
Simulation Runtime Prediction Approach based on Stacking
Ensemble Learning

Yuhao Xiao, Yiping Yao, Feng Zhu* and Kai Chen
College of Systems Engineering, National University of Defense Technology, Changsha 410073, China

*Correspondence: zhufeng@nudt.edu.cn

Keywords: Complex System Simulation, Cloud Computing, Runtime Prediction, Ensembling.

Abstract: Many technologies in complex system simulation (CSM), such as resource scheduling and load balancing,
largely rely on historical data with different characteristics to predict the future. The accuracy of runtime
prediction has a significant impact on scheduling performance. However, with cloud computing becoming
the main infrastructure for deploying CSM applications, the current prediction methods are difficult to adapt
to the dynamic changes of cloud computing resources. Insufficient computing resource allocation will be
difficult to support the efficient operation of simulation. In addition, excessive computing resource allocation
will lead to higher computing and data communication costs. Therefore, a simulation runtime prediction
approach based on stacking ensemble learning has been proposed, which uses the characteristic variables of
simulation applications (such as the number of simulation entities, the number of simulation events, the
simulation time, etc.) and the performance monitoring data of computing resources (such as CPU utilization,
memory utilization, etc.) as the characteristic inputs. The machine learning algorithms such as XBG, SVG,
MLP are integrated by stacking model, and the performance of the integrated learning algorithm is
comprehensively evaluated by mean absolute error (MAE), accuracy (ACC), root mean square error (RMSE)
and coefficient of determination (R2). Experimental results show that the proposed algorithm improve the
prediction accuracy by 3% - 24% when compared with existing machine learning prediction methods.

1 INTRODUCTION

Complex system simulation (CSM) is widely used in
system evaluation and analysis in the fields of social
and biological networks, military training, and war
games (Fujimoto et al. , 2017; Haken, 2006). In CSM,
the simulation models are partitioned onto logical
processes (LPs, also called simulation entities) and
exploits the parallelism present in the LPs to improve
the performance. With the increase in the scale of
CSM applications, interaction between entities has
become very complex, which leads to irregular
workloads and communication loads, and reduces the
operating efficiency of the underlying infrastructure
(Fujimoto, 2016). In addition, in order to cope with
the huge workload changes and to reduce simulation
runtimes, a powerful computing infrastructure is
required for perform efficiently. Unlimted computing
resources for most organizations are difficult
considering budget constraints. Therefore, a flexible
infrastructure deployment mechanism is needed,
which can allocate resources according to the
computing requirements of applications.

Cloud computing provides a good target
environment for the above challenges, which can
realize the collaborative management, on-demand
sharing, and flexible scheduling of resources such as
computing/network/software/models, and meet the
requirements of CSM for general computing power
and efficient operation (Fujimoto, Malik, & Park,
2010). In order to utilize this environment, we
monitor and collect application performance in real
time during the execution of simulation applications,
so as to perform real-time resource scheduling in the
cloud environment and reduce the overall deployment
cost (D’Angelo & Marzolla, 2014).The resource
scheduling process largely relies on the estimation of
task runtime to make decisions (D’Angelo &
Marzolla, 2014). However, traditional methods are
difficult to predict the runtime of applications in the
cloud environment because of the continuous
requirements changes for computing resources
caused by the different life cycles of simulation
entities. If too few resources are allocated to the
application, it will be difficult to support the efficient
operation of the application; if too many resources are

42
Xiao, Y., Yao, Y., Zhu, F. and Chen, K.
Simulation Runtime Prediction Approach based on Stacking Ensemble Learning.
DOI: 10.5220/0010517600420049
In Proceedings of the 11th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2021), pages 42-49
ISBN: 978-989-758-528-9
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

allocated to the application, it will not only increase
the communication overhead between different node
entities, but also cause unnecessary waste of
resources (Liu et al., 2012). Therefore, how to
accurately predict the execution time of simulation
application in a cloud environment and achieve
efficient resource allocation of complex system
simulation application is a challenging task.

In response to the above problems, this paper
models the prediction problem as a regression
function that depends on the static feature input
before the simulation application runs and the
dynamic feature input at run time, and proposes an
integrated learning method based on stacking to
predict the execution time of the simulation
application in a specific cloud computing
environment, so as to achieve efficient resource
management for the cloud simulation application.

