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Abstract: Solving transport network problems can be complicated by non-linear effects. In the particular case of gas
transport networks, the most complex non-linear elements are compressors and their drives. They are described
by a system of equations, composed of a piecewise linear ‘free’ model for the control logic and a non-linear
‘advanced’ model for calibrated characteristics of the compressor. For all element equations, certain stability
criteria must be fulfilled, providing the absence of folds in associated system mapping. In this paper, we
consider a transformation (warping) of a system from the space of calibration parameters to the space of
transport variables, satisfying these criteria. The algorithm drastically improves stability of the network solver.
Numerous tests on realistic networks show that nearly 100% convergence rate of the solver is achieved with
this approach.

1 INTRODUCTION

In this paper, we continue the construction of globally
converging solver algorithm for stationary transport
network problems. The approach is based on condi-
tions of generalized resistivity formulated in our pre-
vious work (Clees et al., 2018a). Specifically for the
natural gas transport, the modeling of key elements,
the compressors, combines two parts, identified in gas
simulation community as ‘free’ and ‘advanced’ mod-
els. The ‘free’ model represents the control logic of
compressors, related to the fulfillment of goals, such
as the input/output pressure or flow. The ‘advanced’
model describes the individual physical characteris-
tics of compressors determined by calibration proce-
dure. The construction of the algorithm for advanced
modeling of compressors was started in (Clees et al.,
2018b), continued in (Baldin et al., 2020), and further
improved in the present paper.

The advanced model of compressors and drives
considers the space of calibration parameters such as
volumetric flow, revolution number, as well as vari-
ous energy characteristics. Although the representa-
tion of compressors and drives in this space is more
convenient for calibration, for solving transport net-
work problems it is more suitable to represent them

in the space, describing the main transport character-
istics, such as inlet and outlet pressures and mass flow.
It is important to fulfill the conditions of generalized
resistivity (Clees et al., 2018a), which means that the
flow must be an increasing function of the inlet pres-
sure and a decreasing function of the outlet pressure.
For the global convergence of the solver, this condi-
tion must be satisfied everywhere, including the exte-
rior of the working region, since the solver can wan-
der around there during the iterations.

In this work, to construct the element equation, an
improved pixel algorithm from (Clees et al., 2018b)
is used. A triangular grid (Baldin et al., 2020) is im-
plemented, which can be adaptively compressed in
places where higher resolution is required. Warping
of the grid will be performed in the solution loop
whenever the temperature or/and the gas composi-
tion change. This approach provides a simple con-
trol over the system resistivity by calculating the nor-
mals to the triangles. We tested the method on a vari-
ety of realistic examples and obtained nearly 100%
convergence of the solver. The approach enhances
our multi-physics network simulator MYNTS (Clees
et al., 2016).

Modeling of gas transport networks has been de-
scribed in detail in works (Mischner et al., 2011;
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Schmidt et al., 2015). The most numerous elements
in such networks are pipes, represented by a non-
linear friction law. In this law, the main dependence
is quadratic, and empirical approximations by Niku-
radse, Hofer, or Colebrook-White (Nikuradse, 1950;
Colebrook and White, 1937) are typically used. The
gas pressure and density are related by the equation
of state, for which also different approximations ex-
ist; commonly used are Papay, AGA8-DC92, GERG-
2008 (Saleh, 2002; CES, 2010; Kunz and Wagner,
2012). The balance of flows is described by linear
Kirchhoff equations. Finally, all the equations are
collected in a large non-linear system, which can be
considered as a particular type of non-linear program
(NLP). It can be solved by standard NLP solvers, such
as IPOPT, SNOPT, MINOS (Wächter and Biegler,
2006; Gill et al., 2005; Murtagh and Saunders, 1978).
Our simulator also features an own solver, imple-
menting a stabilized Newton’s method with Armijo’s
rule (Kelley, 1995).

