
Do the Scaled Agile Practices from S@S Help with Quality
Requirements Challenges and If So, How Do They Do It?

Wasim Alsaqaf, Maya Daneva and Roel Wieringa
School of Computer Science, University of Twente, Enschede, The Netherlands

{w.h.a.alsaqaf, m.daneva, r.j.wieringa}@ utwente.nl

Keywords: Agile Scaled Framework, Scrum@Scale, S@S, Quality Requirements, Requirements Engineering,
Non-functional Requirements, Documentary Research Method.

Abstract: Quality Requirements (QRs) pose challenges in many agile large-scale distributed enterprise systems. Often,
enterprises counter such challenges by borrowing some heavyweight practices, e.g. adding more
documentation. At the same time, agile methodologists proposed several scaled agile frameworks to
specifically serve agile enterprises working on large and distributed systems. Little is known about the extent
to which the proposed scaled frameworks address QRs and the specific ways in which this happens. Moreover,
do these frameworks approach the QRs challenges in ways consistent with the Agile Manifesto? This paper
treats these questions by analyzing one well-documented scaled framework, namely Scrum@Scale. We
evaluated the alignment of Scrum@Scale with the Agile Manifesto, by means of the 4-Dimentional Analytical
Tool proposed by other researchers. We then analyzed the practices of Scrum@Scale from the perspective of
practitioners responsible for the QRs in a project, in order to understand how the Scrum@Scale practices
mitigate those QRs challenges reported in previous work. Our analysis indicated that Scrum@Scale supports
the agile values defined by the Agile Manifesto. Plus, we identified 12 Scrum@Scale practices that could
(partially) mitigate one or more of the reported QRs challenges. Four of the reported QRs challenges got no
remedy offered by Scrum@Scale.

1 INTRODUCTION

Currently, the software market is marked by two
strong trends: agile and distributed (Calefato and
Ebert, 2019). Both are increasingly more demanded
in large-scale project delivery (Smart, 2018).
However, the transferability of experiences made in
the original context for which agile development
methods were originally designed – small, co-located
teams – to the realities of large-scale distributed
contexts is far from flawless (Smart, 2018; Conboy
and Carroll, 2019; Kalenda, Hyna, and Rossi, 2018;
Bick et al., 2018). Agile methodologists do provide
guidelines to enterprises on how to transform to large-
scale distributed agile, which often come in the
format of the so-called ‘agile scaled frameworks’, e.g.
Disciplined Agile Delivery (DAD) (Ambler and
Lines, 2012) among others. However, as Smart
(2018) observes, relatively little research is published
about these frameworks' effectiveness in practice,
especially on an enterprise scale. Moreover, as per a
2018 review (Kalenda, Hyna, and Rossi, 2018), large-
scale agile enterprises adopting these frameworks

report a broad range of technical and enterprise-level
challenges due to resistance to change, shifts in the
ways of thinking of hierarchies of requirements, lack
of transparency, and lack of knowledge on proper
integration of agile and non-agile ways of working.
This paper is dedicated to one specific type of
requirements challenges in large-scale agile delivery,
namely those pertaining to QRs, such as security and
usability. The paper builds upon an earlier study
(Alsaqaf, Daneva, and Wieringa, 2019) in which the
authors found that often, enterprises counter QRs
challenges by borrowing some heavyweight
practices, e.g. creating new artefacts (security or
usability stories) or roles (e.g. security officer, User
Experience team), and then adding these practices to
their agile delivery cycle. Therein (Alsaqaf, Daneva,
and Wieringa, 2019), is also stated that the
introduction of these heavyweight practices
unexpectedly brought with them new problems. But
do agile methodologists propose to remedy QRs
issues in large-scale agile, by injecting more
heavyweight practices in the development process,
and, eventually, making it less agile? Do these

Alsaqaf, W., Daneva, M. and Wieringa, R.
Do the Scaled Agile Practices from S@S Help with Quality Requirements Challenges and If So, How Do They Do It?.
DOI: 10.5220/0010514304410452
In Proceedings of the 16th International Conference on Software Technologies (ICSOFT 2021), pages 441-452
ISBN: 978-989-758-523-4
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

441

proposed frameworks approach the QRs challenges in
ways consistent with the Agile Manifesto (Agile
Alliance, 2001)? As we found no publication
answering these questions, we initiated a
documentary research process to understand and
evaluate the methodologists’ proposals for treating
QRs challenges. For the purpose of our research we
chose for inclusion those scaled agile frameworks
deemed ‘most popular’ according the 14th annual
state of agile report (COLLAB.NET and
VERSIONONE.COM, 2020).

As already said, the present work rests on a previous
published exploratory study (Alsaqaf, Daneva, and
Wieringa, 2019) that found 15 QRs challenges and 9
practices that agile practitioners currently use to cope
with the identified challenges. We note that these
findings (Alsaqaf, Daneva, and Wieringa, 2019) came
out of an interview-based research with practitioners
in enterprises committed to agile project delivery.
However, these 9 practices were not collected in
relation to any existing prescriptive or descriptive
agile scale framework such as DAD (Ambler and
Lines 2012) nor agile method such as Scrum
(Schwaber and Sutherland, 2017). Given this
background, in the present research we aim to explore
those agile practices that are suggested by the most
popular published agile scaled frameworks and that
could help mitigate the QRs challenges which were
identified in our previous work (Alsaqaf, Daneva, and
Wieringa, 2019). Particularly, we want to know those
practices designed by agile-at-scale methodologists
that are agile in nature and align with the values of the
Agile Manifesto and not heavyweight practices that
when added to an agile process have a tendency to
make it less agile.

The present paper reports our results of analysing
one specific scaled framework, namely, Scrum at
Scale (S@S) proposed by Sutherland (2019). Our
selection of S@S is explained later in section 2.1.
Here, we would like to note that our ongoing research
includes also some other frameworks, however these
are out of scope in this paper. This being said, in the
research that we report in the present paper, we set out
to answer the following research question: What are
the agile practices suggested by the S@S agile scaled
framework that could mitigate the effect of the QRs
challenges identified in (Alsaqaf, Daneva, and
Wieringa 2019) ? Using a documentary research
process (Appleton and Cowley, 1997; Bowen, 2009;
Atkinson and Coffrey, 2004), we analyzed the
practices that the S@S methodologist (Sutherland,
2019) proposed to use in large enterprises projects.
We first evaluated the alignment of S@S with the
Agile Manifesto, by means of the 4-Dimentional

Analytical Tool (4-DAT) proposed by other
researchers (Qumer and Henderson-Sellers, 2006;
Qumer and Henderson-Sellers, 2008). We then
analysed the practices of S@S from the perspective
of practitioners responsible for engineering the QRs
in a project, in order to understand how the S@S
practices mitigate those QRs challenges reported in
previous work. In what follows, we first describe our
research process and provide definitions of the most
important concepts (Sect. 2 and Sect. 3). We then
present our results (Sect. 4) and our discussion on our
findings (Sect. 5), on the limitations of this research
(Sect. 6) and on its implications (Sect. 7).

