server
Step 2 [Sl v

. PAKE

(]
Step 3 vt ' denial of service - Sl

L —visual channel- — l7 visual channel— -

untrusted
terminal
end-to-end visualizable encrypted and
human authenticated channel

Figure 1: Overview of the EEVEHAC system. Steps 1 and
2 cover the first part (HAKE) of the system. The third step
covers the second part of the system, i.e. the visualizable
encryption scheme. An attacker may be physically present
or online in the connection to the server.

In Figure 1 we have depicted a trusted user’s device,
that has a camera and a screen for augmented real-
ity (AR) purposes, a server, and an untrusted terminal
in a public space. A story database and the keys for
the visualizable encryption scheme are stored on the
user’s device and on the server. There are three actors:
the user, the server and an attacker.

The objective of the user is to log into the service,
the server’s is to allow legitimate users to log in. An
attacker’s objective is to steal the user’s credentials.
There are two types of keys the attacker could ob-
tain: the long term keys generated during the HAKE
phase and the short term session keys used with the vi-
sual channel. The long term keys are more valuable.
Threats towards the server are ruled out of scope.

We assume that the user’s device is trusted: there
is no malware and no one else can access it. The pub-
lic device is untrusted: it may have malware, anyone
can access it and actions on it are visible to onlookers.
The server is neutral: there are no protocol violations.
The story database needed for the first step is public,
but the color mapping for each user is secret. Com-
munication between the public device and the server
is unsecured and there is only a visual channel be-
tween the public device and the user’s device.

The threat model used in this paper is based on the
well-known Dolev-Yao model (Dolev and Yao, 1983).
This model has several parties using the same com-
munication protocol: All messages are encrypted, and
only the legitimate receiver possesses the decryption
key. Anyone can read, copy and resend messages and
anyone can write and send forged messages. The at-
tacker is a legitimate user of the communication net-
work trying to obtain the original plaintexts.

660

Jakaude rakti olio valmisti
illallista s ajalle kuola valuen.

arvosteli

Aivan ylléttaen auringonkukka parturoi
leipaveista

Mutta sotkan muna ihaili postimiesta
nakkikio:

UAN code should be 4 digits long at this point

o =y

QUIT AND RETURN

Figure 2: Inserting the UAN code in our implementation.

In our scenario, an attacker on the Internet is able to
see and manipulate messages between the user’s de-
vice and the server, as well as the untrusted terminal
and the server. This is depicted as the attacker car-
ries the message” -figurine in Figure 1. An attacker
present on the use location may be able to see critical
information on the personal device, or be able to dis-
rupt the visual channel by, e.g., standing in the way
(’shouldersurfing” and “’denial of service”).

3 HAKE FOR EEVEHAC

Boldyreva et al. (2017) present the Human Authen-
ticated Key Exchange protocol, a new type of inter-
action between a human user and a server. The user
receives a challenge from a server, computes the an-
swer in their head and responds. The messages sent
need to be human readable or human writable, and
the mathematical operations human computable.

The value of including this protocol in our system
is that it involves the human user in the authentica-
tion phase at a new level. In contrast to traditional
cryptographic protocols, the human user can compute
the answer in their head and thus it should be clear
to them why the authentication protocol succeeded,
increasing trust towards the system and further inter-
actions between the user and the server.

3.1 Our Implementation

HAKE in EEVEHAC is the Basic Generic HAKE
protocol by Boldyreva et al. (2017). For the Password
Authenticated Key Exchange (PAKE) part of the pro-
tocol we used the Encrypted Key Exchange (Bellovin
and Merritt, 1992). The result of the human under-
standable function is used in PAKE to encrypt the first

Involving Humans in the Cryptographic Loop: Introduction and Threat Analysis of EEVEHAC

messages sent between the client and the server.

