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Abstract: The research topic of the laboratory Science Pour l’Environnement (SPE) and the laboratory STELLA MARE
of Université de Corse, focus on solving the environmental problems of our time. Various research teams focus
their work on modeling and simulation of complex systems and behavioral modeling of species. Generally, in
this modeling process (abstractions from the real world), we observe that the parameterization of the models is
usually very tedious, carried out in an empirical or intuitive way based on assumptions specific to each modeler.
There are also several modeling techniques which are generally parameterized intuitively and empirically. We
have therefore proposed an approach to optimize the parameterization of models based on the algorithms of
these models. This approach uses meta-heuristics, a class of optimization algorithms inspired by nature for
which we obtain remarkable results. The use of meta-heuristics in this approach is justified by the nature of the
problem to be solved. Indeed, the parameterization of models can be considered as a complex problem with a
very large solution space that needs to be explored in an intelligent way. The risk of a combinatorial explosion
is also very high because of the number of variables to be optimized. The advantage of this approach that we
propose is that it allows an evolutive optimization of the model parameterization as the data arrives. For the
validation of this approach, we used simulated data from a theoretical model. The validation of this theoretical
model opens possibilities of applications on real world models.

1 INTRODUCTION

The evolution of human activities and demograph-
ics in recent centuries have brought about several
changes on the planet, with the result that a large
number of species are in danger of extinction, even
though they have a major ecological and economic
impact. It is in this context that the SPE Laboratory
and the STELLA MARE platform have been work-
ing since their creation to develop strategies to ensure
the restoration and maintenance of Corsica’s fishing
resources. With the democratization of the Internet of
Things in recent years (Dave, 2011), large volumes of
data have been collected on species of interest in order
to understand their behavior and model them (Schichl,
2004); (Wong and Ming, 2019), in order to make pre-
dictions. There are various modeling approaches in
the literature (Yin and McKay2, 2018); (Sharma and
Sharma, 2014a); (Zeigler, 2017) that produce accept-
able results, but the configuration of these methods
is generally very tedious and performed intuitively,
based on assumptions specific to each expert. Since

there is precisely no exact knowledge about the sys-
tem to be modeled and the knowledge of the experts
is limited, biases may be introduced. Based on this
observation, our research focuses on refining the con-
figuration of the models by adding a layer of opti-
mization by meta-heuristics. The present work has
consisted in using meta-heuristic optimization to im-
prove the quality of simulations through intelligent
model parameterization. The implementation of this
approach allows to take in input datasets and the algo-
rithm of the model to be configured to produce after
processing, an optimal parameterization. The advan-
tage of such an approach is that it is scalable and al-
lows a dynamic refinement of the model as new data
is received.

In the Section 2 of this paper, we present the works
related to our work, and in the section 3, we review
the general concepts related to optimization and meta-
heuristics. We then present the approach we pro-
pose for the optimization of model parameterization
as well as the different variants of algorithms imple-
mented in Section 5.
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2 RELATED WORK

Over the last twenty years, it has become increas-
ingly common to see a particular emphasis on opti-
mization in modeling and simulation work; (Sharma
and Sharma, 2014b); (Allegrini et al., 2015); (Hut-
terer, 2010).Today, it is almost impossible to see any
modeling work that does not involve optimization, be-
cause the ultimate goal of modeling is to get as close
as possible to the real system, which means solving
optimization problems at several levels, such as de-
termining the optimal structure and the optimal pa-
rameters of the model. When we consider the param-
eterization of models, optimization methods are much
more used in the design of behavioral models than in
phenomenological models. This is mainly due to the
fact that for phenomenological models, the relation-
ships that rule the system to be modeled are known,
contrary to behavioral models where it is necessary
to find relationships that link the inputs and outputs
of the system. The main methods used for this type
of problem are automatic programming and artificial
neural networks. Automatic programming started in
the 90’s with genetic algorithms (genetic program-
ming) (Koza, 1992). With the evolution of comput-
ers and the availability of more computing power,
meta-heuristics started to be more and more present
in the world of modeling and automatic programming
in particular. New meta-heuristics were appeared but
they focus much more on the generation of models
than on their refinement. It is this refinement that
we find in machine learning models and more specif-
ically in artificial neural networks under different an-
gles: optimization of weights, network architecture,
activation nodes, learning parameters, learning envi-
ronment, etc. (Gandomi, 2013). The advantage of
meta-heuristics in this process over ”classical” gradi-
ent descent methods is that meta-heuristics can over-
come limitations related mainly to blocking in the lo-
cal extrema (Ojha et al., 2017).