The main contributions of this article are as
follows:

1. A set of parameters is designed to represent the
characteristics of simulation application in cloud. The
prediction process uses the following parameters as
inputs: (1) the characteristic parameters that need to
be set before simulation execution (such as the
number of simulation entities, the number of events,
etc.) and (2) the execution parameters collected by the
monitor (such as CPU utilization, memory utilization,
etc.).

2. A simulation runtime prediction algorithm
based on stacking ensemble learning (SRPAS) is
proposed. Compared with linear regression, multi-
layer perceptron, regression tree, random forest and
other machine learning methods, our algorithm can
improve the accuracy and reduce the error rate.

The rest of this paper is arranged as follows:
Section 2 introduces related work. In Section 3, the
proposed prediction algorithm is introduced. Section
4 introduces the experiments and results of this work.
Section 5 introduces conclusions and future work.

2 RELATED WORK

Cloud-based simulation is regarded as a special
Software-as-a-Service (SaaS) that combines the
advantages of Web services and cloud computing
technology to manage various M&S resources and
build different simulation environments(Bocciarelli
et al., 2017). However, the uncertainty of resource
sharing in cloud environment may lead to the
degradation of simulation application performance
(Kurt, Silas, & Jan, 2012). To solve this problem, it is
recognized that a better solution is to use machine

learning prediction methods to improve the
adaptability of simulation applications in the cloud
environment. For example, linear regression LR (Lee
& Schopf, 2004; Seneviratne & Levy, 2011), nearest
neighbor KNN (Hui, Groep, & Wolters, 2005),
regression tree (Miu & Missier, 2012), support vector
machine (Matsunaga & Fortes, 2010), extreme
gradient boosting (Chen, He, & Benesty, 2016) and
so on. Yang (Yang et al., 2014) proposed a linear
regression model to predict the workload in the cloud,
and proposed a greedy heuristic algorithm to achieve
the scalability of cloud services. Cetinski (Cetinski &
Juric, 2015) proposed an advanced model for efficient
workload prediction in the cloud environment. By
analyzing the characteristics of the workflow in the
cloud, the random forest algorithm is applied to solve
the workload prediction problem. Rahmanian
(Rahmanian et al., 2018) proposed a prediction
algorithm based on learning automata to predict the
use of cloud resources, and experiments on the
CoMon project data set proved the effectiveness of
the algorithm. In order to cope with the ever-changing
cloud resource demand, Kaur(Kaur, Bala, & Chana,
2019) proposed an intelligent regression integrated
prediction method, which combines feature selection
and resource prediction technology to obtain high
accuracy. Kim (Kim, Wang, Qi, & Humphrey, 2020)
designed an online mechanism to predict workflow
load in a cloud environment. This mechanism
accurately estimates the relative accuracy of each
predictor in the next time interval by using multi-class
regression, so as to accurately predict the actual
workload.

Although some models have been used to predict
the runtime of applications, most of these are for
highly parallelizable tasks (such as parallel tasks,
video, etc.) in the cloud. Due to the simulation
application will perform frequent synchronization
during execution and send/receive a large number of
messages, it is difficult to decompose the simulation
application into independent subtasks. On the one
hand, these prediction methods do not consider the
characteristics of simulation applications in the cloud
environment; On the other hand, the method based on
a single predictor is not enough to solve the dynamic
and burst of cloud workload, and may show poor
performance for unknown workload patterns.
Therefore, based on the versatility of the integrated
model in this field, this paper aims to design an
integrated algorithm to predict the runtime of
simulation applications in the cloud environment and
improve the performance of the simulation
applications in the cloud environment.

Simulation Runtime Prediction Approach based on Stacking Ensemble Learning

43

3 THE PROPOSED PREDICTION
APPROACH

It is well known that the combination of multiple
models' predictions performs better than a single
model, and usually significantly reduces the variance
of the final prediction results (Dietterich, 2000).
Ensemble learning involves merging multiple
prediction results from different learning algorithms
to create stronger predictor and achieve more accurate
forecast results. Figure 1 shows the implementation
process of the proposed simulation runtime prediction
algorithm based on stacking ensemble learning
(SRPAS).

Training Data

Model selection

K-fold cross-validation

model1 model2 modelnę

P1 P2 Pnę

Modeln+1

Training

Training

Predictions

Model scoring

Data feature selection

Pn+1

Pfinal

Second-
layer

stacking

Training

frist-layer
stacking

Figure 1: The schematic diagram of the runtime prediction
algorithm.

3.1 Dataset Generation

To monitor and collect the real-time running
information of the simulation application accurately,
the resource monitoring program is deployed on the

Table 1: Parameter description.

parameters Feature Description

Pre-run
parameters

CPU core CPU cores allocated for a
simulation application.

