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Data forms an essential organizational asset and is a potential source for competitive advantages. To exploit
these advantages, the engineering of data-intensive applications is becoming increasingly important. Yet, the
professional development of such applications is still in its infancy and a practical engineering approach is
necessary to reach the next maturity level. Therefore, resources and frameworks that bridge the gaps between
theory and practice are required. In this study, we developed a data engineering reference model (DERM),
which outlines the important building-blocks for handling data along the data lifecycle. For the creation
of the model, we conducted a systematic literature review on data lifecycles to find commonalities between
these models and derive an abstract meta-model. We successfully validated our model by matching it with
established data engineering topics. Using the model derived six research gaps that need further attention for
establishing a practically-grounded engineering process. Our model will furthermore contribute to a more

profound development process within organizations and create a common ground for communication.

1 INTRODUCTION

The ability to efficiently utilize information and
knowledge for competitive advantages is vital for or-
ganizations and forms an important organizational ca-
pability (Levitin and Redman, 1998). Data is the
foundation for information and knowledge and must
therefore be managed appropriately to support organi-
zational decision making and success (Fisher, 2009).
For treating data as an asset, several methods and
frameworks have emerged in the information sys-
tems and business related research fields. These ap-
proaches often focus on specific data types (e.g. mas-
ter data (Otto, 2015)) and put managerial measures
(e.g. information governance (Tallon et al., 2013)) at
the forefront. Adequate actions are therefore primar-
ily dedicated to the managerial level within organiza-
tions (Khatri and Brown, 2010; Amadori et al., 2020).

However, with the prevalence of data-intensive
applications (e.g. machine learning or IoT appli-
cations), there is a need to create awareness of ad-
equately handling and managing data not only at
a managerial level, but also for software engineers
(Kleppmann, 2017; Amadori et al., 2020). At the
same time, data engineers are primarily concerned
with preparing data for data scientists but neglect im-
portant software engineering practices (Kleppmann,
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2017). We therefore argue that the bridge between
the data engineering and software engineering com-
munities needs to be crossed with a critical rethink-
ing of the currently established engineering of data-
intensive applications. For this purpose, a common
ground for a practical data engineering process needs
to be established that takes the full data lifecycle into
account. To the best of our knowledge, such a practi-
cal engineering process does not yet exist in literature.
Specifically, it is necessary for two reasons. First, data
processing is becoming increasingly important in ap-
plication development and software engineers need to
operate with novel data structures and volumes (e.g.
big data, data streams) (Chen et al., 2013). To do
so, they need a better understanding of designing data
infrastructures and systems. Second, the establish-
ment of a professionalized development process simi-
lar to the software engineering discipline is necessary.
Therefore, resources that bridge the gaps between the-
ory and practice are required to overcome the “one
size fits all” approach that is currently in place (Stone-
braker and Cetintemel, 2018). This way, the data en-
gineering process can help to overcome typical real-
world problems and operationalize the software cre-
ation process in the light of new data sources, such as
big data.

The following example summarizes our research
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motivation and intention: In the machine learning do-
main, the success and usefulness of prediction mod-
els is currently measured using accuracy measures,
such as the F-Score. Other important aspects, like
how maintainable it is, how it needs to be secured, or
where it is stored, are often disregarded. Considering
such aspects is nevertheless important to move away
from individual data science projects towards an engi-
neering discipline for machine learning models. This
way, machine learning can be successful and efficient
at a larger scale. The same aspects do not only apply
to machine learning, but should be raised during the
creation of any data-intensive software artifact.

With our research, we aim to contribute to the es-
tablishment of a data engineering reference model.
We argue that such a model must adhere to the data
lifecycle and provide answers to the questions raised
in the different phases. We thus conducted a System-
atic Literature Review (SLR) to analyze the current
state of research on data lifecycles and formulate an
abstract data lifecycle. This review provides us with
the necessary information about what aspects need to
be adressed in developing data-intensive applications.
Furthermore, we are formulating concrete themes and
name aspects that software engineers should take into
consideration when developing data-intensive appli-
cations. Specifically, we aim to answer the following
research questions:

o RQI1: What are the building blocks of a data en-
gineering reference model?

o RQ2: Can a data lifecycle be used as a foundation
for a data engineering reference model?

e RQ3: Can we use the reference model to identify
possible research gaps?