This paper is organized as follows. In Section 2
the transformation algorithm from the space of cali-
bration parameters to the space of transport variables
is presented. In Section 3 tests of the algorithm on
a number of realistic gas transport networks are de-
scribed and analyzed. In Section 4 the obtained re-
sults are summarized.

2 THE ALGORITHM

In the following, the general strategy as well as deci-
sive details of the novel algorithm are introduced.

Strategy: for stable representation of advanced
compressors and drives is based on the following
steps:
• eliminate all intermediate variables in the element

equation;

• represent the equation in the space of transport
variables;

• check monotonicity;

• use a monotone linear continuation outside of the
working region.
The sets of variables and the transformation be-

tween them will be described further. The mono-
tonicity condition is required for global convergence
of the solver algorithm and is described in (Clees
et al., 2018a). All element equations f (Pin,Pout ,Q) =
0 should satisfy the following inequalities on their
derivatives:

∂ f/∂Pin > 0, ∂ f/∂Pout < 0, ∂ f/∂Q < 0, (1)

Figure 1: Modeling of compressors. On the top: the struc-
ture of compressor station. In the center: compressor el-
ement equation in transport variables, ‘free’ model. On
the bottom: ‘advanced’ model. Images from (Clees et al.,
2018a; Clees et al., 2018b; Baldin et al., 2020).

meaning that the element equation function should
monotonously increase w.r.t. Pin and monotonously

SIMULTECH 2021 - 11th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

232



decrease w.r.t. Pout ,Q.
The basic continuation formula is also presented

in (Clees et al., 2018a):

f (x1, ...,xn) = f (x̂1, ..., x̂n)

+
n

∑
k=1

(min(xk−ak,0)+max(xk−bk,0)), (2)

x̂k = min(max(xk,ak),bk).

It provides a continuation of the function of n argu-
ments, monotonously increasing w.r.t. every argu-
ment, from a bounding box specified by [ak,bk] limits
to the whole space, preserving this monotonous prop-
erty. For decreasing functions, coordinate reflections
can be used.

Structure: of the compressor station in its typical
one-unit configuration is shown in Figure 1 top. It
consists of the following elements: c – compressor, r
– bypass regulator, gin/gout – input and output resis-
tors, v1,2 – main and bypass valves, k – cooler. En-
try/exit identify standard input and output nodes. In
more complicated scenarios several units can be as-
sembled together in parallel or/and serial connection.

Transport Variables: Figure 1 center and bottom
show the element equation of compressor in the space
of transport variables. Pin,out denote input and output
pressures, normally measured in bars. Q is a through-
put, standardly represented by mass flow Qm in kg/s.
With the known gas composition it can be converted
to molar flow Qν in mol/s, or to normal flow QN in
cubic meters of gas virtually decompressed to nor-
mal pressure and temperature, per second (often re-
expressed to thousands of such normal cubic meters
per hour). Special case is volumetric flow Qvol . It
is measured in m3/s at current conditions, and due to
compressibility of the gas depends on whether input
or output conditions are meant (input conditions are
taken by default).

Figure 1, central image, presents the free model.
The subscripts H,L indicate high and low control set-
tings, defining upper and lower limits on the pressures
and the flow; BP is open/bypass mode of compres-
sor Pin = Pout ; OFF is the closed mode Q = 0. This
polyhedral surface, as all surfaces of this kind, can be
represented by max-min formula:

max(min( Pin−PL,−Pout +PH ,−Q+QH), (3)
Pin−Pout ,−Q)+ ε(Pin−Pout −Q) = 0,

where the last term with small positive constant ε

serves regularization.
Figure 1 bottom presents advanced compressor

model. Padv
out (Pin,Q) is output pressure of compressor

in the absence of control restrictions (also referred as
compressor in MAX mode). It is considered as a func-
tion of the input pressure and the flow. This function
represents the internal capability of compressor and
its drive. It is combined with free diagram as follows:

max(min( Pin−PL,−Pout +PH ,−Q+QH ,

−Pout +Padv
out (P̂in, Q̂)

