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Abstract: Many technologies in complex system simulation (CSM), such as resource scheduling and load balancing, 
largely rely on historical data with different characteristics to predict the future. The accuracy of runtime 
prediction has a significant impact on scheduling performance. However, with cloud computing becoming 
the main infrastructure for deploying CSM applications, the current prediction methods are difficult to adapt 
to the dynamic changes of cloud computing resources. Insufficient computing resource allocation will be 
difficult to support the efficient operation of simulation. In addition, excessive computing resource allocation 
will lead to higher computing and data communication costs. Therefore, a simulation runtime prediction 
approach based on stacking ensemble learning has been proposed, which uses the characteristic variables of 
simulation applications (such as the number of simulation entities, the number of simulation events, the 
simulation time, etc.) and the performance monitoring data of computing resources (such as CPU utilization, 
memory utilization, etc.) as the characteristic inputs. The machine learning algorithms such as XBG, SVG, 
MLP are integrated by stacking model, and the performance of the integrated learning algorithm is 
comprehensively evaluated by mean absolute error (MAE), accuracy (ACC), root mean square error (RMSE) 
and coefficient of determination (R2). Experimental results show that the proposed algorithm improve the 
prediction accuracy by 3% - 24% when compared with existing machine learning prediction methods. 

1 INTRODUCTION 

Complex system simulation (CSM) is widely used in 
system evaluation and analysis in the fields of social 
and biological networks, military training, and war 
games (Fujimoto et al. , 2017; Haken, 2006). In CSM, 
the simulation models are partitioned onto logical 
processes (LPs, also called simulation entities) and 
exploits the parallelism present in the LPs to improve 
the performance. With the increase in the scale of 
CSM applications, interaction between entities has 
become very complex, which leads to irregular 
workloads and communication loads, and reduces the 
operating efficiency of the underlying infrastructure 
(Fujimoto, 2016). In addition, in order to cope with 
the huge workload changes and to reduce simulation 
runtimes, a powerful computing infrastructure is 
required for perform efficiently. Unlimted computing 
resources for most organizations are difficult 
considering budget constraints. Therefore, a flexible 
infrastructure deployment mechanism is needed, 
which can allocate resources according to the 
computing requirements of applications. 

Cloud computing provides a good target 
environment for the above challenges, which can 
realize the collaborative management, on-demand 
sharing, and flexible scheduling of resources such as 
computing/network/software/models, and meet the 
requirements of CSM for general computing power 
and efficient operation (Fujimoto, Malik, & Park, 
2010). In order to utilize this environment, we 
monitor and collect application performance in real 
time during the execution of simulation applications, 
so as to perform real-time resource scheduling in the 
cloud environment and reduce the overall deployment 
cost (D’Angelo & Marzolla, 2014).The resource 
scheduling process largely relies on the estimation of 
task runtime to make decisions (D’Angelo & 
Marzolla, 2014). However, traditional methods are 
difficult to predict the runtime of applications in the 
cloud environment because of the continuous 
requirements changes for computing resources 
caused by the different life cycles of simulation 
entities. If too few resources are allocated to the 
application, it will be difficult to support the efficient 
operation of the application; if too many resources are 
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allocated to the application, it will not only increase 
the communication overhead between different node 
entities, but also cause unnecessary waste of 
resources (Liu et al., 2012). Therefore, how to 
accurately predict the execution time of simulation 
application in a cloud environment and achieve 
efficient resource allocation of complex system 
simulation application is a challenging task. 

In response to the above problems, this paper 
models the prediction problem as a regression 
function that depends on the static feature input 
before the simulation application runs and the 
dynamic feature input at run time, and proposes an 
integrated learning method based on stacking to 
predict the execution time of the simulation 
application in a specific cloud computing 
environment, so as to achieve efficient resource 
management for the cloud simulation application. 

The main contributions of this article are as 
follows: 

1. A set of parameters is designed to represent the 
characteristics of simulation application in cloud. The 
prediction process uses the following parameters as 
inputs: (1) the characteristic parameters that need to 
be set before simulation execution (such as the 
number of simulation entities, the number of events, 
etc.) and (2) the execution parameters collected by the 
monitor (such as CPU utilization, memory utilization, 
etc.). 

2. A simulation runtime prediction algorithm 
based on stacking ensemble learning (SRPAS) is 
proposed. Compared with linear regression, multi-
layer perceptron, regression tree, random forest and 
other machine learning methods, our algorithm can 
improve the accuracy and reduce the error rate. 