3 OPTIMIZATION PROBLEM
AND META-HEURISTICS

An optimization problem is defined by its dimension
n ∈ N, its set of variables {x1,x2, ...,xn} denoted S,
a set of constraints C and a goal function f : S 7→ R.
Solving an optimization problem consists in finding
the optimal values of x1,x2, ... and xn which min-
imise or maximise the objective function on C. Meta-
heuristics are used to find these optimal values. Meta-
heuristics (Tarraq, 2021); (Abdel-Basset et al., 2018);
(Glover and Sörensen, 2015); (Xin-She, 2014); (Xin-

She, 2011); (Lee and El-Sharkawi, 2008), also called
”nature-inspired methods” form a class of optimiza-
tion methods which are based on probabilistic and
random reasoning and allow the resolution of prob-
lems for which ”classical” optimization methods also
called ”deterministic methods” (Moxnes, 2015) do
not allow results to be obtained. Meta- heuristics are
based on an iterative process which allows conver-
gence towards the solution. In other words, a meta-
heuristic starts from one or more solutions which it
improves around two central concepts: diversification
and intensification. Diversification makes it possible
to search in the research space for areas where solu-
tions could be found and intensification makes it pos-
sible to improve the solutions found in the identified
areas. A multitude of algorithms and implementations
of meta-heuristics can be found in the literature. As
far as they are concerned, the development of these
algorithms goes through five (05) generic phases that
are executed in an iterative manner until a solution is
found or one of the stopping conditions is satisfied
as shown in Figure 1 which presents these different
phases.

Figure 1: Meta-heuristics execution phases (Poggi, 2014).

There are several meta-heuristic P’s in the liter-
ature. In order to make a performance comparison
between the meta-heuristics we will focus on the two
most intuitive and which are inspired by the animal
kingdom. These are the genetic algorithm and the im-
mune algorithm.

3.1 Genetic Algorithms

Genetic algorithms (Sopov, 2017); (Oltean, 2005)
(McCall, 2005); (Wong and Ming, 2019) are opti-
mization algorithms based on analogies of genetics
and natural evolution (selection, cross-breeding, mu-
tations). Table 1 presents the analogy between the
concepts of genetics and genetic algorithms. A ge-
netic algorithm searches for the extrema of a defined
function in a data space. The behaviour of a ge-
netic algorithm is described by Algorithm 1. It be-
gins by randomly generating a population of individ-
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uals. Then, in order to move on to the next genera-
tion, three main operations inspired by natural evolu-
tion are applied, which are repeated for all individuals
in the population.

• Selection: Couples of parents P1 and P2 are se-
lected according to their adaptation to the problem
to be solved.

• Cross-breeding: Each pair of parents (Pi,Pi+1)
selected is crossed to produce pairs of
children(Ci,Ci+1). There are various cross-
ing techniques. It can be for example an exchange
of variables between parents (P1 and P2 with
respective genomes {22,25} and {12,15} give
children C1 and C2 with respective genomes
{22,15} et {12,25}).
It is also possible to make a combination of each
variable from each parent according to a random
constant α with α ∈ [0,1]. In this case, parents
P1 and P2give children C1 with the genome
{22α+12(1−α), 25α+15(1−α)} and C2 with
the genome {22(1−α)+12α, 25(1−α)+15α}

• Mutation: There are several mutation techniques
in the literature and they are generally based on
probabilistic approaches. The children (Ci,Ci+1)
and individuals who have been mutated are then
evaluated before being included in the new popu-
lation.