+min(Pin−Padv
in,min,0)+max(Pin−Padv

in,max,0)

+min(−Q+Qadv
max,0)+max(−Q+Qadv

min,0) (4)
),Pin−Pout ,−Q)+ ε(Pin−Pout −Q) = 0,

P̂in = min(max(Pin,Padv
in,min),P

adv
in,max),

Q̂ = min(max(Q,Qadv
min),Q

adv
max),

here the second line represents the advanced surface,
inserted into the free formula; the next two lines pro-
vide linear continuation of this surface outside of the
bounding box; the last two lines define clamp func-
tions to the bounding box.

The advanced surface is triangulated, every trian-
gle is represented by own system of barycentric coor-
dinates. For this purpose, on the plane (Pin,Q)= (x,y)
the vertices of triangle {v1,v2,v3} are defined. The
point on triangle is then defined as ∑i wivi = (x,y),
∑i wi = 1. The system can be solved for the weights
wi(x,y) by linear formulae wi(x,y) = c0i +cxix+cyiy,
with 3 constants (c0i,cxi,cyi) per wi precomputed.
One formula can be spared using w3 = 1−w1−w2.
The point belongs to triangle, when all weights are
non-negative wi ≥ 0.

The third coordinate Pout = z is found by one more
linear formula z(x,y) = ∑i wi(x,y)zi. Altogether 9 co-
efficients (equivalent to 3 nodes x 3 coordinates) are
precomputed. Explicit lengthy formulae for barycen-
tric coordinates can be found in (Baldin et al., 2020).
Finally, a function is implemented, searching for a tri-
angle on xy-plane and evaluating z-coordinate and its
xy-derivatives. The derivatives can be directly used to
check monotonicity condition:

−Pout +Padv
out (Pin,Q) = 0, (5)

∂Padv
out /dPin > 0, ∂Padv

out /dQ < 0.

Equivalently, these conditions can be reformulated in
terms of normals to triangles, which all should point
to the octant (Pin,Pout ,Q) = (+,−,−).

Internal Variables: Density ρ is defined as
monotonously increasing function of pressure P us-
ing equations of state (EOS), involving also the mo-
lar mass µ, the temperature T and the compressibil-
ity factor z. Different analytic or numerical EOS
can be used, e.g., Papay (Saleh, 2002), AGA8-DC92
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(CES, 2010), GERG-2008 (Kunz and Wagner, 2012).
The volumetric flow relative to input conditions is ex-
pressed via mass flow and density as Qvol = Q/ρin.
The revolution number rev and torque Mt describe the
rotation of the engine. There are also energetic quan-
tities characterizing compressors and drives: Had –
increase of adiabatic enthalpy, ηad – adiabatic effi-
ciency, Perf – performance power.

Transformation: consists of a sequence of non-
linear maps:

(Qvol ,rev) 1→ (Had ,ηad ,Perf max)
2→ (6)

→ (ρin,Had ,Q)
3→ (Pin,Pout ,Q).

Step 1: standard 1D quadratic and 2D biquadratic
models from (Clees et al., 2018b):

Had = (1,rev,rev2) ·A · (1,Qvol ,Q2
vol)

T ,

ηad = (1,rev,rev2) ·B · (1,Qvol ,Q2
vol)

T , (7)

Perf max = (1,rev,rev2) ·DT ,

where A,B are constant 3x3 matrices and D is a
constant 3-vector filled by calibration coefficients.
Perf max is the maximal performance power provided
by the drive at the given revolution number.

