
Challenges in Aligning Enterprise Application Architectures to Business
Process Access Control Requirements in Evolutional Changes

Roman Pilipchuk1, Stephan Seifermann2, Robert Heinrich2 and Ralf Reussner2

1FZI Research Center for Information Technology, Friedrichstraße 60, 10117 Berlin, Germany
2Karlsruhe Institute of Technology, Am Fasanengarten 5, 76131 Karlsruhe, Germany

Keywords: Access Control, Business Process, Enterprise Architecture.

Abstract: Business processes define requirements for software systems that support business goals. Enterprise Appli-
cation Architectures (EAAs) organize the structure and behavior of the required software systems. Satisfying
requirements regarding the confidentiality of information that originate from the business process design is
crucial to fulfill legal obligations and corporate policies. Violating these obligations and policies can lead to
high fines and lost assets. There is a gap in modeling confidentiality requirements holistically across business
processes and EAAs (Alpers et al., 2019). Hence, aligning EAAs with business processes by identifying vi-
olated business access control requirements (ACRs) during the architectural design phase is vital. Thereto,
three challenges need to be overcome: i) define the meaning of read and write from ACRs for EAAs, ii) iden-
tify relevant parts of the EAA affected by ACRs and iii) define rules to cope with data type refinement. In
this paper, we present the challenges, solutions to them and our scientific findings that we made during the
development of AcsALign, which is an approach to align the EAAs to ACRs of business processes in the early
design phase and evolution scenarios using the established modeling languages Business Process Model and
Notation (BPMN) and Palladio Component Model (PCM). We apply our solutions in a real-world case study.
Evaluation results show satisfying accuracy of the requirements extraction and architectural alignment.

1 INTRODUCTION

Business processes describe activities that organiza-
tions carry out to generate values for customers or
themselves. Software systems support employees in
fulfilling their process activities. Therefore, business
processes define requirements for software systems.
These include access control requirements (ACRs)
forbidding or granting users and systems access to
services or data they need for their activities. The sys-
tem structure and behavior organized in an Enterprise
Application Architecture (EAA) must satisfy business
process requirements. Otherwise, systems violate
corporate policies and legal obligations, such as given
by the General Data Protection Regulation (GDPR)
(European Parliament, 2016), that business processes
address. Meeting all ACRs from business processes
during EAA design is challenging due to organiza-
tion complexity and high stakeholder involvement. If
architects fail to detect violated requirements, the im-
plementation usually also violates the requirements,
which leads to higher costs for fixing compared to an
earlier development phase (Boehm and Basili, 2001).

Access control issues can be even more costly be-
cause of high fines of privacy regulations. There are
approaches (Löhe et al., 2014; Open Group, 2018;
Urbaczewski et al., 2006; D. Brucker et al., 2012;
Ramadan et al., 2017) trying to align business pro-
cesses and EAAs but they are hard to apply because
of their complexity and usage of uncommon models
(Kotusev, 2017). A literature review (Alpers et al.,
2019) identified a gap in modeling confidentiality re-
quirements holistically across business processes and
EAAs. Hence, aligning EAAs with business pro-
cesses by identifying violated business ACRs during
the architectural design phase and evolution scenar-
ios is vital. To achieve this, three challenges need to
be overcome. First, relevant parts of the EAA need
to be identified that are affected by business ACRs.
Second, an appropriate definition for data types read
and written by service calls need to be specified with
respect to an analysis of violated ACRs. Third, rules
have to be defined on how to compare access permis-
sions stemming from business ACRs with the relevant
parts of the EAA taking the complexity of data type
refinement into account.

Pilipchuk, R., Seifermann, S., Heinrich, R. and Reussner, R.
Challenges in Aligning Enterprise Application Architectures to Business Process Access Control Requirements in Evolutional Changes.
DOI: 10.5220/0010511800130024
In Proceedings of the 18th International Conference on e-Business (ICE-B 2021), pages 13-24
ISBN: 978-989-758-527-2
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

13

This paper presents our scientific findings regard-
ing the challenges that we have found during the
development of an approach called Access Permis-
sion Architecture Aligner (AcsALign) that exploits
Business Process Model and Notation (BPMN) mod-
els commonly used to describe business processes to
identify violations of ACRs in Palladio Component
Model (PCM) models commonly used to describe IT
architectures. As EAAs organize structure and behav-
ior of software systems with the same types of ele-
ments (e.g. system, interface), PCM is suited to define
EAAs. AcsALign helps enterprise architects to iden-
tify ACR violations automatically during design time,
i.e. they can align EAAs to business process ACRs.
This is especially crucial during evolution scenarios.
We assume business processes to be correct, i.e. we
do not challenge their compliance with laws, as our
goal is to align information about ACRs from busi-
ness processes with architectural design. Guidelines
like (AXELOS, 2011) help to design appropriate busi-
ness processes. Hence, the assumption is reasonable.

In this paper, we present the following contribu-
tions: (i) a definition of relevant EAA parts regarding
business process ACRs, (ii) a definition of read and
write actions with respect to the analysis of violated
ACRs and (iii) an algorithm to detect violated ACRs
in EAAs by taking the complexity of data type refine-
ment into account. We apply our contributions on a
real-world case study of a national art gallery.

The remainder of the paper is structured as fol-
lows. After providing required foundations in Sec-
tion 2 and describing the challenges in Section 4, we
give a short overview of AcsALign in Section 5. Sec-
tions 5.1 to 5.3 elaborate on our contributions regard-
ing the three challenges to align EAAs and business
processes with respect to ACRs. In Section 6, we
evaluate our contributions on a real-world case study
consisting of ten business processes, 83 ACRs and 16
systems. We achieve a satisfying accuracy. The paper
finishes with a discussion of related work in Section 3
and a summary including future work in Section 7.

2 FOUNDATIONS

Our approach makes use of BPMN for modeling busi-
ness processes and PCM for modeling EAAs. There-
fore, we introduce both modeling notations briefly.

The Business Process Model and Notation
(BPMN) (Object Management Group, 2011) is the de
facto standard language for modeling business pro-
cesses in organizations. It uses graphical notations
to visualize the flow of activities for interacting par-
ticipants. Figure 1 shows two processes modeled in

BPMN that are part of our running example intro-
duced later. Participants such as the store manager
are represented by lanes. The surrounding pool such
as Store defines the organizational division of the par-
ticipant. Each lane contains activities represented by
rounded rectangles that are interconnected with ar-
rows representing the flow of interactions. Data ob-
jects like Advertisement Schedule may be annotated to
activities representing input and output flows of data
in the activity. Circles indicate starting/ending condi-
tions of a process. In order to fulfill the business pro-
cess, all activities must be carried out by the partici-
pants. This requires appropriate access permissions.