The remainder of this paper is structured as fol-
lows. We start with a description of our research
methodology that we followed in our study in Section
2. In Section 3, we outline how our reference model
was developed and go into details about the elements
contained. We then validate the model in Section 4
and derive open research gaps in Section 5. We finish
our paper with a conclusion in Section 6, also address-
ing the limitations and possible future work.

2 RESEARCH METHODOLOGY

The development of a reference model for data en-
gineering and finding an answer to RQ1 requires an
understanding of what distinctive data challenges are
raised during development. We thus decided to fo-
cus our research on the review of existing data life-
cycles and develop a generic data lifecycle. Based
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on this lifecycle, we then formulate what challenges
and aspects should be incorporated in data engineer-
ing projects and how it can contribute to the success-
ful engineering of data-intensive applications.

For reviewing existing data lifecycles in literature,
we conducted a SLR as described by (Kitchenham,
2004) and (Kuhrmann et al., 2017). According to
(Kuhrmann et al., 2017), a SLR is well suited for iden-
tifying, analyzing, and interpreting existing knowl-
edge in an unbiased and reapeatable way (Kuhrmann
etal., 2017). We separated the review process into the
three distintive steps: plan, execution, and review as
recommended by (Kitchenham, 2004).

2.1 Plan

We initiated our research process by selecting ap-
propriate data sources. Therefore, we adapted the
most common sources in the computer science do-
main as defined by (Kuhrmann et al., 2017). This
selection yielded in the following seven databases:
IEEE Xplore, ACM Digital Library, Science Direct,
SpringerLink, Wiley, DBLP, and Scopus. In the next
step, we defined the following search terms as rele-
vant to our study: lifecycle and data. Following the
guidelines of (Kuhrmann et al., 2017), we initially
tested different search queries to find one that is suit-
able for our research. For this, we used the search
engine Scopus and entered different combinations of
lifecycle and data. We observed that using the word
data as a single term produces a very large result set.
Consequently, we limited our search to direct combi-
nations of the search terms and formulated the follow-
ing search expression: ("datalifecylce” OR "data life-
cycle" OR "data-lifecycle" OR "data-life-cycle" OR
"data life cycle"). We then applied the search expres-
sion to the different query languages of the selected
databases.

2.2 Execution

Using the aforementioned search expression, our ini-
tial search resulted in 515 articles across all databases
(Step 1). In this step, we ensured that the papers were
written in English and that the full-text was available.
Afterwards, we limited our results to conference and
journal papers and excluded duplicates from the set
of papers (Step 2). This step reduced the number of
papers to 359. The manual paper selection process
began by reviewing the papers based on their titles
and abstracts, which resulted in 57 papers (Step 3).
In Step 4, we manually reviewed and voted on the re-
maining 57 paper, which further reduced the number
of papers to 27. In this step, we used a majority vot-



ing principle including the three authors (Kuhrmann
et al., 2017). Hereby, the first two authors voted indi-
vidually on each paper and the third author voted on
papers that were still undecided. Following the guide-
lines of (Webster and Watson, 2002), we also con-
ducted a forward and backward search on the 27 iden-
tified paper to include papers relevant to our study.
This step led to another seven papers we identified
and results in a total of 34 papers included in our liter-
ature review. Figure 1 summarizes our paper selection
process.

‘ Step 1 }—»
‘ Step 2 }—»
Manually review papers based on title and
‘ Step 3 H Y :bsrac: H n=57 ‘
Sten 4 Manual review based on full text and forward / =34
P backward search

Figure 1: Paper selection process.

keywords and abstract

Identify relevant papers in English based on title, ‘ n=515 ‘

Limit to full conference and journal articles and ‘

exclude duplicate entries n=3%9 ‘

There were several reasons for papers to be ex-
cluded in Step 3 or 4. The most common were: The
presented lifecycle is too specific or focused on cer-
tain aspects (e.g. security lifecycles or lifecycles in
Biology). The paper describes an architecture or soft-
ware rather than the data lifecycle itself. A different
lifecycle (e.g. product lifecycle) was described and
data was only an aspect within this lifecycle.