Entity Number of simulation
objects

events Number of events generated
by per simulation object

LA Lookahead
Tend Simulation runtime

runtime
parameters

CPU usage
Percentage of CPU
(including average,
maximum and minimum)

Memory
Bytes of memory (including
average, maximum and
minimum)

I/O
File system usage
(including average,
maximum and minimum)

Network-r

Bytes of data received by
the network(including
average, maximum and
minimum)

Network-s
Bytes of data sent by the
network(including average,
maximum and minimum)

Network
delay Communication delay

cloud computing nodes, and two sets of parameters
are considered to evaluate the performance of the
application:(1) pre-run parameters and (2) run-time
parameters. The pre-run parameters are determined
before the execution of the simulation application,
including the number of computing nodes, the
number of simulation entities and events, the look
ahead value and the simulation times. Run-time
parameters reflect the performance of simulation
applications under different cloud resources. The
parameters are collected during the execution of
simulation applications, including CPU utilization,
memory utilization, network throughput, network
latency, and file system utilization. The monitor
collects data every 5 seconds and stores it into the
database as feature data after preprocessing. Finally,
the research problem turns into how to combine these
feature data with machine learning model to
accurately predict the runtime of simulation. The
specific parameters are shown in Table 1.

3.2 Selection of Prediction Model

Single machine learning model has limitations in
meeting the requirements of complex tasks. By

SIMULTECH 2021 - 11th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

44

combining multiple basic models, the integrated
model can achieve better performance than single
model (Cruz, Sabourin, Cavalcanti, & Ren, 2015).
However, not all basic models have a positive impact
on the performance of the integration model.
Therefore, we use 10 kinds of machine learning
prediction models automatically adjusted by
gridsearch, and find the model combination with the
highest score (R2) based on the model selection
process. The specific model and parameters are
shown in Table 2.

Table 2: Machine Learning Models.

Model Method Used Tuning Parameters

ETR ExtraTree
n_estimators=100，
max_depth=None

KNG K-Nearest
Neighbor n_neighbors=7

LR linear
regression alpha=0.5

RF Random
Forest

n_estimators=100，
max_depth=None

XBG
Extreme
Gradient
Boosting

learning_rate=0.1，
max_depth=4
n_estimators=200

DT DecisionTree max_depth=5

MLP Multi-layer
Perceptron

hidden_layer_sizes=(100,
50)， activation='relu',
solver='adam'，
max_iter=1000

SVR
Support
Vector
Regression

kernel='poly', degree=2,
C=1, epsilon=0.01

BRR Bridge
Regression T = 1000, lambda2 = 1

NN Neural
Network maxit=100, axNWts=10000

3.3 Proposed Algorithm

The integrated model can overcome the shortcoming
of single basic prediction, and use the interaction
between basic models to improve the prediction
ability (Van der Laan, Polley, & Hubbard, 2007). The
SRPAS proposed in this paper can select the optimal
subset of the base model according to the data
characteristics, and further improve the prediction
accuracy of the integrated model. The specific steps
are shown in algorithm 1.

In this algorithm, ModelList contains the list of all
basic models, ModelSet represents the list of models
being used for ensemble learning, ModelSet ∈
ModelList. BestMSet and BestMScore respectively
represent the best model combination and the highest
model score based on the current ModelSet.

Firstly, Random strategy is used to select a model
combination from the ModelList, and the stacking
integration training is started.

Lines 1 to 9 show that all models in the first layer
are trained by k-fold cross-validation, and the
predicted value 𝑃௝ of each model M is output.

Lines 10 to 12 represent the second layer of
stacking integration process. In this process, the
predicted value of the first layer model is used as the
feature, and the final integrated model is trained after
fusion with the original feature.

Lines 13 to 17 represent the model selection
process. The process evaluates the integrated model
based on the 𝑅ଶ value. If the score of the current
model combination is greater than the best model
score, the best model combination and the best model
score will be replaced. Finally, the algorithm returns
the best model combination and the best prediction
result as the output.