The Palladio Component Model (PCM) is the
modeling language of the Palladio approach (Reuss-
ner et al., 2016) for predicting various quality prop-
erties of architectures including performance or re-
liability. In our approach, we use PCM to describe
EAAs, which are the landscape of systems support-
ing business processes, and its behavior. We make
use of two viewpoints: The structural view point cov-
ers components, their interfaces and how instances of
these components are assembled to a system. The be-
havior view point covers the behavior of users, given
by a sequence of calls to system services and compo-
nents, given by a sequence of actions affecting quality
properties of the system.

3 STATE OF THE ART

The field of aligning business processes and EAAs
with respect to security as well as the field of access
control analyses in EAAs to be the most related. We
briefly report on the respective related approaches in
the following. The transition to the implementation
(incl. the integration of access control systems during
the implementation phase to enforce policies at run-
time) is not in our focus.

Alignment between business processes and EAA
provides considerable benefits (Giaglis, 2001). En-
terprise Architecture Management (EAM) is the gen-
eral term for the common approach to achieve such
an alignment. In Architecture-driven IT management
(ADRIMA) (Löhe et al., 2014), EAM involves initiat-
ing and establishing processes as well as governance
and definition of application scenarios by determin-
ing involved models and their lifecycles. Frameworks
like TOGAF (Open Group, 2018) and FEAF (Ur-
baczewski et al., 2006) define various types of models
and their interrelations for developing an enterprise
architecture. However, they are considered hard to ap-
ply (Kotusev, 2017) because of the complexity of the
corresponding process and the required detailed plan-

ICE-B 2021 - 18th International Conference on e-Business

14

ning. EAM is considered a challenging task (Löhe
et al., 2014), in general. Even if the models provide all
required means for expressing security, creating them
is complicated and requires many stakeholders with
deep knowledge of specific models. Approaches to
extend BPMN like (D. Brucker et al., 2012; Salnitri
et al., 2015; Rodrı́guez et al., 2007) introduce vari-
ous security related information into BPMN, which
leads to the same issues. They are not as widespread
as BPMN itself and require extra effort of experts to
model the additional information in BPMN. In con-
trast, AcsALign works with de facto standard model-
ing languages to require low additional effort for or-
ganizations. The approach around IntBIIS (Heinrich
et al., 2017) also addresses mutual dependencies be-
tween business processes and architecture but focuses
on performance predictions rather than access control.
(Ramadan et al., 2017) proposes an approach to align
architecture models and business processes with re-
gard to security policies. Therefore, they transform
security policies from secBPMN2 models to architec-
ture models in UMLsec. While the idea is similar,
the realization achieves different goals. They focus
on non-standard models that introduce security spe-
cific elements. However, such extended models are
not widespread and require additional effort of secu-
rity experts during the design phase. We follow the
same idea but focus on de facto standard modeling
languages and tailored our approach in a way to im-
pose least possible effort during its utilization.

There are various approaches to analyze architec-
tures regarding access control that the comprehensive
survey (Nguyen et al., 2015) of Nguyen et al. lists.
None of the approaches that aim for the same goal as
our approach work on non-extended standard models.
We cannot discuss all but focus on the approaches that
make use of standardized models that are extended by
security concepts. Often, the intention of the analyses
is different to ours, which impedes reusing these ap-
proaches. Approaches like (Ahn and Hu, 2007; Busch
et al., 2014) aim for integrating security mechanisms
in models or code by providing means for modeling
them. We cannot make use of such approaches be-
cause they do not provide analyses of data usage. An-
other common goal of approaches like (Jürjens, 2005;
Georg et al., 2009) is the analysis of attacker behav-
ior. These approaches analyze information flows but
require modeling attackers and their capabilities. In
contrast, our architectural analysis only requires ad-
ditional information tailored to the use case.

Another group of approaches like (Alghathbar and
Wijesekera, 2003; Lodderstedt et al., 2002; Goudalo
and Seret, 2008) aim for extending UML with secu-
rity information. Some allow modelling ACRs on the

architectural level. Their purpose is different as they
do not focus on closing the gap between the organiza-
tional level and the IT level by aligning the models of
both. Furthermore, they focus on defining security
related information explicitly rather than extracting
ACRs from the organizational level. Also, such ap-
proaches require additional effort of security experts.

The approach in (Abramov et al., 2012) proposes a
systematic way to enforce ACRs from organizational
level on architectures and databases. The difference
to our approach is that they focus on architecture di-
agrams rather than business process models at the or-
ganizational level. ACRs and also security patterns
need to be modeled explicitly by security experts in
extended UML class diagrams and extended UML
use case diagrams. In our approach, we focus on sup-
porting commonly used methodologies and de facto
standard modeling languages by extracting implicitly
modeled ACRs to analyze the correctness of the EAA
without an additional effort for security experts.

4 CHALLENGES

We identified three main challenges in aligning EAAs
with business processes. To illustrate these chal-
lenges and the concepts in the remainder of this pa-
per, we introduce a running example of a supermarket
chain based on the community case study Common
Component Modeling Example (CoCoME) (Heinrich
et al., 2016). Initially, the supermarket supports buy-
ing goods locally. Orders of a mandatory loyalty pro-
gram are used for marketing purposes. After a system
evolution, there also is an online shop not eligible for
the loyalty program. We focus on the business pro-
cesses from Figure 1. In the following, we explain
the three main challenges.