Step 2: temperature and gasmix independent models:

Q = Perf maxηad/Had , ρin = Q/Qvol , (8)

Step 3: temperature and gasmix dependence:

α = (κ−1)/κ, γ = RTin/µ,
Pin = EOSinv(ρin), zin = Pin/(γρin), (9)

Pout = Pin(Hadα/(γzin)+1)1/α,

where κ is the adiabatic exponent, R is universal gas
constant; the equation of state ρ = EOS(P) is inverted
to define Pin; the universal gas law P = ρRT z/µ is re-
solved w.r.t. z; then Had definition from (Clees et al.,
2018b) is resolved w.r.t. Pout .

All equations are given in SI-units, practically
conversion factors should be applied for the transfor-
mations W/kW/MW, bar/Pa etc.

Regions: of the advanced surface are shown in
Figure 2 top. The described transformations are
used to construct the most important powmax re-
gion, where the performance of compressor is re-
stricted solely by the power of its drive. It is bounded
by revmin/revmax lines and Qvol,min/ηmin lines (also
called surge line and choke line). Here revmin and

Figure 2: Details of compressor diagrams. On the top: re-
gions of the advanced surface in (Pin,Q) projection. In the
center: problems with monotonicity detected (blue trian-
gles). On the bottom: the fold on revmin line.

revmax are given constants. Surge line is defined as

Qvol,min(rev) = max(Q(1)
vol,min,Q

(2)
vol,min,0),

Q(1)
vol,min = (1,rev,rev2) ·CT , (10)

Q(2)
vol,min = argmaxQvol Had(Qvol ,rev),

Q(1)
vol,min is given as 1D quadratic model with a cali-

bration 3-vector C; the condition Qvol ≥ Q(2)
vol,min de-

fines a physical decreasing branch of quadratic de-
pendence of Had on Qvol at fixed rev; the outflow
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condition Qvol ≥ 0 is also enforced. Choke line
ηad(Qvol,max,rev) = ηmin with a given constant ηmin is
solved w.r.t. Qvol,max(rev). Generally it is a quadratic
equation with two roots; the maximal root is taken.
The region between revmin/revmax and surge/choke
lines is resampled to Nrev×Nη grid.

Revmax region: rev = revmax side is taken and in
(ρin,Q) projection proportionally scaled to the origin.
Then it is mapped to the final (Pin,Q) coordinates by
the inverse EOS transformation above.

Continuation regions 1 and 2 go downwards and
upwards in the (ρin,Q) projection, respectively, till
the limits of the bounding box. Had values in these
continuations are kept constant.

Pout -coordinate in (9) lifts the whole construc-
tion to 3D space (Pin,Pout ,Q), where the final surface
is represented by triangulation. Orientation of nor-
mals allows to check monotonicity conditions for ev-
ery triangle. Figure 2 center indicates problems with
monotonicity (blue triangles). These problems hap-
pen rarely and require a slight local adjustment of the
diagram to satisfy the global convergence criterion.

In general, the revmin side of the powmax patch
has a fold, shown in Figure 2 bottom. Physically, on
the surge and revmin lines, a bypass regulator opens
in compressor station (r in Figure 1 top). It redirects
a part of the flow to circulate through the compres-
sor, preventing the compressor from going outside of
the working region (Qvol < Qvol,min, rev < revmin). In
our diagrams, total Q passing through the compres-
sor and its bypass regulator is continued downwards
from these lines. This continuation generally creates a
fold, producing multiple solutions and degeneracy of
the Jacobi matrix. Fortunately, for most of the cases,
this fold is located beyond the physical domain of ρin
or Pin and can be safely ignored. For extra safety, we
define a ρin,max value, cutting off the fold and restrict-
ing the patch by this value.

