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Abstract: One of the main problems in the final stage of the production line of ornamental stone tiles is the process of 
quality control and product classification. Successful classification of natural stone tiles based on their 
aesthetical value can raise profitability. Machine learning is a technology with the capability to fulfil this task 
with a higher speed than conventional human expert based methods. This paper examines the performance of 
15 convolutional neural networks in sorting dolomitic stone tiles as far as models’ accuracy and 
interpretability are concerned. For the first time, these two performance indices of deep learning models are 
studied massively for the industrial application of machine vision based marbles sorting. The experiments 
revealed that the examined convolutional neural networks are able to predict the quality of the marble tiles in 
an industrial environment accurately in an interpretable way. Furthermore, the DenseNet201 model showed 
the best accuracy of 83.24%, a performance, which is supported by the consideration of the appropriate quality 
patterns from the marble tiles’ surface.  

1 INTRODUCTION 

Natural stones, like granites, sandstones, marbles and 
basalts were used for centuries as the main building 
materials. Apart from the endurance of a rock type, 
the aesthetic was also an important factor for 
choosing a rock over the other. Although modern 
building materials and technology have replaced 
natural stones they are still used mainly for 
decoration, and their market share is rising. These 
ornamental rocks are quarried in blocks, cut into slabs 
from which the final tiles are manufactured. The last 
step of the tile production line, before shipping, is the 
classification of the tiles, which is still done mainly 
manually by experts. The main factor that needs to be 
considered, when classifying natural rock tiles is the 
number of visible cracks and impurities, which 
change the overall look of the product. The absence 
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of cracks and impurities is usually adding value to the 
quality, and therefore its market price, but is not 
always the rule. This delicate part of the production 
line is time consuming and very subjective. This 
results in misclassification of the final product and 
thus raising the production cost. Moreover, the 
number of experts that can efficiently sort the marble 
tiles is decreased constantly. The use of machine 
learning (ML) and computer/machine vision 
(CV/MV) can automate the process of quality control 
and classification, leading to the reduction of 
production cost. 

One of the first attempts to classify marble slabs 
by using Neural Networks (NN) was made in 1995, 
when a multilayer perceptron (MLP) with 
Backpropagation (BP) was used (Hernandez et al., 
1995). In 1999 the Learning Vector Quantization 
(LVQ) NN was used for the clustering and 
classification of marble slabs according to their 
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texture information (Martínez-Cabeza-de-Vaca-
Alajarín & Tomás-Balibrea, 1999). In 2005 a 
classification rate of 98.9% was achieved for 
classifying the “Crema Marfil Sierra de la Puerta” 

marble slabs into three categories by using MLP and 
BP (Martínez-Alajarín et al., 2005). In 2010 
functional neural networks were tested in order to 
classify granite tiles (Lopez et al., 2010). 
Convolutional Neural Network (CNN) approaches 
were first applied on granite tile classification in 
2017. In this approach, small patches of images taken 
from granites were used in order to augment the 
dataset and a majority voting procedure was taken 
into account (Ferreira & Giraldi, 2017). In 2020, the 
VISUAL Geometry Group 16 (VGG16) (Simonyan 
& Zisserman, 2015) CNN was used to identify images 
of peridotite, basalt, marble, gneiss, conglomerate, 
limestone, granite and magnetite quartzite with a 
recognition probability greater than 96%. In the case 
of multi-type hybrid images the recognition 
probability was greater than 80% (Liu et al., 2020). In 
2021, machine learning algorithms (Sidiropoulos et 
al., 2021) were tested on the same dataset used in the 
current study. Original RGB images and images 
produced by 18 texture descriptors on a dataset 
provided by Solakis Marble S.A. were used. This 
former research is extended in this study, by 
examining the performance of CNN models on the 
same dataset in terms of accuracy and interpretation 
of their decisions. For this purpose, 15 CNNs were 
tested on RGB digital images acquired in an industrial 
environment in order to find the best performing 
model.  
The main contribution of this study can be 
summarized as follows:  
1. A massive comparison of 15 CNN models was 
made on real world data originating from the 
production line of natural stone tile production. 
2. By using heatmaps the results of the tiles’ 
classifications were interpreted for the first time. 

This paper is organized as follows: In section 2, 
the dataset and the methodology used are described. 
Section 3 presents the experiments and the 
corresponding results. Finally, section 4, discusses 
the results and delineates the future research. 