2.3 Review

For data synthesis and the subsequent analysis and re-
porting of our research findings, we used open coding
of Grounded Theory Methodology (GTM) as an ex-
ample (Strauss and Corbin, 1997). Specifically, we
wanted to categorize the phases and elements of data
lifecycles that are discussed in literature into different
abstract themes. We initially generated codes based
on the actions performed on data, such as reading
a file, removing data errors, vizualising numbers, or
sharing data sets with colleagues. However, we ob-
served that the papers not only describe the actions
performed on data but also specify the context, which
affects the data, like organizational guidelines or cer-
tain technologies. There was no common discrimina-
tor for the contexts so we adopted contexts that are
frequently mentioned in the papers. The difference
between the two categories is that a context can apply
to several actions. For example, a data management
tool could support multiple actions (e.g. access, use,
and destroy) performed on data. We thus decided to
summarize the contexts that are used as layers in the
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data lifecycle and code the papers for both, the ac-
tions that are performed on data and the layers that
are used.

We then continued by reducing these descrip-
tive codes to interpretative clusters that form ab-
stract themes of organizational actions and layers (i.e.
the contexts) on which these are happening (Miles
and Huberman, 1994). The identified themes were
generic in the sense that they occurred in multiple pa-
pers. This led us to the conclusion that they play an
important role in the general data lifecycle and should
be considered in the engineering of data-intensive ap-
plications. To check whether our themes were in-
ternally consistent and our derived themes were dis-
crete, we constantly asked ourselves the questions:
“Is this code similar to that code?” and “Are these
codes different from those codes?” as described by
(Jarzabkowski, 2008). Sparse codes (e.g. describing
technical details) that did not match any cluster were
discarded as they were either very specific or did not
match our research objective.

We initiated the coding process by applying the
coding scheme to a small subset of five papers. This
was done to gain a better understanding of the data
lifecycles and test our coding scheme on papers from
our literature review. After the initial coding, the first
two authors independently coded the relevant aspects
in the remaining papers in different abstract themes.
Potential conflicts during the coding and naming of
the identified themes were clarified due to discus-
sions among the researchers until a full consensus was
reached.

Following the descibed coding procedure, we
identified six abstract themes for actions performed
on data, namely: Plan, Create, Access, Use, Trans-
form, and Destroy; and four abstract themes for the
layers on which data is handled: Metadata, Technol-
0gy, Data Quality, and Enterprise. Table 1 maps the
papers to their respective themes. The way we used
our results for building a reference model and a de-
tailed description of the themes and subcategories is
available in Section 3.

3 DERM: DATA ENGINEERING
REFERENCE MODEL

To the best of our knowledge, the data engineering
community lacks a reference model that can be uti-
lized as a common ground for the engineering of data-
intensive applications. We argue that the data life-
cycle is the core element of such a reference model
and can be used to assign the currently established re-
search and working topics. Based on our results in
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Table 1: Overview of data lifecycle literature.