Relevant EAA parts affected by ACRs have to be
identified as these parts are prone to human errors
made by enterprise architects (see Section 1). The
major issue in identifying corresponding parts is that
EAAs refine the business processes extensively, so
there is no simple one-to-one mapping. Consequently,
identifying relevant EAA parts by just looking up the
result of a simple mapping process is not possible
because this mapping process is highly creative. In
our running example, such a refinement happens for
the Prepare customer profiles activity in Figure 1. In
BPMN, this is just an activity but to provide this func-
tionality in the EAA, there is the need for a dedicated
Marketing component that retrieves data from a Cus-
tomerDataStore to calculate the profiles as shown in
Figure 2. Certainly, it is not enough to just consider
the marketing component here but how far should we

Challenges in Aligning Enterprise Application Architectures to Business Process Access Control Requirements in Evolutional Changes

15

Prepare Advertisements and Discounts
(simplified2) (Ohne Farben) (ICE-B)

St
or

e

M
ar

ke
-

ti
ng

 M
a-

na
ge

r Marketing Manager

Prepare
customer
profiles

Select adverti-
sements and

discounts

Advertise-
ment

schedule

Advertise-
ment

request

Prepare
advertisement
strategy and

goals

Loyalty
order

Customer
profile

St
or

e
M

an
ag

er

Store Manager

Renew
Advertisements

Prepare
advertisement

request

Approve
advertisement

schedule Advertisement
schedule
finished

Advertise-
ment

schedule

Advertise-
ment

request

Advertise-
ment

schedule

Figure 1: CoCoME business process Prepare Advertisements and Discounts (in BPMN).

IOnlineCheckout

ICustomer-
DataRecorder

IQuery

Store

IManagement

IStore-
Inventory

OnlineShop

CashDesk

Inventory

Marketing

Customer-

DataStore

Loyalty-

Management

ILoyaltyCheckout IMarketing

Figure 2: Simplified EAA of CoCoME (in UML-like nota-
tion).

trace relevant components back? Dozens of refine-
ments are done to design an appropriate architecture.
If unnecessary parts of the EAA are considered during
the analysis, the alignment becomes slower and might
require modeling of additional information. If not all
relevant parts are considered, the alignment becomes
incomplete and misses vital errors.

The meaning of read and write actions known
from ACRs has to be defined in the context of EAAs.
In business processes, data objects might be required
as input (read) to fulfill an activity and activities might
produce data objects as output (write) during the ful-
fillment of an activity. If the definition of read and
write in the context of EAAs is wrong, errors are
missed and false positives will occur. In the EAA
there are many potential candidates to detect read or
written data such as parameters and return types of
services, variables in services, objects, databases and
calls to IDs. Thus, it is important to understand what
read and write in business processes mean in the con-
text of EAAs. Moreover, the processing of data in
service calls might become very complex due to com-
position and decomposition of data. For example,
the data object customer profile is generated in a ser-
vice call by combining various data like clustered cus-
tomer groups, products, discounts based on the previ-
ous analysis of data in the collection loyalty order.

Data type refinements are done by the enterprise
architect during the design of the EAA. Data objects
in business processes are high-level and designed
from the business point of view. The enterprise ar-
chitect has to design data types that reflect data ob-
jects from the business processes, but designs them
from the IT point of view. Data types usually are not

standalone but are combined or collected. There are
several ways of refinement: 1. define new collection
data types, 2. define new composite data types and
3. define new primitive data types. Thus, data type re-
finements make simple equality checks insufficient. It
is an important factor that imposes complexity to the
identification of ACR violations, as the specification
of integral parts of data objects are not known on the
business level but are part of the work of the enterprise
architect. A call in the EAA can transport data types
that are known from the business processes but also
new data types created by the enterprise architect and
thus, unknown by the ACRs of the business processes.
Furthermore, combined data types of these known and
unknown data types may flow via a service call. The
degree of composition is not limited, i.e. data types
consisting of data types which themselves consist of
data types and so on are normal in the EAA. The col-
lection loyalty order from Figure 1 exemplifies this
complexity. In the EAA, the collection loyalty order
consists of the composite data type loyalty order. This
composite loyalty order consists of a customerID, loy-
altyID, a list of purchased products, their prices, the
order number, the cashierID and a date. Some of these
data types like the customerID are created newly and
are not known by the ACRs of the business processes.
Other data types like list of products are a collection.
Furthermore, some inner data types are again a com-
position of known and unknown data types like the
product. This opens room for various combinations of
collections, compositions, known and unknown data
types. Consequently, data types that flow during ser-
vice calls might be completely different from the data
objects in business processes. This spans many pos-
sibilities on how data objects from business processes
(that are part of ACRs that need to be validated in the
EAA) can be related to data types that flow in service
calls of the EAA. The challenge is to decide if a data
type is allowed or forbidden to flow during a service
call even if there are no ACRs for exactly this data
type.

ICE-B 2021 - 18th International Conference on e-Business

16

5 OVERVIEW OF THE AcsALign
APPROACH

The goal of AcsALign is to align EAAs with busi-
ness process ACRs by detecting violations automat-
ically. Mistake resolution is done manually by the
architect but AcsALign supports it with tracing infor-
mation and violation details.

Access Control Requirement Extraction: First,
AcsALign extracts ACRs based on data used in
business processes and stores ACRs linked to busi-
ness processes in a trace model. Afterwards, ACRs
are transformed into role-permission-pairs describing
which data types a role can read and write. We do
not focus on creating meaningful business processes
or architectures but expect them to be already mod-
eled. This assumption is feasible as organizations cre-
ate such models for compliance purposes anyway.

Architectural Alignment: Second, an architectural
analysis determines data used in services and ana-
lyzes them for ACRs violations. For the tool real-
ization, we used a data flow analysis and extended it
with data properties and propagation rules tailored to
data type analyses. Afterwards, a matching algorithm
(explained in Section 5.3) compares architectural data
type usage with data type usage defined by business
processes. A detected issue means that the architec-
ture does not adhere to ACRs from the business pro-
cess and violations have to be revised.

Mistake Resolution: Third, architects meet ACRs
of business processes by addressing identified viola-
tions. AcsALign supports by providing information
about violations. First, information about violated
ACRs is given via a trace model, i.e. the a) affected
ACR and b) affected activities in business processes
incl. lanes and data objects. Such traces make analy-
sis results comprehensible by providing a bigger pic-
ture about the business process context of service calls
(with information of the affected service calls, af-
fected roles and their work tasks and interrelations to
further activities and service calls of the affected pro-
cess) and by enabling to identify correct business pro-
cess owners to clarify their intentions. Second, infor-
mation about the architecture violation is given by the
a) initial service call, b) data flow through the system
and c) violating action incl. operations (read/write)
and involved data types. This helps to understand
which system’s service is affected and the intended
ACR design decisions of the business. AcsALign
does not automate this step but the architect can run
AcsALign again after the fix to validate changes.

AcsALign is compatible with business process
languages like BPMN with characteristics to group
activities and express data objects entering and leav-

ing activities. It is compatible with architecture lan-
guages like Unified Modeling Language (UML) that
have call-and-return semantics, user behavior and
data propagation. These selection criteria apply to
most commonly used languages. In the remainder of
the paper, we use IntBIIS (Heinrich et al., 2017) that
models a subset of BPMN, and PCM (Reussner et al.,
2016). Still, our approach is compatible with other
languages as mentioned before.