3.4 Evaluation Metrics

Mean Absolute Error (MAE), Accuracy (ACC), Root
Mean Squared Error (RMSE) and Coefficient of
Determination (R2) are calculated to evaluate the
performance of resource prediction models, which are
defined as follows:

𝑀𝐴𝐸 = ∑ |𝑦௥௝ − 𝑦௉௝|௡௝ୀଵ 𝑛 (1)

𝐴𝐶𝐶 = 1 − 100%𝑛 ෍ |𝑦௥௝ − 𝑦௉௝|𝑦௉௝
௡

௝ୀଵ (2)

𝑅𝑀𝑆𝐸 = ඨ∑ (𝑦௥௝ − 𝑦௉௝)ଶ௡௝ୀଵ 𝑛 (3)

𝑅ଶ = 1 − ∑ (𝑦௥௝ − 𝑦௉௝)ଶ௡௝ୀଵ∑ (𝑦௜ − 𝑦௥௝)ଶ௡௝ୀଵ (4)

Where 𝑦௥௝ and 𝑦௣௝ represents the real and predicted
values of the j-th sample respectively, 𝑦௥ is the
average of the true values.

Simulation Runtime Prediction Approach based on Stacking Ensemble Learning

45

Algorithm 1: Proposed algorithm.
Input：Data(X,Y)，ModelList M={M1，M2， ...，
Mn}
Output：BestMSet, RuntimePred, BestMScore

1 For each modelset ∈ modellist
2 start {frist-layer-stacking}

3
Randomly split Data(X,Y) into k chunks {𝑋௝, 𝑌௝}௝ୀଵ௞

4 For j=1 to k do {k-fold bagging}
5 For each model m in M do
6 Training m-model on {(𝑋ି௝, 𝑌ି௝}
7 Make predictions 𝑃௝ on 𝑋௝
8 End for
9 End for

10 Choose model 𝑀௜ in M start {two-layer-
stacking}

11 Train m model on {(𝑋௝, 𝑃௝), 𝑌௝} and Make
predictions 𝑃௙௜௡௔௟

12 End {stacking}
13 Caculate StackingMScore= R2
14 If StackingMScore > BestScore then
15 bestscore← StackingMScore
16 BestMSet←ModelSet
17 𝑃௙௜௡௔௟← 𝑃௙௜௡௔௟
18 End if
19 End for
20 return {𝑀௜ଵ, 𝑀௜ଶ,... 𝑀௜௥}，𝑃௙௜௡௔௟

4 EXPERIMENTAL STUDY

4.1 Simulation Application Settings

Phold is usually used as a representative benchmark
test program for PDES performance evaluation
(Yoginath & Perumalla, 2015). Therefore, the
performance of the proposed algorithm is tested by
the simulation application of Phold, and different
simulation applications are generated by setting the
parameters in Table3 to execute in the cloud
environment.

4.2 Experimental Setup

Using real cloud environment monitoring data to
track and predict the runtime of simulation
applications will be more convincing. Therefore, this
paper deploys the simulation application in a real
cloud environment built by the open container engine

docker, and uses container virtualization technology
to build eight docker container nodes on two
computing nodes. Each docker container node is
configured with a 3.40 GHz Intel Core i5-7500 CPU
core and 4GB of memory. In this paper, the
simulation application is executed on YH-SUPE, and
resources are reallocated for the simulation
application according to the predicted results. The
proposed prediction model is evaluated on two
desktop computers with 3.40 GHz Intel (R) core (TM)
i5-7500 CPU and 16GB RAM based on Python 3.5
programming environment.

4.3 Experimental Results and Analysis

4.3.1 Feature Selection

Feature selection, as a data preprocessing strategy,
has been proven effective in data for various data
mining and machine learning problems. The purpose
of feature selection is to build a simpler and easier to
understand model and improve the performance of
the model (Tang, Alelyani, & Liu, 2014). Feature
extraction generally applies mathematical methods to
map data from high-dimensional feature space to low-
dimensional feature space, which transforms the
original features that cannot be recognized by
machine learning algorithm into new features that can
be recognized. However, we have observed that the
data features in the simulation application log data set
are all expressed in numerical form and do not need
to be converted. Therefore, we can apply feature
selection methods to remove irrelevant features,
select strongly related features and weakly related but
not redundant features to minimize the occurrence of
errors and build a more accurate prediction model. in
this paper, we use embedded feature selection method
to rank the importance of features(Li et al., 2017). As
shown in Figure 2, these features are input into the
prediction model.

Table 3: Parameter configuration.

Parameters value

Number of simulation objects [10,200]

Number of events generated by
per simulation object [10,100]

Simulation run time 1000

Time synchronization strategy Conservative

Lookahead [0.1,1]

SIMULTECH 2021 - 11th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

46

Figure 2: Feature importance ranking.