The other problematic case is displayed in Fig-
ure 3 top. It corresponds to the increasing torque
dependence Mt(rev) = Perf max/rev. If the drive is
joined with a generic resistive load, Mt,sys(rev) =
c0 + c1rev for dry and viscous friction, or other in-
creasing Mt,sys(rev) dependence, the stable intersec-
tion is ensured only when Mt,drive(rev) is decreasing,
Figure 3 center. Otherwise one can find such resis-
tive system that none or multiple intersections exist,
Figure 3 bottom. In this case multiple solutions or no
solution exist for the whole network problem. Such
problematic behavior is present in some electric en-
gines (E-drives). The computations show that in this
case the monotonicity conditions are violated in most
of the diagram. The solution we have taken so far
is to replace the actual Mt,drive(rev) dependence with

Figure 3: Dependence of torque on revolution number.
On the top: problematic case with increasing Mt(rev) de-
pendence. In the center: stable intersection of increas-
ing Mt,sys(rev) and decreasing Mt,drive(rev). On the bot-
tom: no intersection or multiple intersections for increasing
Mt,drive(rev).

a weakly decreasing function that limits the real de-
pendence from below (conservative), above (overes-
timation), or reproduces it on average. In practice, a
constant Mt,drive can be used here, since the regular-
ization in the control equation removes all marginal
degenerations in the system.

The described transformation procedure is applied
sequentially for all compressor-drive pairs in the net-
work, as shown in Figure 4. Steps 1 and 2 of the
transformation are performed once, in precomputa-
tion mode. The monotonous decrease of Mt(rev),
regularity of surge and choke lines, absence of folds
on 2D diagrams is visually controlled. Step 3 of the
transformation is applied repeatedly during the so-
lution procedure, every time when the temperatures
or/and gas composition changes. This step is just
a monotonous remapping ρin → Pin according to the
current EOS, not violating the verified monotonicity
conditions.
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Figure 4: Construction of advanced representation for all compressor-drive pairs in the network.

Station Resistors: shown by gin/gout in Figure 1
top, the resistors typically support constant pressure
drops (REPD) on entry and exit of compressor sta-
tion. They lead to trivial modification of the control
equation (4), where in the first line Pin/out represent
the pressure in entry/exit nodes, while in the rest of
the formula Pin/out are replaced with the pressure at
inlet/outlet of the compressor. These values differ by
the given pressure drops on station resistors.

Ambient Temperature Dependence: compressor
drives often possess an own dependence on ambient
temperature, defined by biquadratic model:

Perf max = (1,rev,rev2) ·D · (1,Tamb,T 2
amb)

T , (11)

used instead of (7). Here D is 3x3 calibration ma-
trix and Tamb is absolute or relative temperature, with
the corresponding recomputation. Note that the ac-
tual use of Perf max in step 2 of the transformation is
a linear formula (8). As a result, the following lin-
ear algorithm can be used for precise account of Tamb-
dependence. The step 2 precomputation is performed
for three different temperature values Tamb,i, produc-
ing three 2-vectors vi = (ρin,Q)i. Then, in step 3,
three weights are computed, defined by

w1 =
(Tamb−Tamb,2)(Tamb−Tamb,3)

(Tamb,1−Tamb,2)(Tamb,1−Tamb,3)
(12)

and the cyclic permutation of indices. Then the vec-
tor v is computed as the weighted average v = ∑i wivi
and the result is passed to step 3 of the generic com-
putation. In this way, the variation of Tamb in partic-
ular scenario can be performed without repeating the
steps1,2 in the chain.

3 NUMERICAL TESTS

The described algorithm has been tested on a number
of real-life gas networks. Parameters of the test net-
works are given in Table 1. The number of elements is
given before applying topological cleaning procedure,
described in (Clees et al., 2018b). This procedure
removes trivial elements, such as valves, shortcuts,
short pipe segments, and can significantly reduce the
size of the network in certain cases. While the trans-
port networks mainly consist of pipes with a nearly
quadratic friction law, their computational complex-
ity is defined by the most non-linear elements, namely
compressors and regulators. In the networks, there are
two types of supply nodes, the ones with a pressure
setpoint (Pset) and the ones with an inflow setpoint
(Qset < 0). Many outflow nodes (Qset > 0) exist,
representing the large number of gas consumers in the
network.