5.1 Affected EAA Parts

In order to align the EAA to business ACRs, rele-
vant parts of the EAA have to be identified that are
affected by ACRs, as these parts are prone to human
errors made by the enterprise architect (see Section 4).
We analyzed the effect of ACRs on all meta-elements
of the architectural language that we use to repre-
sent EAAs. As the architectural language is a typi-
cal modeling language for IT architectures and we lift
the identified elements to a more general level, we as-
sume the results to be representative for other EAA
modeling languages as well. To identify affected ele-
ments, we first identify the essential parts of an ACR.
The data object and its operation are certainly the sig-
nificant parts of the ACR. To violate an ACR, a user
has to get access to data he should not have to or
trigger write actions for data that he might have ac-
cess to but are not allowed to write. Hence, all meta-
elements that have an influence on the data flow path
or the transported data objects are relevant for consid-
erations. In the EAA data objects are represented as
data types and the data flow path of services calls in
systems and components.

Our research shows that four parts of the EAA are
affected by business ACRs. We call them mistake
types (MT) because an architect might introduce an
error via these meta-elements during the design time:

MT1) parameters and return types of services (ex-
plicit data type assignment)

MT2) external Calls (wrong data type received/sent)

MT3) wiring of systems/components (wrong data
type received/sent)

MT4) data type refinement (illegal composition of
data)

In MT1, to much data might flow due to falsely speci-
fied service parameters or return types. This may lead
to either forbidden write operations to data through
storage and modification or forbidden read access if
to much or wrong data is returned by the return types.
During MT2, falsely specified external calls in the
component behavior might lead to falsely received
and sent data types. In MT3, a wrong wiring might

Challenges in Aligning Enterprise Application Architectures to Business Process Access Control Requirements in Evolutional Changes

17

lead to the same problem because components and
systems might specify or be connected to a wrong in-
terface. During MT4, data types might be refined er-
roneously leading to a flow of too many data types.
Coping with the various data type refinements is a
challenge on its own. Thus, we address it in Sec-
tion 5.3. To sum up, the four aforementioned MTs
are the parts of the EAA that are affected by ACRs
and have to be considered during an alignment.

5.2 Read and Write in EAA Context

To analyze the EAA for violations of ACRs, it has to
be defined what the operations read and write of busi-
ness ACRs mean in the context of EAAs (see Sec-
tion 4). In the context of business processes read and
write during an activity mean that data is required as
input in order to fulfill the activity or is produced as
output that is later on required during another activ-
ity. In both cases, the required or produced data is
persisted. During our research, we found that the fol-
lowing definition of read and write in the context of
EAAs is appropriate and allows to abstract from the
various possibilities to transfer data in architectures
(like parameters, objects, etc. explained in Section 4).
Write in the context of activities means that new data
is persisted or persisted data is modified (this includes
any modification as deletion). In the EAA, data is per-
manently stored or modified if it is part of a database.
Therefore, services are called to store or modify data
in a database. Consequently, it is important whether
the data to write is stored in a database and not how
it is transferred between systems and components. In
the context of EAAs, write means that data is stored
or modified in a database by a service that is called
during an activity. Transitive calls need to be consid-
ered.

Read in the context of activities means that data
is required as input to fulfill the activity. In the con-
text of EAAs, service calls fetch the required data.
Thereby, it is important which data arrives at the end
of the called services of an activity. It is not rele-
vant where this data is actually coming from or which
other data is read in order to fetch the previously men-
tioned data as the person or system who calls the ser-
vices during the activity is only able to read the data
that is received upon the end of these service calls
(and not the data that is processed during these calls
and during transitive service calls). Hence, the sys-
tem facade needs to be considered as well as the data
that is returned during service calls of the system fa-
cade. In the context of EAAs, read means that data is
returned during the end of service calls (found in the
system facade) of an activity.

To sum up, the system facade and databases that
are part of the EAA need to be identified. With re-
gard to databases service calls that store or modify
data need to be considered for write access and data
returned to services of the system facade need to be
considered as read access.

Determining read and written data according to
the aforementioned definition is possible by means of
a data flow analysis. This is necessary because simply
comparing data types used in service signatures is not
sufficient to consider refined data types such as poly-
morphic data types. We extend a data flow extension
for Palladio (Seifermann et al., 2019) with a taint-like
mechanism to detect the origins of data flows as de-
scribed above. The data flow analysis tags data with
the actual data type, i.e. the actual polymorphic data
type, and considers the effect of data processing. For
example merging two data types into a composed data
type. In addition, there are tags for the traversed oper-
ations of service calls. Every traversed operation adds
a new tag. This allows to reason about the source of
a call, which is important to identify if data arriving
at a store has been sent by an allowed subject. By
using both types of tags, we can identify actual data
types at each location in the EAA and always trace
a data item back to a subject that issues the call. In
our running example, the actual data type of the order
leaving the online shop component is the same as the
type of the received order. The CustomerDataStore
receives orders from the online shop and transitively
from the cash desk, so it can return data of both types
to the Marketing component. This component takes
the data and produces customer profiles. The market-
ing manager preparing the customer profiles receives
these customer profiles.

We determine read data types for a user by col-
lecting all actual data types that are returned during
service calls. We determine written data types by col-
lecting all actual data types for parameters sent to a
database that trace back to a system call of the user.

5.3 Data Type Refinement

In order to analyze the EAA for ACR violations, it has
to be defined how to cope with the challenge of data
type refinements made by architects. Due to them
simple equality checks are insufficient (see Section 4).

In our research we divided the problem into data
flows of collections and compositions. Primitive data
types are part of compositions, as they represent a data
type without inner data. Furthermore, data types in
both classes of data flows might be known by a busi-
ness process or not. They are known when the data
types have corresponding data objects defined in the

ICE-B 2021 - 18th International Conference on e-Business

18

business processes. Throughout the data type refine-
ment, new data types of arbitrary complexity are cre-
ated by the architect. These are the data types that
are unknown by the business processes. We explored
what an ACR means for both classes of data flows tak-
ing unknown data types into account and created rules
when a data flow is allowed/forbidden in the presence
of an ACR. These rules were combined and simplified
forming the algorithm shown in Algorithm 1. This al-
gorithm provides the mistake detection.