Lifecycle Phases Lifecycle Layers
¢ -
3 £ s ¥ 2
2 S| |g|&8|E| |g|&
s 12|52 |5/E8|5|8
- = =5} 172} D 3 5 =
Paper RO |&|D|F|A|IS|A|& R Special focus
(Tripathi and Pandy, 2018) X X | X | x X | X Research
(Elsayed et al., 2008) X X | X X X Research
(Huang et al., 2019) X X | X | X X X Big Data
(W3C, 2014) X | X | X | X X | X X Linked Data
(Yazdi, 2019) X X | x| x X | X X Research
(Emam et al., 2019) X X | X | X X | X X Biology
(El Arass et al., 2020) X X | X | x| X X X Big Data
(El Arass et al., 2017) X | X | x| x| x| Xx X X
(Sinaeepourfard et al., 2016) X X | x| X X | x| x Smart City
(Maindze et al., 2019) X X | x| x| x| x|x| x| X
(Moller, 2013) X | X | x| X |X| X |X|X| X | X Semantic Web
(DAMA, 2017) X | X | X | X | x| X X X
(Wing, 2019) X | X | X X Big Data
(Hubert Ofner et al., 2013) X | X X X | X Master Data
(Xianglan, 2017) X | X | x X | X Coal Mining
(Bychkov et al., 2018) X | X | x X | x Astrophysics
(Solanas et al., 2017) X X | X X | x Healthcare
(Alladi and Prasad, 2018) X | x| x X | X Big Data
(Padkkonen and Pakkala, 2015) X | X | x X | x Big Data
(Alshboul et al., 2015) X | X | x X | x Data Security
(Rahul and Banyal, 2020) X | X | x| x| X X Data Analytics
(Polyzotis et al., 2018) X | X | X X | X Machine Learning
(Moiso et al., 2012) e WX X | X Personal Data
(Christopherson et al., 2020) X | X | x| x| x X | x
(Cao et al., 2019) X | x| x X | X | x Data Analytics
(Levitin and Redman, 1993) X | x X | X
(Yu and Wen, 2010) X | x| x| x| X X
(Allanic et al., 2017) X | x| x X Biology
(Grunzke et al., 2015) X | X | x X Natural Sciences
(Liu et al., 2013) X X | X X Software
(Morris, 2018) X X | x| x X Biology
(Cheng et al., 2013) X X X X Big Data
(Ho and Abramson, 2007) X X | X X Research
(Simonet et al., 2013) X | X X X

Section 2, such a reference model should consist of
distinctive phases and layers: Phases describe certain
actions that are performed on data objects, while lay-
ers specify the contexts that affect the phases.

During our SLR, we observed that many papers
are domain-specific in their connotations (see special
focus in Table 1). As a result, they often contain spe-
cific elements that are not needed for a general un-
derstanding in the data engineering community or are
potentially misleading. For example, (Bychkov et al.,
2018) describe an Education phase. Obviously, this
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activity is useful in many areas. However, it cannot
be taken as a basic building block because it is specif-
ically dependent on the presence of human actors.
Another reason is the external perspective that
these papers adopt. They see the data lifecycle as a
part of a software system or overall process that can-
not live on its own. This can lead to assumptions and
consequently design decisions that are not a necessity
but are injected from the environment. For example,
(Yu and Wen, 2010; Sinaeepourfard et al., 2016; El
Arass et al., 2017) have inserted an Archive phase.



While it is not domain specific and makes sense in
many cases, it is just a human-made construct to ad-
dress inherent deficiencies in the surrounding system.

To address these shortcomings and establish a
common ground in data engineering, we propose our
model DERM (Data Engineering Reference Model).
The composition and visual appearance of the model
was developed in an iterative approach. From the se-
lected papers, we randomly chose one model as our
starting point. Ongoing from this, we integrated one
model after the other to reach an abstract meta-model.
In this process, we used several strategies to achieve
our final model (see Figure 2). Our main philoso-
phy was to look at the topic from a data perspective.
We continuously asked ourselves “Is the data witness-
ing this phase?”, “Does this phase make a difference
to the data or is it more of a semantic difference?”,
“Is this topic really influencing the data?”, and so
forth. Then, we checked whether elements were al-
ready present or used synonymously. We added ele-
ments that were new and determined where to place
them due to discussion. Sometimes, elements got
merged or removed if they did not fit to our philos-
ophy. We distinguished elements into data related
activities (Phases) and subject areas (Layers). We
modeled activities as boxes on a cycle. Over the it-
erations, we changed the position of the boxes based
on the suggestions of the data lifecycles seen so far.
We modeled subject areas similar to Venn diagrams.
Their positions and intersections changed during the
iterations. We tried to fit the phases and layers to-
gether in an overlapping way in one model. After
the last iteration, we adjusted the visualization of our
model for better accessibility.