2 MATERIALS AND METHODS 

2.1 The Dataset 

The stone tiles, sized 30x60 cm (Figure 1), which 
were used to compile the dataset, were delivered by 
Solakis Antonios Marble S.A. (Solakis, n.d.). This 

decorative material is cut from slabs exclusively 
quarried in the village of Kokkinoghia, in Drama, in 
North-east Greece. According to the EN 12440 
(Laskaridis et al., 2015) this ornamental stone is 
known as Kokkonoghia Grey but is usually referred 
to with the name Grey Lais. This ornamental stone is 
a carbonate metamorphic rock known as dolostone or 
dolomite with a chemical composition consisting of 
94% of the mineral dolomite CaMg(CO3)2 and 6% of 
the mineral calcite CaCO3 (Laskaridis et al., 2015). 
Dolomites are often referred to as marbles in the 
industry. The term marble tile will also be used 
throughout this study. The digital images of the tiles 
were acquired by using a low cost experimental setup 
in an industrial environment described briefly in 
section 2. This setup delivered 986 digital images 
from the polished side of the tiles with a resolution of 
1500x725 pixels compressed in the jpg format.  

 

(a) (b) (c) 

Figure 1: Representative tiles of (a) Class A: Lais G Extra, 
(b) Class B: Lais GA and (c) Class C: Lais GM. 

Specialised workers classified the samples into 
three classes based on their decorations. Cracks and 
impurities are unwanted structures for this type of 
marble. Class A included 697 samples, class B was 
comprised of 133 samples and in class C 156 samples 
were available. Class A, B and C have specific market 
names, which are Lais G Extra, Lais GA and Lais GM 
respectively (Solakis, n.d.). Because of the dataset 
been imbalanced, class A was reduced to 200 images 
randomly. This resulted in the final dataset size of 489 
(class A: 200 samples, class B: 133 samples and class 
C: 156 samples). 

2.2 Methodology 

This study was completed in six steps. The pipeline is 
depicted in Figure 2. 
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Figure 2: Pipeline of the methodology applied. Step 4 does 
not depict a specific CNN. The example tile is classified as 
class B. 

2.2.1 Digital Image Acquisition 

The original RGB digital images, from which the 
dataset was compiled, were acquired by a device 
consisting of a mechanical roller table, a digital 
camera and a lighting setup. The roller table was fed 
manually with the labelled marble tiles which were 
photographed on the move by a MV_CA050-
10GM/GC digital camera equipped with a MVL-
MF0824M-5MP lens at a 90 cm distance. L.E.D. 
arrays were used as a light source inside a diffusion 
box.  

2.2.2 Dataset Preprocessing  

In order to feed the CNNs under examination, the 
original RGB digital images, had to be preprocessed. 
In the second step (Figure 2), noise from the 
surrounding environment was removed, the tile was 
extracted and the image was downsized. This was 
achieved by converting the color space from RGB to 
HSV followed by a Gaussian blur. Next, a threshold 
was applied using a specific range of values followed 
by the application of a contour detection algorithm 
filtering out the vertical and horizontal lines. The 
resulting four lines were used to determine the 
corners of the rectangle tile. Finally, a perspective 

transform was applied to align and to resize the tiles 
to a 400x700 pixel vector. 

CNNs have their own specific requirements for 
the size of the inputs that they can handle. Therefore 
the digital images had to be downsized to meet these 
specifications. This was done in step 3 where the 
preprocessed images were downsized to 224x224 
pixels.  

2.2.3 Convolutional Neural Networks 

CNNs are essentially deep neural networks (DNNs) 
specially developed for image classification. The 
extensive use of DNNs in real world problems was 
delayed for many years because high computational 
power needed was not available. The progress in 
computer hardware and especially in Graphical 
Process Units (GPUs) of the recent years allowed the 
usage of complex DNNs for numerous real world 
problems encountered in the industry. In step 4 of the 
proposed methodology, 15 pretrained CNNs using 
the ImageNet database, available from the Keras 
library (Chollet, 2015), were used to build the models 
using the dataset of the 489  digital images of the 
dolomite tiles. The pretrained models based on 15 
CNNs were used, namely, DenseNet121 (DN121), 
DenseNet169 (DN169), DenseNet201 (DN201) 
(Huang et al., 2018)., InceptionResNetV2 (IRNV2) 
(Szegedy et al., 2016), MobileNet (MN) (Howard et 
al., 2017), MobileNetV2 (MNV2) (Sandler et al., 
2019), ResNet101 (RN101), ResNet152 (RN152), 
ResNet50 (RN50), (He et al., 2015), ResNet101V2 
(RN101V2), ResNet152V2 (RN152V2), 
ResNet50V2 (RN50V2), VGG16, VGG19 
(Simonyan & Zisserman, 2015) and Xception (XC) 
(Chollet, 2017).  