Algorithm 1: Pseudo-code to derive if a given data type d is
allowed.

1: function ALLOWED(d,Dknown,Dallowed)
2: allowed← (d ∈ Dknown =⇒ d ∈ Dallowed)∧

(d /∈ Dknown =⇒ f allback)
3: if allowed∧ isComposite(d) then
4: for di← d.innerDataTypes do
5: allowed ← allowed ∧

allowed(di,Dknown,Dallowed)
6: end for
7: end if
8: if allowed ∧ isCollection(d) ∧ d /∈ Dknown

then
9: allowed ← allowed ∧ d.innerType /∈

Dknown
10: end if
11: return allowed
12: end function

A special case is formed when an unknown data
type flows in a service call. As they are unknown to
business processes, these cannot define how to han-
dle them with regard to access control. Therefore, our
algorithm proposes the variable f allback. It has to
be defined by the architect prior to execution. Using
f allback = f alse is appropriate for high risk environ-
ments because it denies access to all unknown data
types. Using f allback = true is more permissive and
grants access to all data types not known, which can
be useful in case of many data type refinements. We
use the latter one in this paper. The algorithm takes
all ACRs for a business process activity and compares
them with the identified data access of all service calls
belonging to that activity. Dknown is the set of data
types known from business processes. Dallowed is the
set of data types allowed by the ACR. A data type
known to business processes has to be allowed explic-
itly (line 2). Otherwise, the fallback applies. For a
composed data type all of its inner data types have to
be allowed as well (lines 3–7). If this is not the case,
more data types are read or written than allowed by
the ACRs. A collection data is only allowed if it is
known or its inner data type is allowed as well (lines

8–10). In the first case, it is in Dknown. In the second
case it is not in Dknown. For the second case it has to be
checked if the inner data type is in Dknown. If true, the
collection is forbidden as the inner data type is known
by the business processes. The reason is that the busi-
ness processes would have defined the collection for
the activity if it were intended as an input or output, as
the inner data type and thus, its collection is known by
the business processes. If false, the collection and its
inner data type are unknown and f allback applies. In
our running example, the marketing manager can read
collections of loyalty orders during the preparation of
customer profiles as illustrated in Figure 1. The data
flow analysis detects that the manager accesses Loy-
altyOrder[] and OnlineOrder[]. The matching algo-
rithm shows that online orders are not allowed to be
read, which indicates a mistake in the architecture. To
sum up, an algorithm is required that copes with the
various data type refinements as well as known and
unknown data types to decide for a data flow in pres-
ence of an ACR whether the data is allowed to flow
or forbidden. We evaluated the algorithm on a real-
world case study in Section 6.

6 EVALUATION

This section describes the case study based evalua-
tion of the solutions for the challenges realized in the
approach AcsALign. Section 6.1 describes evaluation
goals and design of the case study. The studied case is
described in Section 6.2. Section 6.3 and Section 6.4
cover arguments as the first part of the evaluation.
Section 6.5 presents and discusses results and Sec-
tion 6.6 covers threats to validity. Finally, Section 6.7
discusses limitations and assumptions of AcsALign.

6.1 Evaluation Goals and Design

We structure the evaluation based on the Goal-
Question-Metric method (R. Basili et al., 1994).
Goals are the evaluation objectives to be achieved.
Metrics allow answering evaluation questions that
contribute to achieving the objectives.

We evaluate all of our three contributions. Con-
tributions C1 and C2 are both definitions building
the foundation of AcsALign. Definitions cannot be
wrong but they can be unrealistic or inappropriate,
which degrades the applicability. Therefore, we de-
fine our first evaluation goal G1: Evaluate the ap-
propriateness of the underlying definitions. Con-
tribution C1 defines the set of architectural elements
that are relevant for checking compliance with access
control requirements. Contribution C2 defines what

Challenges in Aligning Enterprise Application Architectures to Business Process Access Control Requirements in Evolutional Changes

19

a read and write operation actually is in terms of the
EAA. The important evaluation question to ask in or-
der to rate the appropriateness of the definitions are:
Q1.1: Does the set of elements contain all archi-
tectural meta-elements that influence the detection
of read and written data types? Q1.2: Does the
definition cover all activities of an EAA that can
be considered a read/write operation? We answer
these questions by arguments in Sections 6.3 and 6.4.

An analysis (C3) is only useful if its accuracy is
satisfying. In the following, we use the term mistake
to describe a concrete error introduced in the architec-
ture. A violation is the result of the mistake, i.e. a vi-
olated ACR. Low accuracy means a user cannot trust
the results and has to compensate missed or falsely
reported requirement violations by manual tasks. In
the worst case, the analysis provides no benefit com-
pared to pure manual inspection. Therefore, the sec-
ond evaluation goal is G2: Evaluate the accuracy of
AcsALign for discovering violations of ACRs that
originate from business processes in EAAs. Eval-
uating the accuracy of the overall approach refers to
evaluating the accuracy of its single steps. We eval-
uate the steps separately to better locate potential ac-
curacy issues. We do not consider the accuracy of
the mistake resolution step because it is a manual step
and highly depends on the abilities of an architect and
cannot be evaluated in an objective way. We ask two
evaluation questions: Q2.1: What is the accuracy
of the ACR extraction? Q2.2: What is the accu-
racy of the architectural analysis? By answering
these questions, we want to examine two common and
relevant situations caused by low accuracy that lead to
increased manual effort as motivated before: (i) is a
reported violation an actual mistake (soundness) and
(ii) have all mistakes been reported (completeness)
We answer the evaluation questions Q2.1 and Q2.2 as
part of a case study because we aim for a real-world
scenario that allows for deeper understanding and bet-
ter realism of the phenomena under study.

To answer Q2.1, we execute the extraction process
on the case described in Section 6.2 and classify the
results based on a reference list of ACRs. Two post-
graduates independently analyzed all business pro-
cesses by hand to develop a common reference list of
ACRs. The studied case contains all model elements
that can have an influence on ACRs as described in
Section 5.1. We classify each individual ACR of a
business process activity. We classify an ACR as true
positive tp if the ACR exactly matches the ACR in the
reference list. We classify an ACR as false positive
fp if the ACR has no exact match in the reference list.
We add ACRs from the reference list to fn if the ex-
traction did not yield these ACRs.