3.1 Phases

Every single data object passes through several
phases that describe what happens to the data object
at that point. For the engineering of data-intensive
applications, it is vital to be aware of these phases and
implement measures dedicated to adequately manage
the data in the respective phase. Although the phases
are modeled around a cycle and thus follow a path,
phases may be skipped if necessary.

Plan. The Plan phase comprises several activities
that are conducted before the data lifecycle starts. It
therefore sets certain guidelines and boundaries that
are relevant throughout the data engineering process
before the inital creation of data. It is not part of the
iterative data lifecycle, but rather a mediating factor.
The concrete activities differ based on the context
and use case. For instance, (Sinaeepourfard et al.,
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2016) describe business requirements and scientific
demands for this phase, which can influence whether
a data source is valid or what data transformations are
required. (Tripathi and Pandy, 2018) and (DAMA,
2017) generalize this step as a data management plan
that, among others, includes organizational policies,
copyright and licensing guidelines, and requirements
for documentation.

Create. In the Creation phase, new data is being
created from scratch, either manually (e.g. (Yu
and Wen, 2010)), due to the automatic capture of
signals (e.g. (Christopherson et al., 2020)), or the
transformation of a previously existing data object.
Based on the context the data is used in, the Create
step can invoke additional subsequent steps. For ex-
ample, (Cheng et al., 2013) describe data quality and
semantical steps like allocation of semantic concepts
or association mapping. (Yazdi, 2019) argues that the
creation of a data object should be linked with the
creation of respective metadata objects to improve
the overall data quality.

Select/Access. Generally, the Select/Access phase
describes the manual or automated identification
and access to data objects that are located within or
outside the organization. (Alshboul et al., 2015) and
(Liu et al., 2013) specify the Access phase as the
search and acquisition of data and its integration into
an organizational database systems. (El Arass et al.,
2020) put an emphasis on the user for this phase and
describe the need for a suitable interface to the data
consumer. They also mention access control rules
for data security and usage control depending on
the role and rights of the respective user. Another
topic that is frequently mentioned in this phase is
“data provenance” (e.g. (Allanic et al., 2017; Ho
and Abramson, 2007)), which describes the origin of
data and when and how it was accessed and changed.
Depending on the respective provenance, a data
object can be more or less useful for data access.

Use. The Use phase comprises all activities that
are performed on data. This usually involves data
analysis, integration, and visualization steps (e.g.
(Polyzotis et al., 2018; Bychkov et al., 2018)). The
usage step receives the most attention in the data
lifecycle as it can generate novel insights and value
for an organization. Hereby, the presentation of the
results to the user is vital for the success of the Use
phase and should be appropriately designed (Levitin
and Redman, 1993). It therefore receives much
attention, especially in light of the new opportunities
of machine learning and artifical intelligence. An
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Figure 2: DERM - A Reference Model for Data Engineering.

integral part of data usage is ensuring that the data is
of high quality to improve the value of the derived
insights. This can, for instance, be achieved with data
quality checks or rules (Sinaeepourfard et al., 2016;

Hubert Ofner et al., 2013).

Transform. Whenever a data object is changed or
updated, the Transform stage is invoked. It contains
the transformation of the data, which consequently
results in the creation of a new data object that is
different to the previous one. The Transform step can
be triggered by different use cases, like data cleaning,
formatting, conversion, or standardization (Emam
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et al., 2019; Christopherson et al., 2020). This step
also includes all activities necessary for the long-term
storage and preservation of data (Xianglan, 2017).

Destroy. At the end of its lifecycle, data is deleted
to provide space for new data objects. However, it is
difficult to determine the moment a data object should
be deleted. For example, (El Arass et al., 2020) de-
fine the point of destruction as the one where data has
become useless with no more added value to the busi-
ness. Therefore, they suggest the use of destruction
plans and rules. In case of (Morris, 2018; Moller,
2013), data should be deleted once data that repre-



sents the same but is of better quality has become
available. All papers that mention the Destroy step
agree that the destruction of data is an important step
to avoid a swamp of outdated or useless data.

3.2 Layers

While iterating over the models found in our SLR, we
found four topics, namely Metadata, Data, Technol-
ogy, and Enterprise, that we implemented as layers
in DERM. These layers can be seen as verticals, that
have an effect on all topics. To illustrate this, we have
visualized it using an arrow notation. The following
example will explain this effect in more detail.