2 RESEACH PROCESS

The overall aim of our research is to investigate the
agile practices suggested by published agile scaled
frameworks which could mitigate the impact of the
QRs challenges which were identified in a previous
study (Alsaqaf, Daneva, and Wieringa 2019).
Towards this end we set up a research process
inspired by the documentary analysis methodologists
Appelton and Cowley (1997), Bowen (2009) and
Attkinson and Coffey (2004). We chose these
methodological guidelines because of their suitability
to our research context. As Appleton and Cowley
state, documentary research is defined as the research
conducted through the use of official documents as
the source of information. And it is the official
documents of scaled agile (i.e. guidelines in the
textbooks on scaled agile) that we want to examine in
our research context. As Figure 1 shows, our research
process included these steps: (1) selecting agile scaled
frameworks for inclusion in the research, (2) selecting
an agile analysing tool to asses the degree of agility,
(3) evaluating their degree of agility, and (4)
evaluating the extent to which the practices proposed
in the frameworks mitigate the QRs challenges
(Alsaqaf, Daneva, and Wieringa 2019).

Figure 1: Our research process.

ICSOFT 2021 - 16th International Conference on Software Technologies

442

Step (1) explains our reasoning for including
certain frameworks. Step (2) explains our reasoning
for choosing a certain agility analysing tools. Step (3)
is concerned with the evaluation of how agile a scaled
framework is, as proposed by its authors in their
framework’s documentation (and not as implemented
in a particular organization). Step (4) is concerned
with the matching of the agile practices proposed by
the S@S authors against the QRs challenges found in
a previously published study (Alsaqaf, Daneva, and
Wieringa, 2019). As this paper is focused on one
framework only (S@S (Sutherland, 2019)), it in turn
reports on steps 2 and 3 as executed in the context of
analysing this specific framework. We describe the
steps of our process in the next sub-sections.

2.1 Selecting Agile Scaled Frameworks

Portman (2017) has reported the existence of more
than 30 agile scaled frameworks and classified these
into two categories, namely (1) Enterprise-targeted
frameworks (e.g. SAFe (Leffingwell and Knaster
2017), LeSS (Larman and Vodde, 2016), Nexus
(Schwaber 2018), S@S (Sutherland 2019)) which are
used to deliver complex enterprise-level products
whereby the collaboration between distributed teams
is essential and (2) Web scale-targeted frameworks
(e.g. Spotify (Kniberg and Ivarsson, 2012), Scaled
Agile Lean Development (ScALeD)1) which are used
to support the IT-department of an enterprise in
maintaining the existing applications whereby the
dependencies between distributed teams are
minimalized. In this paper, we focus on the first
category of frameworks because these frameworks
match our research interest, namely the distributed
and large-scale context. Furthermore, we limit our
selection of frameworks to those that are the most
used according to the 14th annual state of agile report
(COLLAB.NET and VERSIONONE.COM, 2020).
These sources indicated the following agile scaled
frameworks as the most popular: 1) SAFe
(Leffingwell and Knaster, 2017), 2) SoS (Sutherland
2001), 3) Internally created methods, 4) DAD
(Ambler and Lines, 2012), 5) LeSS (Larman and
Vodde, 2016), 6) Enterprise Scrum (ES) (Beedle
2018), 7) Lean management 2 , 8) Agile Portfolio
Management (AgilePM) (Krebs, 2008), 9) Nexus
(Schwaber 2018), 10) Recipes for Agile Governance
in the Enterprise (RAGE)3. The intersection between
the Enterprise-targeted frameworks in (Portman,
2017) and the most popular agile scaled framework

1 http://scaledprinciples.org/
2 https://www.lean.org/WhatsLean/

described in (COLLAB.NET and
VERSIONONE.COM, 2020) reduces our selection
group to SAFe (Leffingwell and Knaster, 2017),
LeSS (Larman and Vodde, 2016), Nexus (Schwaber
2018), S@S (Sutherland, 2019), SoS (Sutherland,
2001), DAD (Ambler and Lines 2012), ES (Beedle,
2018), AgilePM (Krebs, 2008), Lean management
frameworks and RAGE. In this paper, we focus solely
on the agile practices of the S@S (Sutherland 2019)
framework. We note that S@S is built upon SoS
(Sutherland 2001) and Scrum (Schwaber and
Sutherland 2017), both of which are among the most
used agile frameworks and methods (COLLAB.NET
and VERSIONONE.COM, 2020). However, our
choice for S@S (Sutherland, 2019) does not mean
that we prefer or recommend S@S (Sutherland,
2019). The other frameworks will be investigated in
our follow-up research.

2.2 Selecting Agility Analysing Tool

In order to evaluate the degree of agility of S@S
(Sutherland 2019) we selected the 4-Dimensional
Analytical Tool (4-DAT) described by Qumer et al.
(Qumer and Henderson-Sellers, 2006; Qumer and
Henderson-Sellers 2008). We note that there are other
approaches that assess the agility level of an agile
software development framework such as the
Conceptual Framework of Agile Methods described
by Conboy et al. (Conboy and Fitzgerald, 2004) and
the AgilityMod approach of Özcan-Top and
Demirors (2019). However, in contrast to the 4-DAT
approach (Qumer and Henderson-Sellers, 2006;
Qumer and Henderson-Sellers, 2008) which is
focused on the agile practices of the agile scaled
framework itself, these other assessment frameworks
(Conboy and Fitzgerald, 2004; Özcan-Top and
Demirors 2019) focus on the agility factor of the
particular application of the particular framework’s
practices within a particular enterprise by agile teams.
Moreover, Conboy and Carroll (2019) note that the
right implementation of an agile scaled framework by
software development teams depends on multiple
factors (e.g. a solid understanding of the agile scaled
framework, the skills and knowledge of the involved
software development teams). In turn, evaluating the
agile practices as implemented by software
development teams does not give an insight in how
the agile scaled framework itself describes its own
practices. It merely describes the way the software
development teams implement the particular agile

3 https://www.cprime.com/rage/

Do the Scaled Agile Practices from S@S Help with Quality Requirements Challenges and If So, How Do They Do It?