Algorithm 1: Genetic algorithms.

population = generatePopulation( );
evaluate(population);
while Not(Solution found OR stop condition)
do

for i← 1 to populationSize do
parents = selectParents(population) ;
children = crossBreeding(parents) ;
children = mutate(children) ;
evaluate(population) ;
population = update(children) ;

return (solution) ;

3.2 Immune Algorithm

Immune algorithm (Darmoul, 2010); (Zhang, 2011)
is based on the way the body’s immune system de-
fends itself against foreign bodies. Indeed, to de-
fend the organism, the immune system is capable of
creating a very wide variety of cells and molecules
that can specifically recognize and eliminate a large
number of foreign invaders. This ability to recognize
an ”aggressor” is used here to recognize solutions to

the optimization problem. There are several types of
immune algorithms. For this study, we use the
CLONALG type immune algorithm (Sharma and
Sharma, 2011). Table 2 presents the analogy made
between the immune system of organisms and the im-
mune algorithm of CLONALG type. Like the im-
mune system of organisms, at the beginning of the
process, a set of antibodies is generated. Each anti-
body of the immune system thus formed is evaluated
and standardized. Then, an iterative process begins
that leads to the solution. With each iteration, a quan-
tity of solutions (antibodies) is produced and evolved.
The evolution of the solutions in this algorithm, as
with an immune system, is based on a principle of
cloning and mutation. A solution better adapted to the
problem will be much more cloned than a less adapted
solution.

Similarly, a less suitable solution will undergo a
greater change than a more suitable solution. As the
optimization variables in our case are real, the mu-
tation of a solution will consist in incrementing or
decrementing the value of one or more variables. This
technique allows convergence towards the desired so-
lution. A phase which particularly influences this al-
gorithm on its performance is the cloning phase. To
determine the clonnig rate (quantity of clones pro-
duced), several approaches exist:

• The Probabilistic Approach: This approach al-
lows the rate to be determined in proportion to
the adjustment according to equation 1. When the
number obtained is not an integer, it is rounded.

clones = antibodies∗ 1
adaptation

(1)

• The Empirical Approach: Using data collected
from several experiments with our algorithm, we
manage to define a relation between a score at-
tributed to the solution and the number of clones.

• The Stochastic Approach: The number of muta-
tions and clones is set randomly within a prede-
fined interval.

The process of an immune algorithm is described
in Algorithm 2. Figure 2 illustrates the steps of an
immune algorithm in the search for the value 10.

By exploring these few meta-heuristic algorithms,
we realize the interest of their use for complex prob-
lems, which is in adequacy with our problem of ”in-
telligent” parameterization of simulation models. To
this end, the approach we propose is presented in Sec-
tion 4.

Using Meta-heuristics to Optimize the Parameterization of Algorithms in Simulation Models

217



Table 1: Analogy between genetics, genetic algorithm and optimization.

Genetic Genetic algorithm Optimization
Set genome possible Set of possible genes Search space

Individual Coded solution Solution
Genome Details of a solution Values of each parameter

Adaptation Fitness Adaptation
Natural selection Random selection Diversification
Genetic mutation Value change Diversification

Table 2: Analogy between Genetics, Immune Algorithm and optimization.

Immune system Immune Algorithm Optimization
All possible antibodies All possible solutions Search space

Antibody Coded solution Solution
Cell receptor Details of a solution Values of each parameter
Adaptation Fitness Adaptation

Figure 2: Searching for the value 10 by an immune algorithm.

Algorithm 2: Immune Algorithm.

immuneSystem = randomlyGenerated( );
evaluate(immuneSystem);
normalize(immuneSystem) ;
while Not(Solution found OR stop condition)
do

clones = createClones(immuneSystem) ;
clones = mutate(clones) ;
evaluate(clones) ;
nomarlize(clones) ;
newAntibodies = generateNewClones() ;
evaluate(newAntibodies) ;
nomarlize(newAntibodies) ;
immuneSystem = merge(clones,
newAntibodies, immuneSystem) ;

return (solution) ;

4 PROPOSED APPROACH

We propose an architecture allowing to optimise the
parameterization of the algorithms implemented in
the models. Figure 3 presents the different compo-
nents of this proposed architecture and the way they
communicate.

4.1 Global Architecture

The proposed architecture for algorithm optimization
is composed of four main entities:

• The Optimizer: It leads the optimization process.
It contains the execution logic and behaves like a
scheduler by choosing the order of execution of
each task. Its role is mainly to choose an opti-
mization algorithm and to parameterize it for the
optimization process.

• Meta-heuristics: This entity can be considered
as a library of meta-heuristics. It implements and
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Figure 3: Proposed architecture.

makes available meta-heuristics for the process of
optimization.

• The Simulator: The simulator, allows to produce
for each solution obtained, the corresponding data
set. This phase is essential to evaluate the solution
obtained.

• The Viewer: It allows to visually render the
dataset, the algorithm to be optimized as well as
the evolution of the process.