Our HAKE schema is based on a story and a map-
ping between colors and numbers. First, the user and
the server establish a long time secret as the user reg-
isters to the service. In this phase, the user gets a story
and an identifying user number. Basis of the story is
automatically generated by the server, but the user can
modify it, balancing the strengths and weaknesses of
machine and human generated stories. Machine gen-
erated stories are random and hard to guess, whereas
human generated stories are easier to remember (So-
mayaji et al., 2013).

The user also gets a color-to-number mapping,
which includes six numbers corresponding to six col-
ors in our implementation. The colors are the same
for every user, but the numbers vary between users.
The user needs to memorize this secret mapping in
order to use it in every authentication session in the
future.

In the login phase, the user sees colored, gram-
matically correct sentences on the screen of their de-
vice (Figure 2). Some of the sentences come from
the original story, but one word has been changed in
them. The user detects the changed words and notes
their colors. Next they recall the corresponding num-
bers and count modulo 10 of the sum of these num-
bers. The result is entered in the Unique Authentica-
tion Number (UAN) sequence. These steps are iter-
ated as many times as is the length of the UAN.

3.2 Threat Model of HAKE

The goal is that the user can establish a secure channel
with the server based on their knowledge of the long
time secret: the user and the server exchange keys for
subsequent phases, and nobody else has knowledge
of these keys. The long time secret should not be re-
vealed even if an attacker sees some challenges and
responses in a key exchange session.

The threat model assumes that there is a human
computable function, and a channel between the user
and the server is established by applying this function
to the challenges and answering them correctly. Our
HAKE protocol consists of sum and modulo opera-
tions based on the user’s story and color-to-number-
mapping. A secure HAKE protocol should not re-
veal the long term secret even if a limited number of
challenge-response-pairs were leaked. Furthermore,
the attacker should not be able to build a connec-
tion with the server by impersonating the user, or vice
versa, without knowledge of the long time secret.

In the registration phase, there is a risk of a man-
in-the-middle attack. Since the registration is con-
ducted on a computer with Internet connection (e.g.

TLS) to the server, threats concerning it are the same
as with any communication over the Internet.

If an attacker can obtain the long term key via
breaking the HAKE protocol, the visual channel be-
tween the user and the server would no more be se-
cure. Our threat model related to this case has ele-
ments similar to presented by Boldyreva et al. (2017).
We consider two types of attacks: a brute force at-
tack, where an attacker tries to complete the protocol
by guessing, and a man-in-the-middle attack, where
an attacker is eavesdropping on a real authentication
session. In the latter case, the attacker can try to fig-
ure out the long time secret by numerically analyzing
challenges and responses. In this case, an attacker can
also modify the messages sent by the server, to try to
derive even more information about the long time se-
cret.

3.2.1 Security Analysis of HAKE

Currently, whoever possesses the user number can ask
for challenges from the server. Because the server
only modifies the clauses in the user’s story by chang-
ing one word at a time, after seeing 2 or 3 authen-
tication sessions it becomes easy to infer the origi-
nal story. Thus, the security of the UAN protocol is
based solely on the color-to-number mapping. Be-
cause this protocol is executed only rarely, we ex-
pect that the user can make sure the environment is
safe (e.g., by doing it at home). However, we will
go through a scenario where a shoulder surfer is able
to see some challenge-response -pairs in a UAN ses-
sion, and analyze their possibilities to break the pro-
tocol. Moreover, an active attacker can be more ef-
ficient than a passive one, since they can pick opti-
mal challenges to get the most information out of the
challenge-response-pairs.

Every UAN code consists of four digits. Thus the
probability that an adversary can, if only given one
pure guess, correctly guess the UAN code is 1,/10000.
Considering the color-to-number mapping, there are
in total 6'° possible mappings between six colors and
ten numbers. Thus, the probability that an adversary
can correctly guess the mapping without any addi-
tional information is 1/(6'°).