443

scaled framework. Taking into account that the 14th
annual state of agile report (COLLAB.NET and
VERSIONONE.COM, 2020) has stated (1) Lack of
skills/experience with agile methods, (2) Insufficient
training and education, and (3) Inconsistent processes
and practices across teams, as challenges experienced
in scaling agile, we decided to evaluate the practices
as described by the authors of S@S (Sutherland,
2019) and the S@S-related literature on the S@S
website.

2.3 Evaluating the Degree of Agility

Since the introduction of the Agile Manifesto in 2001
(Agile Alliance, 2001), over 30 frameworks have
been published that claim to be agile. Each has based
its claim on providing practices that adhere to some
or all of the agile principles described in the Agile
Manifesto (Agile Alliance, 2001). However, while
creating a framework for scaling up agility, it might
well be possible that the framework’s authors
introduce some heavyweight practices into it. This is
because scaling up agility necessarily involves some
balancing of agility and discipline and of
organizational structures and assumed coordination
mechanisms and roles (Conboy and Carroll 2019). In
fact, a 2018 literature review (Putta, Paasivaara, and
Lassenius, 2018) on the adoption of the SAFe
framework reports that “moving away from agile” as
an important challenge, among others. Evaluating the
degree of agility of an agile scaled framework is
therefore essential to be able to accept or reject its
practices or part of them as agile practices. In our
research, we selected 4-DAT in order to evaluate the
degree of agility of S@S as mentioned in section 2.2.

2.4 Identifying Practices Mitigating
QRs Challenges

The literature on S@S (Sutherland, 2019) in its
official website www.scrumatscale.com was
investigated. The first two authors analysed the S@S
practices based on their description and fitness to
mitigate the QRs challenges identified in the previous
study (Alsaqaf, Daneva, and Wieringa, 2019). The
analysis started with reading and re-reading the
reference document of S@S (see ref. (Sutherland,
2019)) and the information on
www.scrumatscale.com that pertains to the 12 large
enterprises that implemented S@S, which served as
input. Both researchers then checked the relevance of
each S@S practice for mitigating the QRs challenges
in (Alsaqaf, Daneva, and Wieringa, 2019) which are
listed in Table 5.

3 BACKGROUND AND
DEFINITIONS

3.1 Scrum@Scale (S@S)

S@S is created by a former medical school professor
Jeff Sutherland, also known as the co-creator of the
original Scrum (Schwaber and Sutherland, 2017). He
defines S@S as: A framework within which networks
of Scrum teams operating consistently with the Scrum
guide can address complex adaptive problems, while
creatively delivering products of the highest possible
value. It is a framework for scaling Scrum. It radically
simplifies scaling by using Scrum to scale Scrum.
This definition positions Scrum as the fundament that
S@S was built upon. Next, Sutherland uses the term
‘scale-free architecture’ to denote the way in which
Scrum evolves toward S@S. He compares that with
scaling a single cell (e.g. Scrum) toward a biological
organism (e.g. S@S). Therefore S@S emphasizes the
creation of a Reference Model at the very beginning
of scaling Scrum. The Reference Model is a set of
Scrum teams, each of which implements Scrum as
defined by the Scrum guide (Schwaber and
Sutherland 2017) and evolves toward S@S. S@S
includes two cycles, namely: the Scrum Master Cycle
accountable for how to implement the system and the
Product Owner Cycle which is accountable for what
should be implemented.

3.1.1 The Scrum Master Cycle

It describes team-level processes in which Scrum is
applied as per the Scrum guide (Schwaber and
Sutherland, 2017). At this level all Scrum roles (e.g.
scrum master, development team product owner),
Scrum events (e.g. Sprint Planning, Daily Scrum,
Sprint Re- view, Sprint Retrospective, the Sprint) and
Scrum artefacts (e.g. Product backlog, Sprint
backlog, and Product increment) are implemented. In
contrast to Scrum, S@S emphasizes that the size of a
Scrum team must be between 4 and 6 members (as
opposed to 3 to 9 members in (Schwaber and
Sutherland, 2017)). Moreover, S@S recommends
splitting every Scrum team of 6+ people into two
teams. The coordination between the Scrum teams at
team-level is done by a Scrum of Scrums (SoS) team
which is a Scrum team that has all needed skills to
coordinate the work among the individual Scrum
teams. A SoS team may coordinate the work of up to
5 Scrum teams. Depending on the size of the project’s
organization, multiple SoS teams may be needed. In
that case, a Scrum of Scrum of Scrums (SoSoS) team
must be created to coordinate the work of up to 5 SoS

ICSOFT 2021 - 16th International Conference on Software Technologies

444

teams as depicted in Figure 2. The Scrum Master of
the SoS team is called the Scrum of Scrums Master
(SoSM), while the Scrum master of the SoSoS is
called Scrum of Scrum of Scrums Master (SoSoSM).
Large agile organizations may have multiple SoSoS
teams. The work of those teams will be coordinated
by the so-called Executive Action Team (EAT) which
is the SoS team of the entire agile organization (see
Figure 2). The EAT’s members must have enough
skills and be empowered to enable the right
implementation of Scrum within the organization and
to remove any impediments of high level that cannot
be removed at lower SoS level.

Figure 2: The structure of scrum teams in S@S.

Figure 3: The structure of Product Owner teams in S@S.

3.1.2 The Product Owner Cycle

It assures a clear overview of what is needed to be
done during the agile project. Product owner (PO)
teams are established in this cycle. The product
owners (POs) of each single Scrum team of a
particular SoS team are grouped into a PO team that
serves the whole SoS that the Scrum teams are part
of. In line with the scale-free architecture of S@S, the
PO team can grow into a bigger structure in the same
way SoS’s grow into SoSoS’s structure (see Figure
3). However, S@S doesn’t provide a name for that
bigger structure of PO teams. PO teams at SoS-level
as well as SoSoS-level hold frequently a so-called
MetaScrum meeting with stakeholders to refine the
overall Product Backlog as depicted in Figure 3.
Moreover, since the PO team itself is a Scrum team,
it has its own Scrum master. Besides the Scrum
Master role, the PO team has a new role, namely the
Chief Product Owner (CPO). The CPO is responsible
for coordinating the work needed to generate the
product backlog of the SoS teams that the CPO’s PO
team is part of. Similarly to the EAT, large agile
organizations may set up an empowered PO team for

the whole agile organization. Such a team is called in
S@S the Executive MetaScrum (EMS) (see Figure 3).