The rest of this paper is arranged as follows: 
Section 2 introduces related work. In Section 3, the 
proposed prediction algorithm is introduced. Section 
4 introduces the experiments and results of this work. 
Section 5 introduces conclusions and future work. 

2 RELATED WORK 

Cloud-based simulation is regarded as a special 
Software-as-a-Service (SaaS) that combines the 
advantages of Web services and cloud computing 
technology to manage various M&S resources and 
build different simulation environments(Bocciarelli 
et al., 2017). However, the uncertainty of resource 
sharing in cloud environment may lead to the 
degradation of simulation application performance 
(Kurt, Silas, & Jan, 2012). To solve this problem, it is 
recognized that a better solution is to use machine 

learning prediction methods to improve the 
adaptability of simulation applications in the cloud 
environment. For example, linear regression LR (Lee 
& Schopf, 2004; Seneviratne & Levy, 2011), nearest 
neighbor KNN (Hui, Groep, & Wolters, 2005), 
regression tree (Miu & Missier, 2012), support vector 
machine  (Matsunaga & Fortes, 2010), extreme 
gradient boosting (Chen, He, & Benesty, 2016) and 
so on. Yang (Yang et al., 2014)  proposed a linear 
regression model to predict the workload in the cloud, 
and proposed a greedy heuristic algorithm to achieve 
the scalability of cloud services. Cetinski (Cetinski & 
Juric, 2015) proposed an advanced model for efficient 
workload prediction in the cloud environment. By 
analyzing the characteristics of the workflow in the 
cloud, the random forest algorithm is applied to solve 
the workload prediction problem. Rahmanian 
(Rahmanian et al., 2018) proposed a prediction 
algorithm based on learning automata to predict the 
use of cloud resources, and experiments on the 
CoMon project data set proved the effectiveness of 
the algorithm. In order to cope with the ever-changing 
cloud resource demand, Kaur(Kaur, Bala, & Chana, 
2019) proposed an intelligent regression integrated 
prediction method, which combines feature selection 
and resource prediction technology to obtain high 
accuracy. Kim (Kim, Wang, Qi, & Humphrey, 2020) 
designed an online mechanism to predict workflow 
load in a cloud environment. This mechanism 
accurately estimates the relative accuracy of each 
predictor in the next time interval by using multi-class 
regression, so as to accurately predict the actual 
workload. 

Although some models have been used to predict 
the runtime of applications, most of these are for 
highly parallelizable tasks (such as parallel tasks, 
video, etc.) in the cloud. Due to the simulation 
application will perform frequent synchronization 
during execution and send/receive a large number of 
messages, it is difficult to decompose the simulation 
application into independent subtasks. On the one 
hand, these prediction methods do not consider the 
characteristics of simulation applications in the cloud 
environment; On the other hand, the method based on 
a single predictor is not enough to solve the dynamic 
and burst of cloud workload, and may show poor 
performance for unknown workload patterns. 
Therefore, based on the versatility of the integrated 
model in this field, this paper aims to design an 
integrated algorithm to predict the runtime of 
simulation applications in the cloud environment and 
improve the performance of the simulation 
applications in the cloud environment. 
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3 THE PROPOSED PREDICTION 
APPROACH 

It is well known that the combination of multiple 
models' predictions performs better than a single 
model, and usually significantly reduces the variance 
of the final prediction results (Dietterich, 2000). 
Ensemble learning involves merging multiple 
prediction results from different learning algorithms 
to create stronger predictor and achieve more accurate 
forecast results. Figure 1 shows the implementation 
process of the proposed simulation runtime prediction 
algorithm based on stacking ensemble learning 
(SRPAS). 
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Figure 1: The schematic diagram of the runtime prediction 
algorithm. 

3.1 Dataset Generation 

To monitor and collect the real-time running 
information of the simulation application accurately, 
the resource monitoring program is deployed on the  
 

Table 1: Parameter description. 

parameters Feature Description 

Pre-run 
parameters

CPU core CPU cores allocated for a 
simulation application. 