All these entities cooperate together to find a solu-
tion in the following way: The model to be optimized
and the reference dataset are passed to the optimizer,
which guides the optimization process. It chooses the
meta-heuristics and parameters for the optimization.
During the iterative process, the meta-heuristics will
collaborate with the simulator to evaluate each solu-
tion obtained and move towards the optimal solution.
At the end of the optimization process, the solution
and the process metrics are sent back to the optimizer
where the solution is rendered in the format specified
by the user. It should be noted that throughout this
process, the viewer is used to display the algorithm,
the simulation results and the evolution of the solu-
tions obtained.

4.2 Abstraction

We have given our own representation for some enti-
ties to facilitate data exchange between the elements.
This is mainly the model and the solution. We will
illustrate each element with simple examples to facil-
itate understanding.

The model to be optimized is defined by an al-
gorithm (a logical instruction sequence) characterized
by its variables and operations to be executed. In our
proposed approach, we then represent a model like a
graph. Each node of the graph represents an action or
a phase in the execution of the algorithm. The way
the nodes are linked defines the way the algorithm is

executed. To illustrate this, let’s consider the algo-
rithm 3 which is a simple algorithm that calculates
the remaining energy in a system up to t = 100. The
corresponding representation is given in Figure 4.

Algorithm 3: Example of a model algorithm.

energy = 100 ;
t = 0 ;
running cost = 5;
cost at rest = 2;
while t ≤ 100 do

if running == True then
energy = energy - running cost ;

else
energy = energy - cost at rest ;

t = t + 1 ;

Figure 4: Representation of algorithm 3.

4.3 Meta-heuristics Implementation

For this first implementation, we are focusing on
the genetic algorithm and the Immune algorithm of
CLONALG type in order to carry out performance
comparisons. In accordance with the concepts spe-
cific to each of these algorithms (presented in sec-
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tion 3), their implementation in the context of the ap-
proach complies with the following rules: For the ge-
netic algorithm, we have:

• Encoding: All the parameters of the solution are
converted to standardized binary form (IEEE754)
and concatenated.

• Cross-breeding Operator: We make a crossover
by exchanging between the solutions. This ex-
change consists in randomly defining the number
of crossings (Xin-She, 2014) as well as the points
where to realize them.

• Mutation Operator: A sufficiently large α value
(0.95) is set at the beginning of the optimization.
At each crossover, a value θ ∈ [0,1] is generated.
If θ > α then a mutation occurs. Otherwise noth-
ing is changed

On the side of the CLONALG type Immune algo-
rithm, the specificity was to implement the three ap-
proaches presented in Section 3.2 in order to deter-
mine the number of clones to be generated. This al-
lows to vary the search method.

4.4 Solutions Evaluation

The adaptation of a solution is measured by the dif-
ference between the produced values and the awaited
values. Several methods exist in the literature (Lee
and El-Sharkawi, 2008); (Shtovba, 2005)to measure
this difference. In this work, we use the root mean
square error because it is simple to implement and ex-
plicit. Equation 2 then becomes the cost function to
be minimized during the optimization process.

G(x,y) =
1
2n

n

∑
i=1

((xi− x′i)
2 +(yi− y′i)

2) (2)

With (xi,yi) the coordinates of point i in the data set
and (x′i,y

′
i) the coordinates of point in the simulation

result. The higher the G value, the less suitable the
solution.

5 ARCHITECTURE VALIDATION

5.1 Validation Model

The validation process of the proposed approach con-
sisted in using data obtained by simulating a model to
find the parameterization used for the configuration of
the model, or an optimal parameterization. We base
our tests on a conceptual animal species model that
can be updated to be closer to a real-world animal
species. The choice of this model type is explained

by an exact knowledge of the awaited behaviour. This
behaviour is defined over one hundred (100) units of
time where each interval corresponds to behavioural
functions. Each of the behavioural functions is also
defined by a set of specific operations that vary the
position of the subject and the level of energy it uses.
The variation in position and level of energy is a func-
tion of several constants that characterize each be-
havioural function. It is these constants that must be
optimized, and in the case of the model, there are ten
(10). The data set produced by the model is a col-
lection of positions and the amount of energy at each
instant. Table 3 shows the distribution of behavioural
functions by time interval and defines the associated
position and energy variation functions. The task will
be to find the optimal values for the constants ε0, Gs,
Xs, Ys, Gw , Xw , Yw, Ge, Xe and Ye and Ye that give the
closest possible output to the trajectory and the value
of the energy in the reference data set.