3.2 4-Dimensional Analytical Tool
(4-DAT)

This section explains the evaluation model that we
use for understanding the degree of agility of S@S.
Qumer and Henderson-Sellers (2006 and 2008) have
developed the 4-DAT tool to compare agile methods
and evaluate their degree of agility in terms of four
dimensions.

3.2.1 Dimension 1: Method Scope
Characterizations

It serves to compare agile methods at scope level, by
checking key scope items (e.g. Project Size, Team
Size, Development Style, Code Style, Technology
Environment, Physical Environment, Business
Culture, Abstraction Mechanism as described) (
Qumer and Henderson-Sellers 2008).

3.2.2 Dimension 2: Agility Characterizations

This is a set of agility features to measure the agility
of a given method. These features are: flexibility
(FY), speed (SD), leanness (LS), learning (LG) and
responsiveness (RS). The authors derived these
agility features from the following working definition
of agility: “Agility is a persistent behaviour or ability
of a sensitive entity that exhibits flexibility to
accommodate expected or unexpected changes
rapidly, follows the shortest time span, uses
economical, simple and quality instruments in a
dynamic environment and applies updated prior
knowledge and experience to learn from the internal
and external environment”. Dimension 2 is
quantitative and is evaluated by identifying the
presence or absence of the agility features in high
level elements (e.g. phases) and low level elements
(e.g. practices) of a given method. The elements are
shown in Table 1. Therein, a value of 0 or 1 is
assigned to each agility feature (FY, SD, LS, LG and
RS, see the respective columns of Table 1), where 0
and 1 mean absence and presence of a feature,
respectively. Then, the average of degree of agility
can be calculated using the equation provided in
(Qumer and Henderson-Sellers 2008).

3.2.3 Dimension 3: Agile Values
Characterizations

It evaluates whether the practices of the method to be
examined, support six agile values: four of those are

Do the Scaled Agile Practices from S@S Help with Quality Requirements Challenges and If So, How Do They Do It?

445

the values provided by the Agile Manifesto (Agile
Alliance, 2001), while the other two were reported by
(Qumer and Henderson-Sellers, 2006) (see Table 2).

3.2.4 Dimension 3: Software Process
Characterizations

This dimension examines those practices of agile
methods that support four components of the software
development process, namely: (1) Development
process, (2) Project management process, (3) Support
process, and (4) Process management process.

Table 1: Dimension 2: Agility Characterizations.

Scope item Description
Flexibility (FY) Does the method accommodate

expected or unexpected
changes?

Speed (SD) Does the method produce
results quickly?

Leanness (LS) Does the method follow the
shortest time span, use
economical, simple and quality
instruments for production?

Learning (LG) Does the method apply updated
prior knowledge and experience
to create a learning
environment?

Responsiveness
(RS)

Does the method exhibit
sensitiveness?

Table 2: Dimension 3: Agile Values Characterizations.

Agile values Description
Individuals and
interactions over
processes tools

Which practices value people
and interaction over processes
and tools?

Working software
over comprehensive
documentation

Which practices value working
software over comprehensive
documentation?

Customer
collaboration over
contract negotiation

Which practices value customer
collaboration over contract
negotiation?

Responding to
change over
following a plan

Which practices value
responding to change over
following a plan?

Keeping the process
agile

Which practices helps in
keeping the process agile?

Keeping the process
cost effective

Which practices helps in
keeping the process cost
effective?

Based on the aforementioned description of 4-
DAT, Dimensions 2 (Agility Characterizations) and 3
(Agile Values Characterizations) are applicable for
achieving our research objectives stated in Section 2.
Dimensions 1 (Method Scope Characterizations) and
4 (Software Process Characterization) are therefore

beyond the scope of this paper. Section 4 first
describes the practices and phases of S@S that were
subjected to our evaluation on Dimensions 2 and 3,
and then presents how these practices possibly
mitigate those QRs challenges identified in
previously published case study (Alsaqaf, Daneva,
and Wieringa, 2019).

4 FINDINGS

4.1 Evaluating the Degree of Agility

We investigated S@S as described in its literature and
studied its phases and practices. Furthermore, the
degree of agility of the S@S’s phases and practices
was measured in terms of the aforementioned agility
features (e.g. FY, SD, LS, LG and RS in Table 1).

4.1.1 S@S Phases

The official literature of S@S (Sutherland, 2019) (e.g.
https://www.scrumatscale.com/) doesn’t mention
particular phases specific to S@S. However, S@S
uses Scrum intensively to Scale Scrum teams. From
this perspective, we can safely assume that the Scrum
phases as described by (Schwaber and Beedle, 2001)
are also applied to S@S. The Scrum phases are:

a) Pregame. The Scrum pregame phase consists
of two activities, namely, planning and creating high
level design. The planning activity concerns with
defining project goals, creating the initial product
backlog, selecting the product owner, identifying
significant architectural and business requirements,
and identifying potential risks. After the planning, the
identified significant product backlog items get
analyzed to create and review the initial system
architecture.

b) Game. At this phase the actual development of
the system occurs in one to four iterative weeks called
‘The Sprint’. The Sprint starts with a planning
meeting where product backlog items are selected to
be implemented during the Sprint (e.g. Sprint product
backlog items). Each Scrum team is responsible for
implementing and testing its own Sprint backlog
items prior to integrate them as part of the whole
system. The output of each Sprint is called ‘an
incremen’t. The cumulative outcomes of all Sprints
are a potentially shippable release.

c) Postgame (Closure). At this stage the
integrated and tested system (e.g. a potentially
shippable release) is stable enough for customer’s
general release. Final system tests, final user

ICSOFT 2021 - 16th International Conference on Software Technologies

446

documentation, user training and marketing activities
could be part of this last stage of the Scrum process.