These aforementioned pretrained models were 
fine-tuned applying the following modifications: 
1. The original output layer of the NN was removed. 
2. The model’s weights were frozen. 
3. A Global AveragePooling2D was added, followed 
by a Dropout layer with a 20% frequency rate to avoid 
overfitting. 
4. A Dense output layer using the softmax activation 
function for the three quality classes was added 
5. The output layer was trained with the training and 
validation set of the current fold 
6. The weights for only a part of the network’s layers 
were unfrozen. 
7. The unfrozen weights were trained again, with the 
training and validation sets 

It should be noted that the Adam optimizer was used 
with a learning rate of 1e-5 and the categorical cross-
entropy function as the loss. Moreover, the backbone 
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of all the models was kept the same, without any 
changes to the model itself, keeping the original input 
shape of three channel images with a size of 224x224. 
Additionally, the modifications 6 and 7 are part of the 
fine-tuning of the transfer learning. These 
modifications were applied in order to find the 
number of trained layers that yielded the best 
performance for the model. Moreover, the fine-tuning 
was done for each additional quarter of the network’s 
layers, meaning that we tested the network’s 
performance by training 25% of the layers, 50%, 75% 
and 100%. All models were trained with default 
parameters and the number of layers used are 
summarized in Table 1. 

Table 1: Layers used to train each model. 

 

A 10-fold cross validation technique was applied 
for the evaluation of the CNNs, which were trained 
for 50 epochs. The dataset was split initially to 90% 
for training and 10% for testing, where the training 
set was split again by 90% for training and 10% for 
validation. The python programing language was 
used to implement the code by using the Tensorflow 
library (Abadi et al., 2015), for training the models, 
and the machine learning library sklearn (Pedregosa 
et al., 2018) for the evaluation.  For the evaluation of 
the models’ performance, the following metrics were 
used: accuracy, precision, recall and f1-score.  

2.2.4 Gradient-weighted Class Activation 
Mapping 

Until recently, Neural Networks were handled as 
black boxes. The results from classification and 
regression tasks were impossible to interpret. 
Gradient-weighted Class Activation Mapping (Grad-
CAM) (Selvaraju et al., 2017) is an algorithm, which 
outputs heatmaps of the images used for the training 
of the CNNs. Heatmaps highlight, using colors, the 
areas where the model is focusing on for extracting 
the decisions, thus allowing the interpretation of the 
results. Warm colors indicate important, whereas 
colder colors indicate less important areas for the 
model’s decisions. Areas not marked by any color 
were not taken into account during the prediction 
process. In the fifth step of this study, Grad-CAM is 
applied for the interpretation of the results. In the 
sixth step, the heatmaps’ output was interpreted in 
order to validate the classification’s reliability 

3 EXPERIMENTS 

3.1 Results and Metrics 

An overview of each metric versus the fine-tuned 
model used can be examined in the boxplots of  
 

 

Figure 3: Accuracy for the 15 CNNs. 

 

Figure 4: Precision for the 15 CNNs. 

 

Figure 5: Recall for the 15 CNNs. 

 

Figure 6: F1 for the 15 CNNs. 
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Figures 3-6. Each model’s metrics are summarized in 
Table 2.  

Table 2: Results of the experiments. 

 

DN201 had the best overall performance: accuracy 
=83.24%, precision=82.98, recall=82.00% and f1-
score=82.04%. DN169 achieved better precision with 
a value of 83.97%, almost 1% better than the DN201, 
but had an outlier. XC performed worst with 
accuracy=78.73%, precision=79.14, recall = 77.88% 
and f1-score = 77.98%. The boxplots show that the 
DN201 is the most robust as it has the highest median 

for all metrics excluding the precision. Also the 
dispersion is comparable low. Other models like 
MNV2 and RN101 have a lower dispersion but 
outliers are present. All models have many outliers 
except DN201, IRNV2, MN, RN101V2, RN152, 
RN152V2 and RN50V2.  

3.2 Interpretation of the Heatmaps 

Heatmaps of all models, classifying successfully 
three different sample tiles belonging to class A, B 
and C are depicted in Figure 7, 8 and 9 respectively. 
As it can be observed each model is not focusing on 
the exact same area in order to classify each tile. 

This confirms that each CNN is working in a 
different way.  

The probability of the correct classifications is 
>99% in all than five cases: RN101V2 classified 
sample 1 to class A (Figure 7) with a probability of 
93.7%. DN121 classified sample 2 to class B (Figure 
8) with a probability of 80.32%. MN, RN101 and 
RN50 classified sample 3 to class C (Figure 9) with a 
probability of 97.44%, 98.9% and 74.31% 
respectively.  

 
Figure 7: Heatmaps for the same marble tile (sample 1) successfully classified by all CNNs as class A. 

 
Figure 8: Heatmaps for the same marble tile (sample 2) successfully classified by all CNNs as class B. 
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Figure 9: Heatmaps for the same marble tile (sample 3) successfully classified by all CNNs as class C.  