Based on this classification, we calculate two es-
tablished metrics for accuracy. These metrics address
the situations caused by low accuracy as discussed be-
fore: M1 Precision mp =

tp
tp+ fp

, to address (i) and M2
Recall mr =

tp
tp+ fn

, to address (ii).
To answer Q2.2, mistakes are injected in the cor-

rect EAA, a reference list of violations is created, Ac-
sALign is executed and results are classified. The ini-
tial EAA modeled in PCM is a version for the case
described in Section 6.2 that initially has no mistakes.
We categorize all possible mistakes into mistake types
that have the same root cause. They were discussed
in Section 5.1. These are mistake types that are not
specific for a used modeling language but for EAAs
in broad. To evaluate the accuracy of the analysis,
it is sufficient to inject one mistake of each mistake
type into the architecture because more mistakes of
the same type would be handled in the same way and
yield the same result. Two postgraduates build the ref-
erence list of violations by recording the injected mis-
take, its expected effect and the violated requirement.
We classify a reported violation as tp if the violation
is part of the reference list. We classify a reported vio-
lation as fp if the violation is not part of the reference
list. We add violations from the reference list to fn if
the analysis did not report this violation. We calculate
the previously mentioned metrics M1 and M2 based
on the classification results.

6.2 Studied Case

The case we study is the result of a consulting project
for a national art gallery that wanted to streamline its
EAA to improve business process support. A set of
business processes for the preparation of an exhibi-
tion and an EAA has already been created, i.e. the au-
thors did not create them. The case is appropriate for
the evaluation of our approach as there is a compre-
hensible set of business processes that contain inter-
action between actors, data type definitions and data
usage descriptions. The EAA contains usual data pro-
cessing patterns for information systems, including
delegation, merging, or reading from and writing to
databases. The size of the studied case is reasonable
as shown in the characteristic overview in Table 1.

All business processes shown in Figure 3 are sub-
processes required for the preparation of an exhibi-
tion. For further details, we provide all models as
part of a data set (Pilipchuk et al., 2021) incl. anal-
ysis results. At first, a concept including the planned
artworks for the exhibition is created by the curator.
After reaching a budget agreement with the directors,
external artwork is borrowed. Usually, the gallery
lends artworks to other galleries. This set of busi-

ICE-B 2021 - 18th International Conference on e-Business

20

Table 1: Characteristics of the business processes and the EAA of the studied case.

Business Characteristic # Business Characteristic # EAA Characteristic #

Business processes 10 Activities 75 Systems 16
Lanes 34 Data objects 56 Service Calls 17
Roles 12 Access Control Req. 83

OverviewProcesses4

Artwork
Lending

Prepare
Exhibition

Create
Exhibition
Concept

Negotiate
Lending

Conditions

Send
Lended
Artwork

Receive
Lended
Artwork

Artwork
Borrowing

Negotiate
Borrowing
Conditions

Receive
Borrowed
Artwork

Send Back
Borrowed
Artwork

Figure 3: Overview of sub-processes for the exhibition preparation (in BPMN).

Exhibition

...

Lending/Borrowing

Data

Orchestration

Corpus

CRM

...

Figure 4: Excerpt of EAA of the national art gallery (in
UML-like notation).

ness processes provides a suitable base for analyzing
ACRs because they encompass data flows of confi-
dential information like financial budgets, insurance
values and customer data.

The supporting system illustrated in Figure 4 is a
middleware that interconnects different systems and
provides views on subsets of data that the different
employee roles of the art gallery require. Individual
systems such as Corpus or CRM provide data that the
Data Orchestration combines and provides to systems
accessible to the users such as the Lending/Borrowing
system or the Exhibition system.

6.3 Appropriateness of Read and Write
Definition

We start with the argument for the appropriateness of
C2 because the argument of C1 builds on it. C2 de-
fines what a read and a write operation actually is in
terms of an EAA. First of all, users can basically
do anything with information they already have ac-
cess to, which means they can also write and read
it. Therefore, restricting access to information users
already have is barely possible. We exclude digital
rights management here because this is not the focus
of AcsALign. Therefore, the access control system

has to take care of information that is exchanged be-
tween the users. These exchanges can be i) a user
transitively reads information from another user and
ii) a user changes information another user can read
All of these exchanges require some sort of memory
that stores the information because users in informa-
tion systems operate in sessions that usually do not
support direct information exchange. Description lan-
guages such as Palladio apply this pattern as well.

This means that if the system returns informa-
tion to a user, the information is either from him-
self/herself or it has been loaded or derived from other
stored information. In both cases, the user requires
proper read access permissions for the received data.
Because Role-based Access Control (RBAC) is not
about information flow control, it only matters what
the user actually receives. Therefore, it is sufficient to
check the read permissions at the system boundary.

If the user wants to change information that is po-
tentially exchanged with another user, he/she has to
modify memory. Therefore, all information passed
to memory can be considered as written and no infor-
mation else. In Palladio, the only memory writable by
users are stores, so we consider all information passed
to a store as written. In other modeling languages, it
might be necessary to include further memory imple-
mentations but the pattern still applies.

6.4 Appropriateness of Selected
Modeling Elements

Contribution C1 defines the set of architectural ele-
ments that are relevant for checking compliance with
access control requirements. In the previous section,
we already showed that detecting read actions at the
system boundary and write actions at stores is appro-
priate. In this section, we show why the selected ar-
chitectural elements are appropriate to detect read and

Challenges in Aligning Enterprise Application Architectures to Business Process Access Control Requirements in Evolutional Changes

21

Table 2: Excerpt of extracted ACRs.

Role Read Perm. Write Perm.
Management:
CEO – Lending-

Confirmation
Research:
Curator ForeignArtwork Lending-

Request

written data as well as to decide about permissions.
To find read data, we have to know the data types re-
turned to the user at the system boundary. Just looking
at the signature is not sufficient because this does not
consider polymorphic types. To determine the actual
data type, we have to follow the control flow in re-
verse order to the point where we can decide about the
data type. Such a point is reached if data of a certain
type is created. Therefore, we have to consider all el-
ements that influence the control flow, which are calls
of the user to the system, interfaces including signa-
tures, components, calls between components and the
actual wiring of components. To find written data, we
have to know the data types passed to a store. The
procedure is the same as for read data but we follow
the control flow starting from the store. To decide if
a data type is allowed to be read or written, we have
to match it with the access permissions. To support
refined data types not directly covered by the permis-
sion set, we require information about the actual re-
finement. Therefore, it is necessary to also consider
the structure of data types.