4.3.2 Model Performance Evaluation

In this part, the performance of SRPAS is evaluated.
To evaluate the effectiveness of the algorithm in
detail, we have carried out a large number of
experiments. First, the performance of each machine
learning model is measured, and then the integrated
model is evaluated. The experimental results are
shown in Table 4. SRPAS is the integration algorithm
with model selection proposed in this paper, and eight
base models are the best combination of models
obtained by model scoring. SRPA is an integration
algorithm without model selection process. In this
algorithm, all prediction models trained in Table 2
will participate in the integration.

Table 4: Model performance evaluation.

Model 𝑅ଶ RMSE MAE
ACC

（%）

KNN 0.817 97.79 62.13 75.31
SVR 0.942 53.28 34.83 81.59
MLP 0.948 53.03 38.23 83.35
LR 0.946 54.61 37.50 83.37
DT 0.957 48.67 36.43 84.45

ETR 0.962 45.71 32.03 86.37
RF 0.963 42.17 28.17 89.81

XBG 0.966 40.01 28.30 90.21
SRPA 0.977 36.56 23.69 89.54

SRPAS 0.972 37.7 22.04 93.72

It can be seen from Figure 3, each model has
different performance in any evaluation index. More
precisely, a single prediction model may be better
than other prediction models in terms of error rate, but
it may have worse accuracy. For example, in Figure 3
(c), the accuracy of LR model is 83%, which is higher

than that of SVR model, but the RMSE and Mae
values are 54.61 and 37.50, which are also higher than
the error rate of SVR model. In addition, this paper
tests the integrated model without model selection
process, and finds that SRPAS model has higher
prediction accuracy (93.72%) when the error rate
(37.7 / 22.04) is equivalent to SRPA model.

We set two groups of simulation events
parameters for phold (50 and 100 respectively), and
execute them in parallel with different number of
CPU cores. As shown in Figure 4, the prediction
results of proposed SRPAS is close to the real value,
and the maximum error is ± 30 seconds. In addition,
when the number of phold simulation events is set to
50 in Figure 4(a), the application has the shortest
runtime in the case of allocating 7 cores. However,
when the number of phold simulation events
increases to 100 in Figure 4(b), the resource required
for the shortest runtime are reduced to 6 cores.

Figure 3: Evaluation Metrics.

Figure 4: Comparison of actual simulation runtime and
predicted results.

In general, the results show that the proposed
algorithm can effectively predict the runtime of
simulation applications and select the optimal
computing resources for applications. Compared with
the existing machine learning algorithms, SRPAS can
improve the prediction accuracy by 3% - 24% while
maintaining the minimum error rate. In the runtime
prediction, SRPAS can select the basic model with
better performance, effectively reduce the impact of
poor performance model, and finally improve the

Simulation Runtime Prediction Approach based on Stacking Ensemble Learning

47

prediction performance. Therefore, the simulation
runtime prediction approach proposed in this paper is
superior to the existing single machine learning
regression model.

5 CONCLUSIONS

This paper discusses the runtime prediction programs
for CSM in the cloud environment, we propose a
simulation runtime prediction method based on
ensemble learning to support the efficient deployment
for CSM in the cloud. Firstly, the simulation
application is deployed in the cloud environment to
generate the data set, and the feature selection
technology is utilized to obtain the relevant feature
set. Secondly, a prediction algorithm based on
stacking ensemble learning is proposed, which
improves the prediction accuracy of ensemble model
by selecting the optimal model subset. The algorithm
can also automatically predict the runtime of CSM
application and select the optimal computing
resources. To prove the advantages of the proposed
approach, we evaluate different machine learning
methods, such as linear regression, multilayer
perceptron, regression tree and random forest.
Experiments show that ours approach could
effectively predict the runtime of CSM applications.

The proposed approach could be enhanced by the
following future work:

(1) The generality of the proposed method can be
considered to predict the runtime of different
types of simulation applications.

(2) Explore more partition algorithms, expand the
optional partition algorithm library and reduce
the deployment cost of simulation
applications.

ACKNOWLEDGEMENTS

This research was funded by the National Natural
Science Foundation of China (no. 61903368 and
no.61906207).

REFERENCES

Bocciarelli, P., D'Ambrogio, A., Mastromattei, A., Paglia,
E., & Giglio, A. (2017). Business process modeling and
simulation: state of the art and MSaaS opportunities.
Paper presented at the Proceedings of the Summer
Simulation Multi-Conference.

Cetinski, K., & Juric, M. B. (2015). AME-WPC: Advanced
model for efficient workload prediction in the cloud.
Journal of Network & Computer Applications, 55(sep.),
191-201.