The European Union passed the General Data
Protection Regulation (GDPR) law in 2018. It
contains new regulations regarding the digital privacy
of European citizens. For instance, the GDPR
specifies that for the storage and use of the personal
data the consent of the individual must be obtained
beforehand. The GDPR topic can be initially placed
inside the Enterprise layer, as it is a human-made
idea about how things should behave within an
organization. This leads to a direct impact on the
technology level. Tools are now being developed
to identify personal data in legacy assets and user
interfaces are created in which a user needs to give
consent to data processing and storage. This has a
direct impact on the data that is gathered and thus on
the Data layer itself. For example, new data, such
as the consent letters, is generated. But also existing
data is transformed, e.g. to anonymize personal data.
Finally, the changes at the Data layer have an effect
on the Metadata. On this layer, it is now possible
to attach to each dataset the information whether it
contains personal data or not.

Enterprise. The Enterprise layer represents the out-
most layer in the DERM. It sets general boundaries
and conditions for working with data at an organi-
zational level and influences all other layers. The
concrete specifications at this layer are often derived
from other management efforts within an organiza-
tion like “IT Management”, “Service Management”,
or “Data (Quality) Management” (Hubert Ofner et al.,
2013; DAMA, 2017). This layer specifies data gover-
nance measures, data standards, specific roles for peo-
ple working with data (e.g. data owner), and outlines
the overall data culture (Hubert Ofner et al., 2013; El-
sayed et al., 2008). It also represents aspects that are
derived from the general environment an organization
operates in, as for example legal or ethical require-
ments, policies, and administrative concerns (Emam
et al., 2019).
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Technology. There are several technologies used
across the data lifecycle. The Technology layer
describes these technologies and how they enable
the processing of data under consideration of the
Enterprise guidelines. Most importantly, this in-
cludes the specification of data storage technologies
like file storage, database systems, data lakes, or
archives (Emam et al., 2019; Pdaidkkonen and Pakkala,
2015). Furthermore, the requirements of underlying
technologies, for instance local filesystems, cloud
and edge technologies, or P2P networks can be
considered in this phase. Additionally, this layer
represents the use of other technologies involved in
data analytics and management, which can include
data quality, data security and privacy, or machine
learning tools (Solanas et al., 2017; Cao et al., 2019).

Data. The Data layer is the central and most
important part of DERM. It is unsurprising that
this layer is part of all data lifecycles presented
in literature. The differences in literature are in
concrete data formats as for example strings, tupel,
social networks, graphs, etc. Generally, these data
formats can be distinguished between structured,
semi-structured, and unstructured data. By iteratively
passing through the data lifecycle, a certain data
object can take on different formats. For instance, (El
Arass et al., 2020) show how data can move from an
unstructured raw textfile to a structured knowledge
graph by iteratively integrating and updating it with
other data objects. Most papers focus on a certain
data format for their specific use case, like machine
sensor data (Christopherson et al., 2020), biological
data (Allanic et al., 2017) or healthcare records
(Solanas et al., 2017).

Metadata. The innermost layer of DERM represents
the Metadata of data objects. The metadata plays an
important role in the model as it supports the value
and quality of data objects, particularly throughout
the Select/Access and Use phases (Cao et al., 2019).
Its specifics are shaped by existing data models and
standards in place. Following (W3C, 2014), if a meta-
date is created, it can support the establishment of
data semantics and linked data. The lifecycle of meta-
data should be closely aligned with the associated
data lifecycle to track potential changes at the data
or other surrounding layers. To avoid quality issues,
metadata should automatically be generated and doc-
umented (Maindze et al., 2019). As stated by (Hodge,
2001) “Metadata is key to ensuring that resources will
survive and continue to be accessible into the future”,
thus making Metadata the core of our model.
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4 VALIDATION

To answer RQ2 and show that DERM is a valid refer-
ence model for the field of data engineering, we tried
to position the most common data engineering top-
ics present in literature. To identify those topics, we
collected the author keywords of all papers published
at the International Conference on Data Engineering
(ICDE) from 1997 till 2020. We selected the one hun-
dred most frequent keywords. Keywords were dis-
carded if they were already a part of DERM itself (e.g.
data or metadata) or some kind of duplicate (e.g. IoT
and Internet of Things). We also removed keywords
that were out of scope (e.g. astroparticle physics) or
to fuzzy and broad (e.g. business or computer).