An attacker listening to messages sent in one or
more UAN sessions can derive information of the
long time secret either by constructing a list of cor-
rect answers corresponding to a specific color combi-
nation, or by trying to figure out the secret color-to-
number-mapping. With n different colors, it is possi-
ble to make n(n — 1)/2 + n combinations; n(n —1)/2
combinations of two different colors and all n colors
combined with themselves. In our implementation,
there are six colors and 21 possible color combina-

661

SECRYPT 2021 - 18th International Conference on Security and Cryptography

tions. After seeing challenges and responses in one
UAN session, an attacker would have seen approxi-
mately 4 different color combinations, and 17 remain
unknown. To successfully impersonate the user, an at-
tacker would need information on all the asked color
combinations in the four challenges sent by the server.
The probability that all four challenges in the next
UAN session only include color combinations already
seen by an attacker is (x/(n* (n—1)/2+n))*, where
x is the amount of different color combinations seen
by an attacker and 7 is the amount of colors.

Another way to break the UAN protocol is to de-
rive information about the color-to-number-mapping
by comparing challenges and responses. Because the
user is counting modulo 10 of the sums, every digit
entered in the UAN code can be derived from two
different numbers, e.g. 3mod10 = 13mod 10 = 3.
For every such number pair there are five combina-
tions of two different numbers which result to this
number when summed together: e.g., 548 = 13 and
340 = 3. In order to make use of this information
in subsequent authentication sessions, the adversary
must not only know which two numbers were added
together but also which color corresponded to which
number. In this case every pair of numbers can be
derived from two different mappings, e.g., red = 5
and green = 8 or vice versa. Because there were five
possible number combinations yielding the outputted
digit and two possible mappings per one combination,
one answer to a challenge including two different col-
ors can be derived from ten different color-to-number
mappings. This is illustrated in Figure 3a. The case
with one color seen twice is illustrated in Figure 3b.

4 VISUALIZABLE CHANNEL

The second part of EEVEHAC is an end-to-end visu-
alizably encrypted channel. For this purpose, EEVE-
HAC implements EyeDecrypt (Forte et al., 2014).
The original model consists of a user’s personal de-
vice with the app installed, a server and an adversary.
Data moving in the visualizably encrypted channel is
divided into frames and blocks. A frame represents
the contents shown on the screen of the untrusted de-
vice at one point of time and is divided into multiple
blocks. In our implementation a frame contains six
blocks (QR codes in 3x2-grid).

According to the model, an adversary can manip-
ulate the untrusted device and also shoulder-surf. Ac-
tive adversaries can manipulate the communication
between the server and the untrusted device and thus
deploy e.g. man-in-the-middle attacks, while passive
adversaries observe the user’s inputs and the screen

662

of the untrusted device. Forte et al. (2014) define the
security of EyeDecrypt in terms of how much infor-
mation can leak from the system to the adversary: the
visual representation of the current frame, any user
input or information gained from active tampering.

Forte et al. (2014) also formally define visual-
izable encryption and its security proof. Because
EEVEHAC includes the whole EyeDecrypt scheme,
we assume the security proofs presented in the paper
hold for the visualizably encrypted end-to-end chan-
nel part of EEVEHAC. EyeDecrypt requires a visual
encoding scheme that fulfills certain requirements:
the visual encoder needs to encode a single unit of
code in a single block, the system must be able to de-
crypt multiple blocks at once and know and interpret
the spatial arrangement of the blocks.

4.1 Our Implementation

In our proof-of-concept implementation, the un-
trusted device and the trusted server run on the same
laptop. For the user’s trusted device, we used a smart-
phone. After completing the HAKE phase the server
and the user’s smartphone have matching AES (Dae-
men and Rijmen, 2002) and HMAC (Krawczyk et al.,
1997) keys that are used to encrypt and decrypt mes-
sages as well as to authenticate the server’s messages.

The server sends the encrypted messages to the
untrusted device, which shows them in their respec-
tive positions in the Ul grid as QR codes. The user
scans them with the smartphone camera. When the
application recognizes all 6 QR codes simultaneously
in a single frame of the camera feed, it starts process-
ing the QR codes. The application checks the posi-
tions of the QR codes: incorrect positions are indi-
cated to the user with red frames on the QR codes in
the camera view. Correct positions are indicated with
green frames, see Figure 4. If the messages are uncor-
rupted, the application can decrypt them correctly and
show the plaintext to the user in the camera view on
top of the QR codes. If the application cannot decrypt
the ciphertexts to understandable messages, the user
can see that something has gone wrong.