By comparing the heatmaps (Figure 10) of the three 
models representing the best (DN201, f1=82.04%), 
the mean (RN101, f1=80.86%) and the worst (XC, 
f1=77.98%) f1-score, the following qualitative 
interpretation for the classification can be made: In 
sample 1, DN201, RN101 and XC successfully 
spotted the areas with alternating dark and light 
colored lineation, which define class A. The best 
classification metrics of DN201 can be attributed to 
that it is not focusing on a specific structure of the tile 
but rather draws conclusions from the whole tile in 
class A. In sample 2, light colored intruding veins and 
intersecting cracks were focused on, which define 
class B. In sample 3, DN201 focused on the dark 
inclusions, which characterizes class C. RN101 and 
XC only focus partially (light blue color) on these 
areas leading to lower metrics. 

 
Figure 10: Heatmaps of the three representative CNNs, 
correctly classifying three different marble tiles (sample 1-3). 

In Figure 11 the heatmaps of DN201, RN101 and XC 
are compared on tiles that were not successfully 
classified by all models. In this comparison, the first 

column represents the heatmaps of the DN201, which 
successfully classified the samples, whereas the 
second and the third column shows the heatmaps of 
the models, RN101 and XC, which misclassified the 
same samples. Table 3 lists the probability of each 
classification 

Table 3: Model’s classifying probability of samples. 

 
 

 
Figure 11: Heatmaps of the three representative CNNs 
classifying four different marble tiles (samples 4-7) with 
correct and incorrect classification results. 
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Sample 1 was correctly classified by DN201 to class 
A with a probability of 97.15% by focusing on a 
broader area where the alternating dark and light 
colored lines are present. RN101 and XC incorrectly 
classified the samples to class C with a lower 
probability, 78.86% and 51.29% respectively, 
focusing on discreet areas of dark lines and 
misinterpreting them as spots. 

Sample 2 was classified successfully as class A by 
DN201 with a probability of 97.33%. RN101 
incorrectly classified the sample as class B with a 
probability of 56.41%, focusing on the light colored 
intruding veins and XC classified it incorrectly as 
class C, with a probability of 97.44%, by focusing on 
the dark colored intruding veins. 

Sample 3 was classified correctly as class B by 
DN201 with a probability of 96.37%. RN101 and XC 
models classified incorrectly the sample as class C by 
focusing on the dark lines misinterpreting them as 
dark spots with probabilities 79.09% and 89.22% 
respectively. 

Sample 4 was classified correctly as class C by 
DN201 with a probability of 79.81%. Both RN101 
and XC incorrectly classifies sample 4 as class A with 
a probability of 84.16% and 100% by failing to focus 
on the dark spots. 

4 DISCUSSION  

This paper tested the effectiveness of using pretrained 
CNNs in order to classify natural dolomite rock tiles. 
The results showed that this type of NN performs 
better than conventional classifiers like Support 
Vector Machine (SVM) (Cortes & Vapnik, 1995), K-
Nearest Neighbors (KNN) (Altman, 1992), Random 
Forest (RF) (Breiman, 2001), Multilayer Perceptron 
(MLP) (Popescu et al., 2009), Logistic Regressor 
(Webb et al., 2011), Stochastic Gradient Descent 
Classifier (SGD) (Ruder, 2017) and XGBoost 
Classifier (XGB) (Chen & Guestrin, 2016) when 
trained to discriminate dolomite tiles based on their 
texture (Sidiropoulos et al., 2020).  

Model DN201, using 707 layers, performed with 
f1-score 82.04% trained with RGB images, whereas 
the the XGBoost classifier trained by XCS-LBP 
texture descriptors, achieved a performance of f1-
score 65.06% (Sidiropoulos et al., 2020). 

By using Grad-CAM, it was possible to track the 
areas on the surface of the tiles, which the model 
focused on, in order to classify the tiles. This added 
reliability to the results. The model build, focused on 
the alternating light and dark colored banding for 
identifying class A. Class B was recognized by the 

model focusing on the light colored veins cutting the 
banding in different angles. Class C was classified by 
focusing on the dark spots. 

In the next step of this research the best 
performing model (DN201) will be reevaluated using 
an augmented dataset using new techniques such as 
MixUp (Zhang et al., 2018) and CutMix (Yun et al., 
2019). Furthermore the possibility of using a 
combination of the CNNs studied in this paper to 
compile an ensemble (Zhou, 2009) will be studied.  

In the final stage of this project the resulting 
model will be integrated into an automation system at 
the facilities of Intermek Industrial & Trading Ltd. 
This integration will permit the real-time 
performance analysis of the proposed tiles sorting 
model under industrial conditions. 
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