Entity Number of simulation 
objects 

events Number of events generated 
by per simulation object 

LA Lookahead 
Tend Simulation runtime 

runtime 
parameters

CPU usage 
Percentage of CPU  
(including average, 
maximum and minimum) 

Memory 
Bytes of memory (including 
average, maximum and 
minimum) 

I/O 
File system usage 
(including average, 
maximum and minimum) 

Network-r 

Bytes of data received by 
the network(including 
average, maximum and 
minimum) 

Network-s 
Bytes of data sent by the 
network(including average, 
maximum and minimum) 

Network 
delay Communication delay 

cloud computing nodes, and two sets of parameters 
are considered to evaluate the performance of the 
application:(1) pre-run parameters and (2) run-time 
parameters. The pre-run parameters are determined 
before the execution of the simulation application, 
including the number of computing nodes, the 
number of simulation entities and events, the look 
ahead value and the simulation times. Run-time 
parameters reflect the performance of simulation 
applications under different cloud resources. The 
parameters are collected during the execution of 
simulation applications, including CPU utilization, 
memory utilization, network throughput, network 
latency, and file system utilization. The monitor 
collects data every 5 seconds and stores it into the 
database as feature data after preprocessing. Finally, 
the research problem turns into how to combine these 
feature data with machine learning model to 
accurately predict the runtime of simulation. The 
specific parameters are shown in Table 1. 

3.2 Selection of Prediction Model  

Single machine learning model has limitations in 
meeting the requirements of complex tasks. By 
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combining multiple basic models, the integrated 
model can achieve better performance than single 
model (Cruz, Sabourin, Cavalcanti, & Ren, 2015). 
However, not all basic models have a positive impact 
on the performance of the integration model. 
Therefore, we use 10 kinds of machine learning 
prediction models automatically adjusted by 
gridsearch, and find the model combination with the 
highest score (R2) based on the model selection 
process. The specific model and parameters are 
shown in Table 2. 

Table 2: Machine Learning Models. 

Model Method Used Tuning Parameters 

ETR ExtraTree 
n_estimators=100， 
max_depth=None 

KNG K-Nearest 
Neighbor n_neighbors=7 

LR linear 
regression alpha=0.5 

RF Random 
Forest 

n_estimators=100，
max_depth=None 

XBG 
Extreme 
Gradient 
Boosting 

learning_rate=0.1，
max_depth=4 
n_estimators=200 

DT DecisionTree max_depth=5 

MLP Multi-layer 
Perceptron 

hidden_layer_sizes=(100, 
50)， activation='relu', 
solver='adam'，
max_iter=1000 

SVR 
Support 
Vector 
Regression 

kernel='poly', degree=2, 
C=1, epsilon=0.01 

BRR Bridge 
Regression T = 1000, lambda2 = 1 

NN Neural 
Network maxit=100, axNWts=10000 

3.3 Proposed Algorithm 

The integrated model can overcome the shortcoming 
of single basic prediction, and use the interaction 
between basic models to improve the prediction 
ability (Van der Laan, Polley, & Hubbard, 2007). The 
SRPAS proposed in this paper can select the optimal 
subset of the base model according to the data 
characteristics, and further improve the prediction 
accuracy of the integrated model. The specific steps 
are shown in algorithm 1. 

In this algorithm, ModelList contains the list of all 
basic models, ModelSet represents the list of models 
being used for ensemble learning, ModelSet ∈ 
ModelList. BestMSet and BestMScore respectively 
represent the best model combination and the highest 
model score based on the current ModelSet. 

Firstly, Random strategy is used to select a model 
combination from the ModelList, and the stacking 
integration training is started. 

Lines 1 to 9 show that all models in the first layer 
are trained by k-fold cross-validation, and the 
predicted value 𝑃௝ of each model M is output. 

Lines 10 to 12 represent the second layer of 
stacking integration process. In this process, the 
predicted value of the first layer model is used as the 
feature, and the final integrated model is trained after 
fusion with the original feature. 

Lines 13 to 17 represent the model selection 
process. The process evaluates the integrated model 
based on the 𝑅ଶ  value. If the score of the current 
model combination is greater than the best model 
score, the best model combination and the best model 
score will be replaced. Finally, the algorithm returns 
the best model combination and the best prediction 
result as the output. 