5 SECURITY ANALYSIS

This section contains security analysis of the whole
EEVEHAC system. We consider both active and pas-
sive attacks. Active attacks include things like copy-
ing or forging messages, while a passive attacker only
observes the user and service provider.

An active attacker could try to impersonate the
user or the server. If they manage to break the HAKE

Involving Humans in the Cryptographic Loop: Introduction and Threat Analysis of EEVEHAC

3

/Mouw\

\ Sum /

6 2+2

T+7

2| |2 slf| lef
ol] B

(a) Using two different colors

2 2 7 7

(b) The same color used twice

Figure 3: Example cases of deriving numbers for UAN.

.4 44%811.14

Figure 4: Scanning QR codes in our implementation.

protocol they would gain access to a new long term
key that is used in encrypting the messages in the
second phase. The acquired key would be different
than the long term key previously used between the
user and the server. A resulting mismatch between
the server and user keys means that the second phase
is unsuccessful, alerting the user to something be-
ing wrong and re-doing the HAKE phase. Moreover,
messages sent before the impersonation cannot be de-
crypted with short term session keys derived from the
new long term key. If the impersonation attack is
successful simultaneously in both directions and the
HAKE protocol is broken, all three parties would have
the same long term key, and EEVEHAC is defeated.

If the attacker acquires an established long term
key on the user’s device, they could examine all mes-
saging between the user and the server without alert-
ing either party and the EEVEHAC system would not
work. This could be done by planting malware on the
user’s device. However, this contradicts our original
assumption that the user’s device is trusted.

What happens when the long term keys are not
compromised? Now, the attack focuses on the latter
phase of EEVEHAC, which uses short term session
keys and is used more often than the HAKE phase
discussed above.

An attacker is assumed to be able to attach them-
selves between the server and untrusted device and
read and edit the messages. Not sending the messages

forward or replacing them with random data works as
a denial of service. Unless the attacker has access to
the most current AES and HMAC keys, they are not
able to produce coherent messages that would fool the
application in the user’s smartphone.

When the untrusted terminal is used in a public
space, we assume that a shoulder surfer can see all the
blocks in the frames and what inputs the user makes.
The decrypted data, however, is only visible on the
user’s device. If the attacker wanted to see it they
would need to be very close to the user, risking detec-
tion. If EEVEHAC was run on a futuristic AR device
like smart glasses, risk of shoulder surfing would be
minimal.

6 DISCUSSION

The security analysis of the HAKE part of EEVEHAC
revealed that the security level of the current imple-
mentation is poor. There are at least two options for
improving it: adding more colors or making the user-
specific story secret.

Increasing the number of colors from 6 to 10
would increase the number of possible color combi-
nations from 21 to 55. However, this might not be
user friendly: it would be more difficult to learn the
mapping, and there is a limited number of clearly dis-
tinguishable colors available. The color choices need
to take into account visual impairments and the fact
that different devices display color differently. The
calculations involved in the HAKE phase might also
disadvantage some people.

Protecting the user-specific story would increase
the computational difficulty of breaking the UAN pro-
tocol: an eavesdropper seeing clauses on the screen
would no longer know which colors are added to-
gether, because they would not know which words

663

SECRYPT 2021 - 18th International Conference on Security and Cryptography

are wrong. In the current implementation, one chal-
lenge in the UAN protocol includes four clauses on
the screen, one clause includes five words, and there
are six colors in use. Thus, an attacker would need
to consider several possible color combinations at ev-
ery response. They would be able to break the color-
to-number mapping only by seeing several successful
UAN protocols, which is highly unlikely, because the
protocol is conducted rarely and it is assumed that the
surroundings are safe.