By representing this algorithm in graph form, we
obtain Figure 5.

Figure 5: Graphical representation of the model (variables
to be optimized in red).

5.2 Experimental Results

A series of fifty (50) tests were carried out with
the data obtained by simulating the model presented
in Section 5.1. The experimental conditions are
recorded in Table 4 and Table 6. The Table 6 show
one of the results obtained during the series of tests.

Figures 6, 7 and 8 show the state of the solutions
obtained at different phases of the optimization pro-
cess in relation to the awaited result. On the side of
trajectory and energy, a large gap between the awaited
solution and the solution obtained at the first iteration
can be seen (Figure 6). At the halfway point (Fig-
ure 7), the gap between the obtained trajectory and
the expected trajectory is considerably is. But on the
other hand about the energy, the difference is created
even more. This could be explained by the fact that
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Table 3: Distribution of behaviours by time slot.

Time interval (t) Behaviour Equation

t = 0 Initialization


ε = ε0

x = 10
y = 0

t ∈]0,30] The subject is at rest : sleeping


εt = εt−1 +Gs

xt = xt−1 +Xscos(t)
yt = yt−1 +

e
Ys

t ∈]30,50] The subject is wandering around : wandering


εt = εt−1−Gw

xt = (xt−1 +
e

Xw
) 1

4
yt = yt−1sin(t)−Yw

t ∈]50,80] The subject is feeding : Eating


εt = εt−1 +Ge

xt = xt−1 +
1
2 Xe

yt = yt−1 +
e

Ye

t ∈]80,100] The subject is wandering around : wandering


εt = εt−1−Gw

xt = (xt−1 +
e

Xw
) 1

4
yt = yt−1sin(t)−Yw

Table 4: Experimental conditions.

Maximum Iteration 500
Variables to be optimized 10

Population size 100
Cross-breeding ratio (Genetic algorithm) 60%

Table 5: Computer used.

Brand DELL
Model Latitude 5480
RAM 16 Go

Processor Intel i57300HQ
CPU 2.500GHz x 4

Operating system Ubuntu 20.04.1

Table 6: An example of the results obtained during the ex-
periments.

found before the last iteration No
Iteration of the solution 421

Adaptation of the solution 99.7862
Adaptation of the worst solution 100.1378

the variables which intervene in the definition of the
trajectory are close to an optimal value, which is not
the case for the energy side. At the end of the pro-
cess, the solution obtained gives a result very similar
to that of the dataset. In two out of fifty tests, we ob-
tained exactly the awaited path, i.e. a solution with an
adaptation equal to zero, which shows that we were
managing to converge towards a solution we were ex-
pecting. This is also shown in Figures 9. We can see
that very quickly we converge towards a solution and
that over the iterations, the entire population is also

greatly improved. This can be explained by the stabi-
lization of the population around an optimal solution.
The performance of each meta-heuristic is recorded
in Table 7 and clearly reveals the superiority of the
genetic algorithm over the immune algorithm for this
type of problem. The performances of the genetic al-
gorithm outshines the immune algorithm, with solu-
tions found faster in less time with lower adaptation.

6 CONCLUSION AND
PERSPECTIVES

In this paper, we have done preliminary work on
the optimization of the parameterization of simulation
models using meta-heuristics. We have observed that
meta-heuristics allow us to have good results with a
certain number of variables to be optimized within an
acceptable period of time. However, interesting per-
spectives are contemplated and will be the subject of
future work. At first, the architecture will be used to
optimize the parameterization of other types of mod-
els, in particular machine learning models. Futher, the
performance of this architecture and the algorithms
implemented will be studied in order to improve the
choice of parameters and to define the types of prob-
lems for which the use of such an architecture is suit-
able.
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Table 7: Performance of each meta heuristic.

Meta-heuristics solution with adaptation ≤ 200 Execution time average Adaptation average
Genetic algorithm 42 out of 50 921 seconds 63.11389372
Immune algorithm 37 out of 50 1453 seconds 97.19834646

Figure 6: Comparison between the solution obtained at the beginning and the awaited one.

Figure 7: Comparison between the solution obtained at mid-term and the awaited one.

Figure 8: Comparison between the obtained solution and the awaited one.

Figure 9: Evolution of the average adaptation of the population.
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