The small and medium size networks are pre-
sented in Figure 5. Network N1 has 100 nodes and
111 edges, while ME has 437 nodes and 482 edges
and possesses a more complex topology. In addition,
we use a set of 85 large networks received from our
industrial partner for benchmarking. They are sub-
divided to L- and H-type denoting gas with low and
high calorific value. Although the calorific value it-
self has no influence on the convergence properties,
the L-networks contain considerably less compres-
sors and are topologically more simple than their H-
counterparts. As a result, L-networks typically pos-
sess better convergence then the H-ones.

The test networks were subjected to the solver
procedures of two types. One used the ‘old’ type
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Table 1: Parameters of test networks.

network nodes edges pipes compressors regulators Psets Qsets

N1 100 111 34 4 4 2 3

ME 437 482 370 20 24 3 164

N85/L 3232-3886 3305-3974 2406-2835 1-7 59-77 6-7 625-843

N85/H 2914-3818 2989-3952 1498-1937 16-42 59-107 5-9 328-505

Figure 5: Test networks N1 and ME.

of the compressor modeling, where all intermediate
variables were present and constrained by the corre-
sponding equations. The other one used the ‘new’
type, with intermediate variables eliminated and the
problem formulated completely in terms of the trans-
port variables. The convergence results are shown in
Table 2. While the old procedure was sufficiently sta-
ble to process simple N1 and ME networks, as well as
L-type N85 networks, it diverged in the half of H-type
N85 networks. Our main achievement is that the new
procedure converged in our tests in 100% of cases,
also in the most complex N85/H-type ones.

It should be noted, however, that in spite of the
theoretical guarantee for the convergence of the al-
gorithm, the control equations (3) and (4) contain
problematic marginally degenerate terms. They cor-
respond to the faces of the ’free’ diagram (Figure 1,
center), with normals directed exactly along coordi-
nate axes. On such faces, some derivatives in (1) van-
ish and the whole network problem degenerates. Reg-
ularizing the ε-term in the control equations formally
removes this singularity. However, precise physical
modeling requires ε to be as small as possible while
for numerical stability larger values of ε are prefer-
able. In our applications, a compromise value in the
range ε = [10−6,10−3] is selected.

As a result of the marginally singular problem
statement, the solution procedure cannot be started

Table 2: Results.

test total converged

networks num. old new

N1 1 1 1

ME 1 1 1

N85/L 23 23 23

N85/H 62 31 62

from an arbitrary point, as it should be possible for
the absolutely stable globally convergent algorithm.
It still requires empirics in the definition of a start-
ing point, for which we use a ‘gradual sophistication’
strategy. It starts from ‘forced’ goals of compressors
and regulators and proceeds via ‘free’ to ‘advanced’
modeling. We have found that the solution procedure
can randomly diverge under variations of the problem
settings. It happens rarely, by our experience in∼ 1%
of cases. In these special cases the adjustment of ε

value, global per network or local per problematic el-
ement, may help.
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4 CONCLUSIONS

In this paper, the advanced modeling of gas compres-
sors and their drives is considered. The approach
is based on the transformation of a system from the
space of calibration parameters to the space of trans-
port variables. In the solution loop, the transforma-
tion is readjusted whenever the temperature or/and the
gas composition in the network change. The transfor-
mation satisfies stability criteria providing the global
convergence of the solution procedure. For the 87 test
cases considered, 100% convergence rate is achieved.

The remaining problem is the presence of the
marginally degenerate terms in the control equation of
compressors and regulators. In our current approach,
we regularize these terms with a small positive param-
eter, whose value is balanced between physical preci-
sion and numerical stability of the modeling. Other
approaches have to be tested, in particular, enhancing
the system by dynamic behavior and studying the sta-
bility of the integrator of the corresponding system of
differential algebraic equations.

Our further plans also include the consideration of
‘generic’ modeling, intermediate between ‘free’ and
‘advanced’, as well as a special analytically solvable
case of piston compressors.
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