To place the topics within the model we conducted
a focus group discussion with four data engineering
professionals (Jarzabkowski, 2008). The positioning
is to be understood as a rough direction. Some topics
can be added to multiple layers or phases and we have
placed them where we believe they play the most sig-
nificant role. If a topic plays a role in all phases of
a layer, we have coded this using /- -]. If a topic is
significant in all phases and layers, we added it in the
middle bar. Our result can be seen in Figure 2.

We were able to categorize all of the topics after
a short discussion period. Since each topic could be
located as part of the model, we are highly confident
that DERM, which is based on data lifecycles found in
literature, can be used as a foundation for a reference
model in the field of data engineering.

As one can see in Figure 2, there is no equal dis-
tribution of topics on the available surface of DERM.
Most topics are clustered in the Use phase and in
its Data layer. While the phases Select/Access and
Transform still contain some topics, special topics are
underrepresented in the phases of Plan, Create, and
Destroy. In general, there are also few topics that ad-
dress the Enterprise layer in the phases.

S DATA ENGINEERING: A
RESEARCH AGENDA

Data engineering is a relatively new discipline in com-
puter science. It is multi-layered and complex, as it
encompasses various topics and research directions.
(Bosch et al., 2021). To overcome the challenges as-
sociated with data engineering, there is a need for fur-
ther research on the topics. This way the engineer-
ing of data-intensive applications can reach the next
maturity level and become a more professional disci-
pline.

For answering RQ3 we propose a research agenda
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that is based on a review of our SLR and the validation
of the DERM. Specifically, we reviewed the mapping
of the papers in Table 1 and the distribution of topics
in Figure 2 to determine what phases and layers have
received the least attention so far. For each of these,
we see the necessity for further research and formu-
late concrete research questions.

Using the aforementioned approach, we derived
the following distribution of papers and topics to the
different phases and layers of our reference model
(see Table 2).

Table 2: Distribution of papers and research topics to
DERM themes.

Theme # papers # topics
Plan 14 3
Create 15 9
Phases Select/Access 29 18
Use 31 34
Transform 24 16
Destroy 12 1
Metadata 9 7
5o Data 34 51
Technology 12 20
Enterprise 11 9

We counted a topic multiple times if it covered
more than one phase or layer and was placed cross-
ing the respective boundaries (e.g spatial crowdsourc-
ing). It becomes apparent that the research regard-
ing data lifecycles and in the data engineering com-
munity is focused on the same areas. We can con-
clude that research mostly focuses on certain phases
and layers but other subjects are neglected. The
same phenomenon applies to real-world projects of
engineering data-intensive applications (Kleppmann,
2017; Bosch et al., 2021). Nevertheless, the subjects
that have received limited attention so far are impor-
tant parts within data engineering and should receive
additional attention by science and practice.

5.1 Phases

Specifically, from Table 2 and Figure 2, we can de-
rive that the phases Plan, Create, and Destroy have
received significantly less attention as compared to
Access, Use, and Transform. This confirms our own
experiences that the engineering of data-intensive ap-
plications is focused on the data analysis part and as-
sociated steps. For example, questions on legal and
ethical guidelines or what happens to data models af-
ter they were used are often not considered systemat-
ically in the overall data engineering process. We ar-
gue that further research is required in these directions



and specify the following potential research topics for
the DERM phases (see Table 3).

Table 3: Research topics on DERM phases.