3.4 Evaluation Metrics 

Mean Absolute Error (MAE), Accuracy (ACC), Root 
Mean Squared Error (RMSE) and Coefficient of 
Determination (R2) are calculated to evaluate the 
performance of resource prediction models, which are 
defined as follows:  

𝑀𝐴𝐸 = ∑ |𝑦௥௝ − 𝑦௉௝|௡௝ୀଵ 𝑛  (1)

𝐴𝐶𝐶 = 1 − 100%𝑛 ෍ |𝑦௥௝ − 𝑦௉௝|𝑦௉௝
௡

௝ୀଵ  (2)

𝑅𝑀𝑆𝐸 = ඨ∑ (𝑦௥௝ − 𝑦௉௝)ଶ௡௝ୀଵ 𝑛  (3)

𝑅ଶ = 1 − ∑ (𝑦௥௝ − 𝑦௉௝)ଶ௡௝ୀଵ∑ (𝑦௜ − 𝑦௥௝)ଶ௡௝ୀଵ  (4)

Where 𝑦௥௝ and 𝑦௣௝ represents the real and predicted 
values of the j-th sample respectively,  𝑦௥  is the 
average of the true values. 
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Algorithm 1: Proposed algorithm. 
Input：Data(X,Y)，ModelList M={M1，M2， ...，
Mn} 
Output：BestMSet, RuntimePred, BestMScore 

1 For each modelset ∈ modellist   
2 start {frist-layer-stacking} 

3 
Randomly split Data(X,Y) into k chunks {𝑋௝, 𝑌௝}௝ୀଵ௞  

4 For j=1 to k do {k-fold bagging} 
5 For each model m in M do  
6         Training m-model on {(𝑋ି௝, 𝑌ି௝}  
7 Make predictions 𝑃௝ on 𝑋௝ 
8 End for  
9 End for 

10 Choose model 𝑀௜  in M start {two-layer-
stacking} 

11 Train m model on {(𝑋௝, 𝑃௝), 𝑌௝} and Make 
predictions 𝑃௙௜௡௔௟ 

12 End {stacking} 
13 Caculate StackingMScore= R2 
14 If StackingMScore > BestScore then 
15 bestscore← StackingMScore 
16 BestMSet←ModelSet 
17 𝑃௙௜௡௔௟← 𝑃௙௜௡௔௟ 
18 End if 
19 End for  
20 return  {𝑀௜ଵ, 𝑀௜ଶ,... 𝑀௜௥}，𝑃௙௜௡௔௟ 

4 EXPERIMENTAL STUDY 

4.1 Simulation Application Settings 

Phold is usually used as a representative benchmark 
test program for PDES performance evaluation 
(Yoginath & Perumalla, 2015). Therefore, the 
performance of the proposed algorithm is tested by 
the simulation application of Phold, and different 
simulation applications are generated by setting the 
parameters in Table3 to execute in the cloud 
environment. 

4.2 Experimental Setup 

Using real cloud environment monitoring data to 
track and predict the runtime of simulation 
applications will be more convincing. Therefore, this 
paper deploys the simulation application in a real 
cloud environment built by the open container engine 

docker, and uses container virtualization technology 
to build eight docker container nodes on two 
computing nodes. Each docker container node is 
configured with a 3.40 GHz Intel Core i5-7500 CPU 
core and 4GB of memory. In this paper, the 
simulation application is executed on YH-SUPE, and 
resources are reallocated for the simulation 
application according to the predicted results. The 
proposed prediction model is evaluated on two 
desktop computers with 3.40 GHz Intel (R) core (TM) 
i5-7500 CPU and 16GB RAM based on Python 3.5 
programming environment. 

4.3 Experimental Results and Analysis 

4.3.1 Feature Selection 

Feature selection, as a data preprocessing strategy, 
has been proven effective in data for various data 
mining and machine learning problems. The purpose 
of feature selection is to build a simpler and easier to 
understand model and improve the performance of 
the model (Tang, Alelyani, & Liu, 2014). Feature 
extraction generally applies mathematical methods to 
map data from high-dimensional feature space to low-
dimensional feature space, which transforms the 
original features that cannot be recognized by 
machine learning algorithm into new features that can 
be recognized. However, we have observed that the 
data features in the simulation application log data set 
are all expressed in numerical form and do not need 
to be converted. Therefore, we can apply feature 
selection methods to remove irrelevant features, 
select strongly related features and weakly related but 
not redundant features to minimize the occurrence of 
errors and build a more accurate prediction model. in 
this paper, we use embedded feature selection method 
to rank the importance of features(Li et al., 2017). As 
shown in Figure 2, these features are input into the 
prediction model. 

Table 3: Parameter configuration. 