Chen, T., He, T., & Benesty, M. (2016). xgboost: Extreme
Gradient Boosting.

Cruz, R. M., Sabourin, R., Cavalcanti, G. D., & Ren, T. I.
(2015). META-DES: A dynamic ensemble selection
framework using meta-learning. Pattern recognition,
48(5), 1925-1935.

D’Angelo, G., & Marzolla, M. (2014). New trends in
parallel and distributed simulation: From many-cores to
cloud computing. Simulation Modelling Practice and
Theory, 49, 320-335.

Dietterich, T. G. (2000). Ensemble Methods in Machine
Learning. Paper presented at the International
Workshop on Multiple Classifier Systems.

Fujimoto, R., Bock, C., Chen, W., Page, E., & Panchal, J.
H. (2017). Research Challenges in Modeling and
Simulation for Engineering Complex Systems.

Fujimoto, R. M. (2016). Research Challenges in Parallel
and Distributed Simulation.

Fujimoto, R. M., Malik, A. W., & Park, A. (2010). Parallel
and distributed simulation in the cloud. SCS M&S
Magazine, 3, 1-10.

Haken, H. (2006). Information and self-organization: A
macroscopic approach to complex systems: Springer
Science & Business Media.

Hui, L., Groep, D., & Wolters, L. (2005). An evaluation of
learning and heuristic techniques for application run
time predictions.

Kaur, G., Bala, A., & Chana, I. (2019). An intelligent
regressive ensemble approach for predicting resource
usage in cloud computing. Journal of Parallel and
Distributed Computing, 123, 1-12.

Kim, I. K., Wang, W., Qi, Y., & Humphrey, M. (2020).
Forecasting Cloud Application Workloads with
CloudInsight for Predictive Resource Management.
IEEE Transactions on Cloud Computing, PP(99), 1-1.

Kurt, V., Silas, D. M., & Jan, B. (2012). Conservative
Distributed Discrete Event Simulation on Amazon EC2.
Paper presented at the 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing (ccgrid 2012).

Lee, B. D., & Schopf, J. M. (2004). Run-time prediction of
parallel applications on shared environments. Paper
presented at the IEEE International Conference on
Cluster Computing.

Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P.,
Tang, J., & Liu, H. (2017). Feature selection: A data
perspective. ACM Computing Surveys (CSUR), 50(6),
1-45.

Liu, X., Qiang, H., Qiu, X., Chen, B., & Huang, K. (2012).
Cloud-based computer simulation: Towards planting
existing simulation software into the cloud. Simulation
Modelling Practice & Theory, 26(none), 135-150.

Matsunaga, A., & Fortes, J. A. (2010). On the use of
machine learning to predict the time and resources
consumed by applications. Paper presented at the 2010
10th IEEE/ACM International Conference on Cluster,

SIMULTECH 2021 - 11th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

48

Cloud and Grid Computing.
Miu, T., & Missier, P. (2012). Predicting the Execution

Time of Workflow Activities Based on Their Input
Features. Paper presented at the Proceedings of the
2012 SC Companion: High Performance Computing,
Networking Storage and Analysis. https://doi.org/
10.1109/SC.Companion.2012.21

Rahmanian, Asghar, A., Ghobaei-Arani, Mostafa, Tofighy,
& Sajjad. (2018). A learning automata-based ensemble
resource usage prediction algorithm for cloud
computing environment. Future Generations Computer
Systems Fgcs.

Seneviratne, S., & Levy, D. C. (2011). Task profiling model
for load profile prediction. Future Generation
Computer Systems, 27(3), 245-255.

Tang, J., Alelyani, S., & Liu, H. (2014). Feature selection
for classification: A review. Data classification:
Algorithms and applications, 37.

Van der Laan, M. J., Polley, E. C., & Hubbard, A. E. (2007).
Super learner.

Yang, J., Liu, C., Shang, Y., Cheng, B., Mao, Z., Liu, C., .
. . Chen, J. (2014). A cost-aware auto-scaling approach
using the workload prediction in service clouds.
Information Systems Frontiers, 16(1), 7-18.

Yoginath, S. B., & Perumalla, K. S. (2015). Efficient
Parallel Discrete Event Simulation on Cloud/Virtual
Machine Platforms. Acm Transactions on Modeling &
Computer Simulation, 26(1), 1-26.

Simulation Runtime Prediction Approach based on Stacking Ensemble Learning

49