4.1.2 S@S Practices

S@S as described by its literature (Sutherland 2019
and the official website) is a framework where
networks of Scrum teams operate consistently with
the Scrum guide described in (Schwaber and
Sutherland, 2017), to address a complex problems.
That means that at the very bottom of the S@S
framework, Scrum teams apply Scrum practices (e.g.
Sprint, Definition of Done, Sprint retrospective,
Scrum master). Those Scrum teams collaborate
together by means of additional scaled practices
defined by S@S to coordinate the collaboration
between the Scrum teams. In this section, we only
report and measure the degree of agility of those
additional scaled practices as defined by S@S
(Sutherland, 2019).

a) Scrum of Scrums (SoS). SoS is a technique to
scale Scrum (see Figure 2). It was first described in
(Sutherland 2001) by the co-creator of Scrum and
creator of S@S Jeff Sutherland. SoS is a Scrum team
which is created to coordinate the work of a set of
single Scrum teams in order to deliver customer’s
value. The SoS needs to have all needed skills (e.g.
architects, QA experts, Product Owners) to ensure
that all parts developed by the different single Scrum
teams which are part of the SoS, are fully integrated
in a potentially shippable customer’s product.

b) Impediment Removal Backlog Artefact. An
SoS team maintains its own backlog artefact. Besides
product backlog items, the backlog artefact of an SoS
contains impediments raised by the Scrum teams that
need to be removed.

c) SoS Backlog Refinement Meeting. In this
refinement meeting, the representatives of the Scrum
teams that make up the SoS team discuss the
prioritized impediments on the impediment removal
backlog artefact. The impediments that are identified
as “ready to be removed” are further explored to
determine the most suitable way to remove them and
how to confirm their removal.

d) Scaled Daily Scrum. Each SoS team performs
its own up to 15 minutes daily Scrum meeting. S@S
encourages that representatives of the participating
Scrum teams and a representative of the Product
Owner team attend this SoS Scaled Daily Scrum.
During this meeting the attendees discuss the progress
of the Sprint and track the status of the impediments
that have been raised by the Scrum teams which may
impact the Sprint goal or the upcoming release.
Further, the SoS Scaled Daily Scrum is used to

improve the collaboration between the participating
Scrum teams.

e) SoS Retrospective. Similarly to a Scrum team,
an SoS team hold a retrospective meeting. This
meeting gives the representatives of the participating
Scrum teams the opportunity to share best practices
and improve the learning process. Moreover, S@S
emphasizes the importance of this meeting as a tool
for process improvement.

f) Scrum of Scrums Master (SoSM). The SoSM
is part of the SoS team and is responsible for the
integration of the completed work of the Scrum teams
participating in her SoS. The SoSM is further
accountable for enhancing transparency regarding
work progress and facilitating the prioritizing of the
impediment removal backlog items.

g) Scrum of Scrum of Scrums (SoSoS). When
there is more than one SoS team, the work of those
teams needs to be coordinated in a structured manner.
S@S coordinates the work of multiple SoS teams
through a SoSoS team (see Figure 2). A SoSoS team
interact with the SoS teams participating in it in the
same way in which a SoS team interact with Scrum
teams participating in that particular SoS team.
Further, a SoSoS team itself is a Scrum team and need
to apply the Scrum guide (Schwaber and Sutherland
2017) like any other Scrum team. The number of
SoSoS teams can grow infinitely depending on the
number of Scrum teams an organization has.

h) Executive Action Team (EAT). In S@S, the
EAT is the SoS of the entire enterprise. It coordinates
the work of multiple SoS’s or multiple SoSoS’s. The
EAT team is a Scrum team as well and consists of
empowered people who can makes financial and
strategic decisions. The EAT is responsible for
transforming the enterprise into a fully agile one.
Further, the EAT is the last resort for escalating and
resolving those impediments that cannot removed by
lower level SoS’s.

i) Product Owner Team (PO team). In S@S each
Scrum team has a PO. The group of product owners
of the Scrum teams belong to one SoS forms together
a PO team of that particular SoS. The PO team is a
Scrum team as well and need to adhere to the Scrum
guide. Further, the PO team is responsible among
others for prioritizing the product backlog of the
associated SoS, defining a shared Definition of Done,
making technical debts visible in the product backlog
and planning the upcoming release. It is also
responsible for coordinating the work that needs to be
done by their Scrum teams.

j) MetaScrum. It is a meeting attended by the
Product Owner teams or their representatives and the
stakeholders. The S@S framework (Sutherland 2019)

Do the Scaled Agile Practices from S@S Help with Quality Requirements Challenges and If So, How Do They Do It?

447

encourages to have this meeting as frequent as needed
with once per Sprint as minimum. The goals of this
meeting are getting the product backlog items ready
to be implemented by addressing the needed strategy
and resources.

k) Chief Product Owner (CPO). The CPO is part
of a PO team and s/he is responsible for generating a
single shared product backlog for all Scrum teams
participating in the associated SoS. The CPO is
further responsible of coordinating the priorities of
the product backlog among the individual product
owners of the individual Scrum teams. The role of the
CPO is different from the role of the Scrum Mater of
the Product Owner team and can be fulfilled by and
an individual or by a group of Product Owners.

l) Executive MetaScrum (EMS). In S@S, a PO
team is organically infinitely scalable, similarly to
SoS. The PO team of the whole enterprise is called
Executive MetaScrum (EMS). The EMS is the team
responsible for establishing the vision and strategy of
the entire enterprise together with the key
stakeholders.

Table 3: Degree of agility of S@S.

S@S Agility Features
Phases FY SD LS LG RS Total

Pregame 0 0 0 1 0 1
Development 1 1 0 1 1 4

Postgame
(Closure)

0 1 0 0 0 1

Total 1 2 0 2 1 6
Degree of

Agility
1/3 2/3 0/3 2/3 1/3 6/(3*5) =

0.4
Practices

SoS 1 1 0 1 1 4
Impediment

removal
backlog
artefact

1 1 0 1 1 4

SoS backlog
refinement

meeting

1 1 0 1 1 4

Scaled Daily
Scrum

1 1 0 1 1 4

SoS retro-
spective

1 1 0 1 1 4

 SoSM 1 1 0 1 1 4
SoSoS 1 1 0 1 1 4
EAT 1 1 0 1 1 4

PO team 1 1 0 1 1 4
MetaScrum 1 1 0 1 1 4

CPO 1 1 0 1 1 4
EMS 1 1 0 1 1 4
Total 12 12 0 12 12 48

Degree of
Agility

12/12 12/12 0/12 12/12 12/12
48/(12*5)

= 0.8

Following the analysis of S@S phases and
practices, the first two authors checked whether a
particular S@S practice supports the five agility
features of the 4-DAT approach by separately
answering the descriptive questions related to each
agility feature in Table 1. If a S@S practice does
support an agility feature, the score of 1 is assigned to
that agility feature of that practice, otherwise the
score of 0 is assigned. For example, the Pregame
phase takes place only once in a Scrum project
lifecycle, therefore changes in project risks or project
vision are difficult to be accommodated – which
made us assign 0 for FY (meaning that the phase does
not support the agility feature FY). Scrum as well as
S@S doesn’t specify the maximum duration of the
Pregame phase – which made us assign 0 for SD. The
Pregame phase includes several important activities -
such as defining and agreeing on a project vision,
creating an initial architecture, creating scrum teams,
which could use a lot of resources to implement them
correctly – which means that we assign 0 for LS.
Sharing knowledge and learning are increased when
all people involved in the project discuss the project
together – which means assigning 1 for LG. The
Pregame includes a lot of important activities that
occur once – which means assigning 0 for RS. After
separately answering the descriptive questions and
applying the scores, the first two authors came
together and discussed the scores they separately have
assigned to each agility feature of each particular
S@S practice. Similar scores were confirmed, and
different scores were resolved by conducting an
argumentative discussion (Hitchcock 2002) between
the two researchers to reach a shared rationally
supported score. No unconfirmed scores remained
after this argumentative discussion.