Using a personal word database might make it eas-
ier for a human user to remember the story, if they
were allowed to add some new words of their choice
to be used in the story upon registering to the service.
On the other hand, that could also be a risk: many
users would probably pick personal or otherwise devi-
ating words, which would be easy to spot when shoul-
der surfing.

Using more advanced techniques in story gener-
ation phase might be advantageous. In the current
implementation, even though the clauses are gram-
matically correct, the result is not very coherent or
meaningful. By utilizing technology such as GPT-3
(Brown et al., 2020), which is capable of producing
texts resembling human-generated ones, it would be
possible to make the story memorable and still main-
tain its randomness.

For the visual channel, we would recommend us-
ing a visual encoding scheme different from QR codes
in a real use scenario. QR codes cannot be placed
as densely as other visual encoding schemes, as they
require “free zones” around them. With some other
visual encoding scheme, the GUI could achieve a
cleaner look as well.

Performance of the application is also important.
The user needs to be able to view a whole frame at
once, and the application needs to be able to decipher
the picture. With bigger QR codes the application rec-
ognizes the elements more easily, improving the per-
formance. When developing an application like this
for real users, usage optimization and achieving high
enough framerate are extremely important. No one
will use the application if the camera view lags visi-
bly or if the application has great difficulties scanning
the frame. Finally, if the system was implemented on
smart glasses, the GUI and application performance
would need their own consideration.

Next step for our work on EEVEHAC is usability
testing. The usability of the first phase of HAKE can
be compared to other results on the usability of human
computable functions. The second phase has few di-
rect comparisons, but its usability can be analyzed by
how much physical effort it takes to use the devices.

664

7 CONCLUSIONS

In this paper, we presented the EEVEHAC (End-to-
End Visualizable Encrypted and Human Authenti-
cated Channel) system. The main purpose of EEVE-
HAC is to involve the human user in the cryptographic
process in order to enhance understanding and trust in
the digital systems that are a crucial part of our every-
day lives. Our security analysis indicates that EEVE-
HAC can achieve as high a security level as its in-
dividual parts. Our proof-of-concept implementation
is not secure enough for real world usage but imple-
mentations of EEVEHAC can easily be modified to
achieve higher security.

REFERENCES

Bellovin, S. M. and Merritt, M. (1992). Encrypted key ex-
change: Password-based protocols secure against dictio-
nary attacks. In Proceedings of the 1992 IEEE Sympo-
sium on Security and Privacy, SP 92, page 72, USA.
IEEE Computer Society.

Boldyreva, A., Chen, S., Dupont, P.-A., and Pointcheval, D.
(2017). Human computing for handling strong corrup-
tions in authenticated key exchange. In Computer Se-
curity Foundations Symposium (CSF), 2017 IEEE 30th,
pages 159-175. IEEE.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, 1., and Amodei, D. (2020).
Language models are few-shot learners.

Daemen, J. and Rijmen, V. (2002). The design of Rijndael,
volume 2. Springer.

Dolev, D. and Yao, A. (1983). On the security of public
key protocols. IEEE Transactions on Information The-
ory, 29(2):198-208.

Forte, A. G., Garay, J. A., Jim, T., and Vahlis, Y. (2014).
EyeDecrypt—private interactions in plain sight. In Inter-
national Conference on Security and Cryptography for
Networks, pages 255-276. Springer.

Halunen, K. and Latvala, O.-M. (2021). Review of the use
of human senses and capabilities in cryptography. Com-
puter Science Review, 39:100340.

Krawczyk, H., Bellare, M., and Canetti, R. (1997). HMAC:
Keyed-hashing for message authentication.

Naor, M. and Shamir, A. (1994). Visual cryptography. In
Workshop on the Theory and Application of of Crypto-
graphic Techniques, pages 1-12. Springer.

Somayaji, A., Mould, D., and Brown, C. (2013). Towards
narrative authentication: Or, against boring authentica-
tion. In Proceedings of the 2013 New Security Paradigms
Workshop, pages 57-64.