6.5 Evaluation Results and Discussion

We conducted the case study as described before. For
question Q2.1 regarding the accuracy of ACRs extrac-
tion, we achieved 83 true positives, zero false posi-
tives and zero false negatives. This brings us to a pre-
cision mp =

83
83+0 = 1.0 and a recall mr =

83
83+0 = 1.0.

Hence, the extraction algorithm successfully identi-
fied all ACRs that could be identified from business
processes according to the previously defined rules
and did not report any false positives. Table 2 shows
an excerpt of the extracted ACRs. The reference list
of ACRs has the same format and matching ACRs is
unambiguous when ignoring the order of data types
in read/write permissions. This is feasible as the or-
der has no meaning for the permissions. All extracted
ACRs have an equal counterpart in the reference list.

For question Q2.2 regarding the accuracy of the
architectural analysis, we achieved four true positives,
zero false positives and zero false negatives. This
brings us to a precision mp = 4

4+0 = 1.0 and a re-
call mr =

4
4+0 = 1.0. This means that the analysis

successfully identified all injected mistakes in the ar-
chitecture and did not falsely report mistakes. The

four correctly found mistakes are shown in Table 3. In
MT1, the system returns a lending request but it must
not return anything. In MT2, the system must return
a foreign exhibit object but it returns an own exhibit
object because a wrong service has been called inter-
nally. In MT3, the system returns two data items be-
cause a service has been wired wrongly. The system
must not return a foreign exhibit object in this case. In
MT4, the system returns the correct data types but the
lending contract has been refined in a way that it now
contains an exhibit object instead of a public exhibit
object. This violates an ACR because the permission
for writing arbitrary exhibit objects is missing. All re-
ported mistakes match mistakes of the reference list.

6.6 Threats to Validity

We discuss the four aspects of validity according to
Runeson et al. (Runeson et al., 2012, pp. 71) that
have to be distinguished in case study research.

Construct validity ensures that taken measures
represent what shall be researched. We used common
accuracy metrics and provided a reasonable classifi-
cation scheme aligned with the analysis definitions to
collect the input data for the metrics. As part of the
evaluation design, we already explained the relation
between the evaluation question and the used metrics.

Internal validity ensures that an expected influenc-
ing factor is not affected by other factors. We ex-
pect the extraction algorithm and the analysis algo-
rithm, the analyzed models, the result classification
and the injected mistakes to influence the results. The
extraction and analysis algorithms are the factors we
want to check. We ensured that the models contain
all relevant scenarios to cover the whole algorithms.
This eliminates a positive influence of the models be-
cause a certain type of requirement or mistake that
could potentially be missed is not part of the models.
The mistakes were injected by the authors. However,
we categorized all possible mistake types that influ-
ence ACRs and injected one mistake for each cate-
gory. This is sufficient to evaluate accuracy because
more mistakes of the same type would be handled in
the same way and yield the same result. We derived
the scenarios from general definitions that could ap-
ply to other algorithms as well to avoid creating sce-
narios that are tailored to the approach. We also en-
sured that the models correctly reflect the intention of
the modeler to eliminate unintended modeling flaws
as an influencing factor. We derived the scenarios and
the classification scheme in a reasonable way as ex-
plained in the evaluation design to avoid a positive or
negative effect on the metrics by a flawed case study.

External validity ensures that results can be gen-

ICE-B 2021 - 18th International Conference on e-Business

22

Table 3: Architectural compliance analysis results (mistakes set in italic).

Mistake Entry Level System Call Read Data Types Written Data Types
MT1 SaveLendingConfirmation LendingRequest LendingConfirmation
MT2 GetForeignArtwork OwnArtwork –
MT3 GetArtwork Artwork, ForeignArtwork –
MT4 CreateLendingContract – LendingContract

eralized. As Runeson et al. (Runeson et al., 2012, p.
71) state, case study results cannot be generalized in a
universal way because no statistically relevant sample
has been drawn. However, results can be applied to
cases with comparable characteristics. With respect
to the evaluation, relevant characteristics are the used
modeling languages BPMN and PCM because we did
no case studies using other languages. However, both
languages are established, so the results apply to var-
ious other cases using these languages. We expect
that results are applicable to other languages with the
characteristics mentioned in Section 5.

Reliability ensures that results do not depend on
the conducting researcher. The steps necessary to
conduct the evaluation are creating the models, run-
ning the analysis and classifying the results. Creating
the models is not part of the evaluation design, so we
ship them and the analysis code as part of a data set
(Pilipchuk et al., 2021). In addition, we provide the
metric calculation instructions and the classification
criteria in the evaluation design. Therefore, we con-
sider the evaluation to be replicable by others. While
analyzing the evaluation results, the effects of inter-
pretation by a specific researcher must be eliminated.
In order to analyze the accuracy of our approach, we
apply established metrics which give a reasonable ev-
idence and reduce the need for interpretation. Due to
the study design, there is hardly an interpretation that
may lead a researcher to another conclusion.

6.7 Assumptions and Limitations

AcsALign aligns the EAA with ACRs extracted from
business processes by identifying violations automat-
ically. In order to do that, we assume that both busi-
ness processes and EAA are available. As stated be-
fore, this assumption is appropriate as bigger organi-
zations are required to create those models e.g. to ful-
fill regulations or to cope with business complexity.
Under this assumption the usage of AcsALign does
not impose additional overhead as all input data is
available and the analysis is automatic. Moreover, our
case study showed that AcsALign is able to identify
relevant mistakes in the EAA. We assume business
processes to be correct, i.e. they are compliant with
regulations and laws, and that modeled data process-
ing matches intended system behavior. We also do

not address compliance of implementation and EAA.
Certainly, AcsALign is limited to identify what is
modeled. If there are only few business processes,
we can only discover few ACRs automatically. In that
case, manual effort is required to complete ACRs or to
model more business processes. The same restriction
applies to the architectural analysis as we can only
detect violations if the modeled data processing com-
pletely reflects the intended behavior.

In general, AcsALign is limited to data types
rather than classes of data. Compared to data types,
a class of data can have the same type but differ-
ent ACRs. For instance, a data type report might be
confidential in case of financial information or might
be public in case of information about a certifica-
tion. The architectural analysis framework provides
means for expressing such analyses but BPMN does
not. This would require an extension that we explic-
itly did not want to use in AcsALign to maintain broad
applicability and low overhead. However, if consider-
ing this limitation at the beginning of business process
design, the limitation can be overcome by explicitly
modeling classes of data as distinct data objects.