Parameters value 

Number of simulation objects [10,200] 

Number of events generated by 
per simulation object [10,100] 

Simulation run time 1000 

Time synchronization strategy Conservative 

Lookahead [0.1,1] 
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Figure 2: Feature importance ranking. 

4.3.2 Model Performance Evaluation 

In this part, the performance of SRPAS is evaluated. 
To evaluate the effectiveness of the algorithm in 
detail, we have carried out a large number of 
experiments. First, the performance of each machine 
learning model is measured, and then the integrated 
model is evaluated. The experimental results are 
shown in Table 4. SRPAS is the integration algorithm 
with model selection proposed in this paper, and eight 
base models are the best combination of models 
obtained by model scoring. SRPA is an integration 
algorithm without model selection process. In this 
algorithm, all prediction models trained in Table 2 
will participate in the integration. 

Table 4: Model performance evaluation. 

Model  𝑅ଶ RMSE MAE 
ACC

（%） 

KNN 0.817 97.79 62.13 75.31 
SVR 0.942 53.28 34.83 81.59 
MLP 0.948 53.03 38.23 83.35 
LR 0.946 54.61 37.50 83.37 
DT 0.957 48.67 36.43 84.45 

ETR 0.962 45.71 32.03 86.37 
RF 0.963 42.17 28.17 89.81 

XBG 0.966 40.01 28.30 90.21 
SRPA 0.977 36.56 23.69 89.54 

SRPAS 0.972 37.7 22.04 93.72 

It can be seen from Figure 3, each model has 
different performance in any evaluation index. More 
precisely, a single prediction model may be better 
than other prediction models in terms of error rate, but 
it may have worse accuracy. For example, in Figure 3 
(c), the accuracy of LR model is 83%, which is higher 

than that of SVR model, but the RMSE and Mae 
values are 54.61 and 37.50, which are also higher than 
the error rate of SVR model. In addition, this paper 
tests the integrated model without model selection 
process, and finds that SRPAS model has higher 
prediction accuracy (93.72%) when the error rate 
(37.7 / 22.04) is equivalent to SRPA model. 

We set two groups of simulation events 
parameters for phold (50 and 100 respectively), and 
execute them in parallel with different number of 
CPU cores. As shown in Figure 4, the prediction 
results of proposed SRPAS is close to the real value, 
and the maximum error is ± 30 seconds. In addition, 
when the number of phold simulation events is set to 
50 in Figure 4(a), the application has the shortest 
runtime  in the case of allocating 7 cores. However, 
when the number of phold simulation events 
increases to 100 in Figure 4(b), the resource required 
for the shortest runtime are reduced to 6 cores. 

 
Figure 3: Evaluation Metrics. 

 
Figure 4: Comparison of actual simulation runtime and 
predicted results. 

In general, the results show that the proposed 
algorithm can effectively predict the runtime of 
simulation applications and select the optimal 
computing resources for applications. Compared with 
the existing machine learning algorithms, SRPAS can 
improve the prediction accuracy by 3% - 24% while 
maintaining the minimum error rate. In the runtime 
prediction, SRPAS can select the basic model with 
better performance, effectively reduce the impact of 
poor performance model, and finally improve the 
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prediction performance. Therefore, the simulation 
runtime prediction approach proposed in this paper is 
superior to the existing single machine learning 
regression model. 

5 CONCLUSIONS 

This paper discusses the runtime prediction programs 
for CSM in the cloud environment, we propose a 
simulation runtime prediction method based on 
ensemble learning to support the efficient deployment 
for CSM in the cloud. Firstly, the simulation 
application is deployed in the cloud environment to 
generate the data set, and the feature selection 
technology is utilized to obtain the relevant feature 
set. Secondly, a prediction algorithm based on 
stacking ensemble learning is proposed, which 
improves the prediction accuracy of ensemble model 
by selecting the optimal model subset. The algorithm 
can also automatically predict the runtime of CSM 
application and select the optimal computing 
resources. To prove the advantages of the proposed 
approach, we evaluate different machine learning 
methods, such as linear regression, multilayer 
perceptron, regression tree and random forest. 
Experiments show that ours approach could 
effectively predict the runtime of CSM applications. 

The proposed approach could be enhanced by the 
following future work: 

(1) The generality of the proposed method can be 
considered to predict the runtime of different 
types of simulation applications. 

(2) Explore more partition algorithms, expand the 
optional partition algorithm library and reduce 
the deployment cost of simulation 
applications. 
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