As Qumer and Henderson-Sellers (2008) suggest,
for a method to have sufficient agility and be
considered as an agile method, the calculated average
of the degrees of agility on the four dimensions
should be in the interval 0.5-0.6. However, the closer
the calculated average is to 1, the higher the agility of
the evaluated method. We have found as indicated in
Table 3, that the average degree of agility of the S@S
phases is 0,4, while it is 0,8 for the S@S practices.
The total average degree of S@S (e.g. phases and
practices) is therefore 0,6 which falls into the interval
of 0.5-0.6 suggested by (Qumer and Henderson-
Sellers, 2008) to consider a method as agile.
Furthermore, the support of S@S practices for the
agile values presented in Table 2, is also evaluated.
The result of this evaluation is in Table 4. The second
column of this table shows which S@S practice
supports which agile value. As we can see, S@S has

ICSOFT 2021 - 16th International Conference on Software Technologies

448

several practices that explicitly support agile values,
except the value “Keeping the process cost-effective”
(see Table 4). We note that the S@S practices from
the official literature, do not describe explicitly how
one can keep the process cost-effective. We also note
that in Table 3 we can clearly see also that none of the
identified S@S practices support leanness which is
another concept standing for cost-effectiveness of
agile methods.

Table 4: The support of agility values.

Agile values S@S Practices
Individuals and
interactions over
processes tools

SoS, SoS backlog refinement
meeting, Scaled Daily Scrum,
SoS retrospective, SoSM,
SoSoS, EAT, Product Owner
team, MetaScrum, EMS

Working software
over comprehensive
documentation

Game phase

Customer
collaboration over
contract negotiation

EMS, Pregame phase, Postgame
phase

Responding to
change over
following a plan

Game phase, SoS backlog
refinement meeting, MetaScrum,
EMS

Keeping the process
agile

Scaled Daily Scrum, SoS backlog
refinement meeting, Impediment
removal backlog artefact, SoS,
SoSoS, Game phase

Keeping the process
cost effective

-

4.2 Identifying S@S Practices
Mitigating QRs Challenges

After evaluating the degree of agility of S@S, the first
two authors have discussed and analyzed the
identified S@S practices based on an argumentative
discussion (Hitchcock 2002) to examine their fitness
in mitigating the QRs challenges reported in (Alsaqaf,
Daneva, and Wieringa, 2019) and reach a shared
rationally supported mapping. The first two authors
mapped therefore in an ongoing discussion the
identified S@S practices to the reported categories of
the challenges by using Conklin’s dialog mapping
technique for qualitative data structuring (Conklin,
2003). Table 5 summarizes this mapping. The first
column of the table represents the reported categories
and their related challenges, while the second column
shows S@S practices that could be used to mitigate
the related challenge in the first column. A dash “-” in
the second column means that S@S does not explicitly
specify a particular practice that could mitigate the
reported QR challenge in the first column.

Table 5: Mapping S@S practices to QR challenges.

QR Challenges reported in
(Alsaqaf et al. 2019)

S@S practices

Category 1: Teams
coordination and
communication challenges

1.1.Late detection of QRs
infeasibility

SoS, SoSoS, SoS
backlog refinement
meeting, Impediment
removal backlog
artefact, Scaled Daily
Scrum

1.2.Hidden assumptions in
inter-team collaboration.

SoS, SoSoS

1.3.Uneven teams maturity EAT, SoS retrospective
1.4.Suboptimal inter-team
organization

-

Category 2: Quality
assurance challenges

2.1.Inadequate QRs test
specification

SoS, SoSoS, SoSM

2.2.Lack of cost-effective
real integration test

-

2.3.Lengthy QRs
acceptance checklist

-

2.4.Sporadic adherence to
quality guidelines

Product Owner team,
SoS, SoSoS

Category 3: QRs
elicitation challenges

3.1.Overlooking sources of
QRs

CPO, Product Owner
team, MetaScrum, EMS

3.2.Lack of QRs visibility CPO, Product Owner
team, MetaScrum, EMS,
Pregame

3.3.Ambiguous QRs
communication process.

CPO, SoS, SoSoS,
Product Owner team,
MetaScrum

Category 4: Conceptual
challenges of QRs

4.1.Unclear conceptual
definition of QRs

-

4.2.Confusion about QR’s
specification approaches

CPO, MetaScrum,
Product Owner team

Category 5: Architecture
challenges

5.1.Unmanaged
architecture changes.

Impediment removal
backlog artefact, SoS
backlog refinement
meeting, SoS, SoSoS,
Product Owner team

5.2.Misunderstanding the
architecture drivers

SoS, SoSoS, Product
Owner team

S@S describes several practices that could
(partially) mitigate one or more of the reported QRs
challenges in (Alsaqaf et al., 2019) (see Table 5). For
example, SoS teams could be used to establish clear
communication channels among the distributed teams

Do the Scaled Agile Practices from S@S Help with Quality Requirements Challenges and If So, How Do They Do It?

449

with respect to QRs. Besides, the Product Owner
team could shed light on the needed QRs based on
their frequent communication with the stakeholders
during the MetaScrums. Further, practices as SoS,
SoSoS and PO team could help with setting up
guidelines to distribute and share knowledge about
internal quality aspects of the system (e.g. code style)
which could result in satisfying internal quality such
us maintainability and extendibility.

5 DISCUSSION

A Scrum team is “self-organizing” (Schwaber and
Sutherland 2017), meaning that the Scrum team itself
determines how to get the work done. However, in
scaled agile, Scrum teams have to collaborate
together to deliver customer’s values. S@S moves the
accountability for work coordination across Scrum
teams, from the Scrum teams themselves to another
team namely the Scrum of Scrum team. S@S uses
Scrum of Scrum (SoS) – which is itself a Scrum team
–to coordinate the work of multiple “self-organizing”
Scrum teams. We were wondering if different “self-
organizing” Scrum teams use different approaches to
implement QRs. And if this is so, then how those
teams will resolve inter-team conflicts? Mark
Levison 4 - an agile practitioner - described the
following example of a technical conflict between
Scrum teams of one SoS: “Given we're doing
iterative development; teams are hopefully following
the principles of emergent design. This means that
we're writing high quality code, but not adding
functionality or design structures until they are
needed. Team A may write an encryptor without the
use of an interface simply because they have need for
only one. Team B may later need an encryptor which
is slightly different from Team A's. What would be the
best way for the organization to proceed is for team
A to modify their code and have an encryptor
interface - something that wasn't needed before. First,
it's unlikely team B will even know about this. But if
they do, Team A has no real incentive to help by
modifying their code.” We think that this problem is
caused by the fact that Scrum teams in S@S have no
direct access to each other team’s knowledge, since
they have to communicate through an interface (e.g.
SoS, SoSoS).