7 CONCLUSION

In this paper, we elaborated on three challenges to
align EAAs with business process ACRs and pre-
sented solutions for the challenges that we found dur-
ing the development of an approach called AcsALign
that ensures that EAAs adhere to ACRs of business
processes. AcsALign consists of the ACRs extrac-
tion from business processes, of a data flow analysis
to identify read/written data and of a matching algo-
rithm to detect ACR violations. We realized the ap-
proach for business processes modeled in BPMN and
EAAs modeled in PCM. In the evaluation we evalu-
ated our solutions to the proposed challenges as well
as the AcsALign. The evaluation with a real-world
case study shows that AcsALign provides satisfying
accuracy. AcsALign provides benefits for practition-
ers and scientists. Practitioners can use the approach
to align EAAs at design time and during evolution
scenarios where mistakes are done often. Because we
use standard modeling languages, the overhead for in-
tegrating the approach is low. The analysis provides

Challenges in Aligning Enterprise Application Architectures to Business Process Access Control Requirements in Evolutional Changes

23

valuable insights in the minimum set of required ac-
cess rights or the data a role has access to. Otherwise,
gathering this information can be cumbersome and
error-prone. Researchers can use the automated anal-
yses as benchmarks for their approaches or even semi-
automated processes. Evaluating more elaborated ex-
traction or matching concepts is possible as the modu-
lar tool chain allows replacing individual parts easily.

In our future work, we plan to evaluate more elab-
orated matching algorithms between data and require-
ments that consider heavily refined data models in
EAAs and to research how versions of EAAs affect
business processes in terms of ACRs.

ACKNOWLEDGEMENTS

The DFG (German Research Foundation) – project
number 432576552, HE8596/1-1 (FluidTrust) and the
KASTEL institutional funding supported this work.

REFERENCES

Abramov, J., Anson, O., Dahan, M., Shoval, P., and Sturm,
A. (2012). A methodology for integrating access con-
trol policies within database development. Comput.
Secur., 31(3):299–314.

Ahn, G. and Hu, H. (2007). Towards realizing a formal
RBAC model in real systems. In SACMAT’07, pages
215–224. ACM.

Alghathbar, K. and Wijesekera, D. (2003). Authuml:
A three-phased framework to analyze access control
specifications in use cases. In Proceedings of the 2003
ACM Workshop on Formal Methods in Security Engi-
neering, FMSE ’03, page 77–86. ACM.

Alpers, S., Pilipchuk, R., Oberweis, A., and Reussner, R.
(2019). The current state of the holistic privacy and
security modelling approach in business process and
software architecture modelling. Information Systems
Security and Privacy, pages 109–124.

AXELOS (2011). ITIL Edition 2011.
Boehm, B. and Basili, V. R. (2001). Software Defect Re-

duction Top 10 List. Computer, 34(1):135–137.
Busch, M. et al. (2014). Modeling security features of web

applications. In Eng. Secure Future Internet Services
and Sys., LNCS, pages 119–139. Springer.

D. Brucker, A. et al. (2012). SecureBPMN: Modeling and
enforcing access control requirements in business pro-
cesses. In SACMAT’12.

European Parliament (2016). Regulation (EU) 2016/679.
Official Journal of the European Union, 59:1–88.

Georg, G. et al. (2009). An aspect-oriented methodology for
designing secure applications. Information and Soft-
ware Technology, 51(5):846–864.

Giaglis, G. M. (2001). A taxonomy of business process
modeling and information systems modeling tech-
niques. Int J Flex Manuf Syst, 13(2):209–228.

Goudalo, W. and Seret, D. (2008). Toward the engineering
of security of information systems (esis): Uml and the
is confidentiality. In SECUREWARE, pages 248–256.

Heinrich, R. et al. (2017). Integrating business process sim-
ulation and information system simulation for perfor-
mance prediction. SoSyM, pages 1–21.

Heinrich, R., Rostami, K., and Reussner, R. (2016). The
CoCoME platform for collaborative empirical re-
search on information system evolution. Techni-
cal Report 2016,2; Karlsruhe Reports in Informatics,
Karlsruhe Institute of Technology.

Jürjens, J. (2005). Secure systems development with UML.
Springer.

Kotusev, S. (2017). Critical questions in enterprise archi-
tecture research. IJEIS, 13(2):50–62.

Lodderstedt, T. et al. (2002). SecureUML: A uml-based
modeling language for model-driven security. In
UML’02, pages 426–441.

Löhe, J. et al. (2014). Overcoming implementation chal-
lenges in enterprise architecture management: a de-
sign theory for architecture-driven it management
(adrima). ISeB, 12(1):101–137.

Nguyen, P. H. et al. (2015). An extensive systematic review
on the Model-Driven Development of secure systems.
IST, 68:62–81.

Object Management Group (2011). Business process model
and notation (BPMN) v2.0.2.

Open Group (2018). Togaf standard, version 9.2.
Pilipchuk, R., Seifermann, S., Heinrich, R., and

Reussner, R. (2021). Evaluation data set.
https://doi.org/10.5281/zenodo.4700594.

R. Basili, V., Caldiera, G., and Rombach, D. (1994). The
goal question metric approach. Encyclopedia of Soft-
ware Engineering, 1.

Ramadan, Q. et al. (2017). From secure business pro-
cess modeling to design-level security verification. In
IEEE MODELS, pages 123–133.

Reussner, R. H. et al. (2016). Modeling and Simulating
Software Architectures – The Palladio Approach. MIT
Press.

Rodrı́guez, A., Fernández-Medina, E., and Piattini, M.
(2007). A bpmn extension for the modeling of se-
curity requirements in business processes. IEICE -
Trans. Inf. Syst., E90-D(4):745–752.

Runeson, P. et al. (2012). Case Study Research in Software
Engineering: Guidelines and Examples. John Wiley
& Sons, Inc.

Salnitri, M. et al. (2015). From secure business process
models to secure artifact-centric specifications. In En-
terprise, Business-Process and Information Systems
Modeling, pages 246–262. Springer.

Seifermann, S., Heinrich, R., and Reussner, R. H. (2019).
Data-driven software architecture for analyzing confi-
dentiality. In ICSA’19, pages 1–10. IEEE.

Urbaczewski, L. et al. (2006). A comparison of enterprise
architecture frameworks. IIS, 7(2):18–23.

ICE-B 2021 - 18th International Conference on e-Business

24