Possible Research Areas

- Legal and ethical considerations in
data engineering

- Process and data management as-
pects for data engineering

- Factors influencing the creation of
Create | data

- Creating artifical data sets and arti-
ficially enlarging data sets

- Crowdsourcing as a means of data
creation

- Handling and decommissioning of

Topic

Plan

Destro .
Y| data models after their use
- Possibilities for re-use in data en-
gineering tasks
5.2 Layers

With regard to the layers that are mentioned in lit-
erature, we observe that the research focuses on the
Data layer, which was mentioned in all SLR papers
and has the most associated data engineering topics.
This seems logical, since data is the central element
of research. However, the layers Metadata, Technol-
0gy, and Enterprise, which have an effect on the data
layer, are mentioned to a significantly lesser extent.
We therefore argue that additional research on the role
of these layers in the data engineering process is nec-
essary. Consequently, we propose the following po-
tential research topics for the DERM layers (see Table
4).

6 CONCLUSION

The guiding objective of our study was the devel-
opment of a reference model for data engineering.
The model helps to further professionalize the devel-
opment of data-intensive applications by offering a
common basis for planning and conducting data en-
gineering initiatives. To the best of our knowledge,
no model exists that provides a systematic overview
of the steps in the data engineering process. Based on
our insights, we determined what steps in the engi-
neering process need additional attention and formu-
lated a research agenda for data engineering. We can
conclude that we were able to positively answer our
proposed research questions and achieved the goal of
developing a reference model for data engineering.

DERM: A Reference Model for Data Engineering

Table 4: Research topics on DERM layers.

Possible Research Areas

- Automated generation of metadata
from data objects

- The mediating role of data cata-
logs in data collaborations

- Automated updates to metadata
and versioning of data

- Technological interaction between
different phases in the engineering
process

- Differences in data engineering
on different data technologies (IoT,
Social Networks, Blockchain, etc.)

- Incorporation of data security and
privacy protection aspects

- Implementation of data quality
guidelines as executable rules

- Roles and Responsibilities in the
data engineering process

- Data quality management for data
engineering

- Deriving the provenance of data
objects

Topic

Metadata

Technology

Enterprise

Our work offers the following scientific contri-
butions. Despite the increasing attention data engi-
neering receives from the scientific community, the
research seems to concentrate on the usage of data.
Other parts within the data engineering lifecycle are
often neglected but are important for the success of
engineering projects (Bosch et al., 2021). We found
that research for the phases Plan, Create, and Destroy
and the layers Metadata, Technology, and Enterprise
is underrepresented and should receive further atten-
tion in the future. Therefore, we formulated a set of
possible research topics that address unanswered yet
important directions for further research.

Building on the aforementioned, we offer man-
agerial contributions. There is a need to bridge the-
ory and practice for reaching a higher level of ma-
turity in creating data-intensive applications (Stone-
braker and Cetintemel, 2018; Kleppmann, 2017). To
achieve this goal, our study offers guidelines for con-
ducting data engineering more profoundly. Such a
capability can increase the success of data science
initiatives and help to create competitive advantages
(Davenport et al., 2006). Specifically, organizations
can use DERM to evaluate their internal software and
data engineering practices in a systematic way and en-
sure that all phases and layers are represented. For
data science and software engineering teams, DERM
can act as a tool that helps to raise the right questions
during requirements engineering and the development
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process and gain a better understanding of the overall
requirements.

Despite applying a high level of rigor, our research
is subject to several limitations. First, our study can-
not be free from researcher bias. The paper selec-
tion process during the SLR and the validation of our
model are subjective and were influenced by the re-
searchers’ experiences and backgrounds. Second, the
validation of our model is currently based on assign-
ing research topics. It lacks a practical evaluation in
the form of an application to a real-world develop-
ment project.

Based on our findings and limitations, we see
promising directions for future work. We plan to use
our model in different organizational settings to fur-
ther evaluate its validity. Specifically, we plan to use
DERM as part of a requirements engineering work-
shop in a development project for a machine-learning
application. It will hereby act as canvas, where the
participants can place the derived requirements and
ideas as sticky notes. The feedback from this work-
shop will help us extend or adapt our model to meet
the expectations of software and data engineers. Ad-
ditionally, we will follow up on some research topics
presented in Section 5 to create a deeper knowledge of
engineering data-intensive applications within these
areas.
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