Table 5 indicates that we have not identified any
S@S practices that could mitigate four reported QRs
challenges (Alsaqaf et al., 2019) referring to
Suboptimal inter-team organization, Lack of cost-

4 https://www.infoq.com/news/2008/11/scrum-of-scrums

effective real integration test, Lengthy QRs
acceptance checklist and Unclear conceptual
definition of QRs. S@S does not describe how to
organize the Scrum teams around the product backlog
items (e.g. component teams, feature teams). This
issue was also reported as a problem by agile
practitioners. For example, Mark Levison 5 has
reported the following: “Many scrum teams working
together have serious problems delivering an end to
end feature when several teams are involved. I have
seen three separate teams, one comprised of UI
people, one of mid-tier people and one of database
people, get much more effective when they
reorganized into three different teams organized
around functionality. The people in the organized
groups still performed more or less the same
functions but were now able to swarm around
features, not parts of a feature that was on a layer.
This caused some integration problems across the
teams but enabled end- to-end functionality to be built
more quickly”. Further, S@S describes the use of PO
teams which are responsible for distilling the
stakeholder’s requirements, but doesn’t mention
explicitly how to treat the QRs or the customer’s
acceptance of those QRs. Moreover, SoS shifts the
responsibility for delivering a fully integrated set of
potentially shippable increments of product at the end
of every Sprint from the Scrum team as described by
the Scrum guide (Schwaber and Sutherland 2017) to
the a SoS team which could resulted in cost-intensive
process.

Table 3 indicates that S@S does not show
leanness characteristics (column LS in Table 3). We
do not claim that S@S phases or practices are not lean
at all. We only demonstrate that those phases and
practices are not compliant with the definition of lean
as used in the 4-DAT tool, which we applied to
analyze the agility characteristics of S@S. While the
4-DAT tool defines leanness in terms of waste
reduction (see Table 1), S@S doesn’t mention the
concept of lean in its guide. However, not showing
leanness does not reject the agility of a given method
or framework, since leanness and agility have both
different focus areas (Towill and Christopher, 2003).
As per (Towill and Christopher, 2003), the lean
approach is focused on eliminating waste and hence
works well when the requirements are stable and
predictable. Agile on the other side focuses more on
increasing flexibility to deal with unpredictable and
dynamic environments.

5 https://www.infoq.com/news/2008/11/scrum-of-scrums

ICSOFT 2021 - 16th International Conference on Software Technologies

450

6 LIMITATION

We treated one specific framework (S@S), therefore,
we cannot expect that the evaluation of the degree of
agility would be representative for other scaled
frameworks, e.g. SAFe and LeSS. This is a limitation.
To counter it, we plan our next research step to be the
application of the 4-DAT approach to evaluating the
other frameworks included in our research (see
Section 2.1). Furthermore, we treat the matching of
S@S practices against the previously published QR
challenges (Alsaqaf, Daneva, and Wieringa 2019) as
a list of hypotheses (Wieringa and Daneva 2015)
which we plan to explore in follow-up case studies.
Currently, the first author is embedded in a large
public organization that adopts large scale agile
practices and in that we plan to carry out a multiple
case study. This empirical research will include
interviews and focus groups planned in multiple
project teams.

Finally, qualitative research such as ours is
always open to researchers’ own bias. As the terms
“quality requirements” and non-functional
requirements” are not used in the S@S reference
guide (Sutherland 2019), we had to use our own
interpretation, experience and knowledge. However,
we think that the possibility of misinterpretation is
low, because both authors have a decade of
experience in working with QRs, and the first author
of the paper is a consultant and a certified Scrum
master with industry experience in agile (so he has a
sound professional understanding of the agile
approaches as applied in practice). His interpretations
during this research were grounded on his
professional Scrum experience of using the Scrum
terminology and definitions. Moreover, we countered
the possible bias, by using Conklin’s mapping
technique consistently. Despite of this, we are
considering important to further evaluate our
mappings possibly with the participation of S@S
experts from industry.

Last but not least, in using evaluation frameworks
such as the 4-DAT analytical framework, there is
always some risk of passing evaluator’s bias. The 4-
DAT framework evaluates agile methods from four
perspectives and to counter the possibility of bias, the
first two authors answered the descriptive questions
of the 4-DAT analytical framework separately and
thereafter based on an argumentative discussion
(Hitchcock 2002) they discussed their answers to
reach common supported judgment.

7 CONCLUSIONS AND
IMPLICATIONS

This paper investigated the agile practices of the S@S
framework from the perspective of QRs challenges
identified in our earlier work (Alsaqaf, Daneva, and
Wieringa 2019). We first assessed the degree of
agility of S@S by using the 4-DAT approach. This
indicated that the S@S supports the agile values
defined by the Agile Manifesto (Agile Alliance 2001)
(see Table 3 and Table 4), in the sense that it provides
a scaling path to large and very large agile teams
without deviating much from the agile philosophy
due to incorporating heavyweight practices. We have
then identified those S@S practices (see Table 5) that
could be used to mitigate the QRs challenges reported
in our previous work (Alsaqaf, Daneva, and Wieringa
2019). We found that S@S includes 12 practices that
could (partially) mitigate one or more of the reported
QRs challenges in (see Table 5). E.g., SoS teams
could be used to establish clear communication
channels among the distributed teams with respect to
QRs. Besides, the PO team could shed light on the
needed QRs based on their frequent communication
with the stakeholders during the Meta Scrums.

However, our study found four QR challenges for
which S@S offers no remedy. These are: Suboptimal
inter-team organization, Lack of cost-effective real
integration test, Lengthy QRs acceptance checklist
and Unclear conceptual definition of QRs (Table 5).
This has some practical implications. First, those
practitioners conscious about QRs in projects that
employ S@S, should take explicit actions towards
creating practices that help counter these four
challenges. E.g., practitioners should come up with
their own ideas on how to manage the length of the
QRs acceptance checklist, just because S@S offers no
specific help in regard to this. On the other side,
practitioners can rely on S@S in regard to coping
with QRs challenges related to QRs elicitation and
architecture. The design of S@S explicitly supports
hierarchies of teams, empowerment and issue
escalation processes, as well as the removal of
roadblocks. This, in turn, is instrumental to the
effective decision-making in resolving QRs issues.

Our immediate future work includes the
evaluation of the degree of agility of the other scaled
frameworks in our list and the matching of these
frameworks’ agile practices to the QR challenges
identified in (Alsaqaf, Daneva, and Wieringa 2019).

Do the Scaled Agile Practices from S@S Help with Quality Requirements Challenges and If So, How Do They Do It?

451

REFERENCES

Agile Alliance. 2001. Manifesto for Agile Software
Development. http://www.agilemanifesto.org.

Alsaqaf, Wasim, Maya Daneva, and Roel Wieringa. 2019.
“Quality Requirements Challenges in the Context of
Large-Scale Distributed Agile: An Empirical Study.”
Information and Software Technology.

Ambler, Scott W, and Mark Lines. 2012. Disciplined Agile
Delivery: A Practitioner’s Guide to Agile Software
Delivery in the Enterprise. IBM Press.

Appleton, J.V., Cowley, S. (1997). “Analysing Clinical
Practice Guidelines. A Method of Documentary
Analysis.” Journal of Advanced Nursing 25(5): 1008–
17.

Atkinson, P., Coffrey, A. (2004). Analysing Documentary
Realities. In D. Silverman (Ed.), Qualitative Research:
Theory, Method and Practice (2nd Ed.). London, UK:
Sage.

Beedle, M. (2018). “Enterprise Scrum Definition 4.0.”
http://www.enterprisescrum.com/.

Bick, S. et al. (2018). “Coordination Challenges in Large-
Scale Software Development: A Case Study of
Planning Misalignment in Hybrid Settings.” IEEE
Transactions on Software Engineering 44(10): 932–50.

Bowen, G. A. (2009). “Document Analysis as a Qualitative
Research Method.” Qualitative Research Journal 9(2):
27–40..

Calefato, F., Ebert, C. (2019). “Agile Collaboration for
Distributed Teams.” IEEE Software 36(1): 72–78..

COLLAB.NET, and VERSIONONE.COM. 2020. “14th
Annual State of Agile Report.” VersionOne.
https://stateofagile.com/?_ga=2.145189495.27609247
1.1591726593-1008038165.1591726593#ufh-i-
615706098-14th-annual-state-of-agile-report/7027494.

Conboy, K., Carroll, N. (2019). “Implementing Large-Scale
Agile Frameworks: Challenges and Recommendations.”
IEEE Software 36(March/April): 1–9.

Conboy, K., Fitzgerald, B. (2004). “Toward a Conceptual
Framework of Agile Methods: A Study of Agility in
Different Disciplines.” In XP/Agile Universe 2004, , pp
105-116.

Conklin, J. (2003). “Dialog Mapping: Reflections on an
Industrial Strength Case Study.” Visualizing
argumentation: 1–15.

Hitchcock, D. (2002). “The Practice of Argumentative
Discussion,” Argumentation, vol. 16, no. 3, pp. 287–
298.

Kalenda, M., Hyna, P., Rossi, B. (2018). “Scaling Agile in
Large Organizations: Practices, Challenges, and
Success Factors.” Journal of Software: Evolution and
Process 30(10).

Kniberg, H., Ivarsson, A. (2012). Scaling Agile @ Spotify -
with Tribes, Squads, Chapters & Guilds.

Krebs, J. (2008). Agile Portfolio Management. First Edit.
Microsoft Press.

Larman, C., Vodde, B. (2016). Large-Scale Scrum More
with Less. Pearson Education.

Leffingwell, D., Knaster, R. (2017). SAFe 4.0 Distilled:
Applying the Scaled Agile Framework for Lean

Software and Systems Engineering. 1st ed. Pearson
Education.

Özcan-Top, Ö., Demirors, O. (2019). “Application of a
Software Agility Assessment Model – AgilityMod in
the Field.” Computer Standards and Interfaces 62(July
2018): 1–16.

Portman, Henny. 2017. Scaling Agile in Organisaties. Van
Haren Publ.

Putta, A., Paasivaara, M., Lassenius, C. (2018). “Benefits
and Challenges of Adopting the Scaled Agile
Framework (SAFe): Preliminary Results from a
Multivocal Literature Review.” In PROFES 2018,
Springer International Publishing, 334–51.

Qumer, A., Henderson-Sellers, B. (2006). “Measuring
Agility and Adaptibility of Agile Methods: A 4
Dimensional Analytical Tool.” Proceedings of the
IADIS International Conference on Applied Computing
(January): 503–7. http://www.iadis.org.

Qumer, A., Henderson-Sellers, B. (2008). “An Evaluation
of the Degree of Agility in Six Agile Methods and Its
Applicability for Method Engineering.” Information
and Software Technology 50(4): 280–95.

Schwaber, K. (2018). “Nexus Guide - The Definitive Guide
to Scaling Scrum with Nexus: The Rules of the Game.”
Scrum.org (January): 0–11. https://www.scrum.org/
resources/nexus-guide.

Schwaber, K., Beedle, M. (2001). Agile Software
Development with Scrum. First. Pearson..

Schwaber, K., Sutherland, J. (2017). “The Scrum Guide.”
Scrum.Org and ScrumInc (November): 19.
http://www.scrumguides.org/docs/scrumguide/v1/Scru
m-Guide-US.pdf.

Smart, J. (2018). “To Transform to Have Agility, Dont Do
a Capital A, Capital T Agile Transformation.” IEEE
Software 35(6): 56–60.

Sutherland, J. (2001). “Agile Can Scale: Inventing and
Reinventing SCRUM in Five Companies.” Cutter IT
Journal 14(12): 5–11.

———. 2019. “The Scrum@Scale Guide - The Definitive
Guide to Scrum@Scale: Scaling That Works.”
Scrum@Scale (January): 1–19. https://www.scrumat
scale.com/scrum-at-scale-guide/.

Towill, D., Christopher M. (2003). “The Supply Chain
Strategy Conundrum: To Be Lean Or Agile or To Be
Lean And Agile?” International Journal of Logistics
Research and Applications 5(3): 299–309.

Wieringa, R.J., Daneva, M. (2015). Six strategies for
generalizing software engineering theories. Sci.
Comput. Program. 101: 136-152.

ICSOFT 2021 - 16th International Conference on Software Technologies

452

