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Abstract: The paper focuses on the stiffness modeling of a new type of compliant manipulator and its non-linear 
behavior under external loading. The manipulator under study is a serial mechanical structure composed of 
dual-triangle segments. The main attention is paid to the possible equilibriums and the manipulator stiffness 
behavior under the loading for the initial non-straight configuration. It was demonstrated that there is a quasi-
buckling phenomenon for this manipulator while the external loading increasing. In the neighborhood of these 
configurations, the manipulator behavior was analyzed using the enhanced Virtual Joint Method (VJM). 
Relevant simulation study confirmed the obtained theoretical results. 

1 INTRODUCTION 

Compliant manipulators are used nowadays in many 
fields due to their flexibility, modularized 
construction, and low weight. A lot of new 
mechanical structures were studied in this area 
(Frecker, Ananthasuresh et al., 1997; Albu-Schaffer 
et al., 2008; Wang and Chen, 2009; Howell, 2013), 
which showed quite good performances compared 
with traditional rigid robots.  Recently, in literature 
particular attention is paid to tensegrity mechanisms, 
which are made up of a series of similar segments 
composed of compressive and tensile elements 
(cables or springs) (Skelton and Oliveira, 2009; 
Moored, Kemp, et al., 2011). One of such structures 
is studied in this paper.  

Stiffness properties of some tensegrity 
mechanisms have been already studied carefully. In 
(Arsenault and Gosselin, 2006), the authors 
considered the mechanism composed of two springs 
and two length-changeable bars. They analyzed the 
mechanism stiffness using the energy method, 
demonstrated that the mechanism stiffness may 
decrease under external loading with the actuators 
locked, which may lead to the “buckling” 
phenomenon. Also, in (Furet, Lettl and Wenger, 
2018), the cable-driven X-shape tensegrity structures 
were considered; here the authors investigated the 

influence of cable lengths on the mechanism 
equilibrium configurations, which may be both stable 
and unstable. The relevant analysis of the equilibrium 
configurations as well as the stability and singularity 
study can be found in (Wenger and Chablat, 2019). 

For robotics, similar to classical mechanics 
dealing with the Euler column, the buckling is usually 
treated as an undesirable phenomenon, because the 
robot may suddenly change its shape when the 
loading force exceeds some critical value. However, 
such property can be useful in some fields (Yamada, 
Mameda, et. al., 2010). Also, sometimes the quasi-
buckling phenomenon may occur, which changes the 
robot resistance in one direction suddenly while the 
external loading is increasing. It is not typical for 
robotics and was rarely studied before. For this 
reason, this phenomenon should be obligatory taken 
into account in stiffness analysis.  

This paper is an extension of our previous results 
(Zhao, Pashkevich et al., 2020 & 2021), which 
concentrated on the stiffness analysis of the simplest 
manipulator composed of two and three segments. It 
was assumed that each segment is a composition of 
two rigid triangle parts, which are connected by a 
passive joint in the center and two elastic edges on 
each side with controllable preload. In contrast to the 
previous results, here we consider a general case with 
an arbitrary number of segments, and its stiffness 
behavior under the loading.  
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Figure 1: Geometry of a dual-triangle mechanism. 

 
Figure 2: The torque-angle curves of dual-triangle 
mechanism. 

2 MECHANICS OF A SINGLE 
SEGMENT 

Let us present first a single segment of the compliant 
serial manipulator under study. It consists of two rigid 
triangles connected by a passive joint whose rotation 
is constrained by two linear springs as shown in 
Fig. 1. It is assumed that the mechanism geometry is 
described by two triangle parameters (a, b), and the 
mechanism shape is defined by the central angle q, 
which is adjusted through two control inputs 
influencing on the springs L1 and L2. Let us denote the 
spring lengths in the non-stress state as 0L ，and the 
spring stiffness coefficient as k. 

The mechanism configuration angle q 
corresponding to the given control inputs 0L  can be 
computed through the static equilibrium equation of 
this mechanism, which can be easily derived using the 
forces generated by the springs: 0( )i i i iF k L L= − , 
where the lengths iL  are computed using the 

formulas ( ) 2 2cos( )i iL q c θ= + , 2 2c a b= + , 

1 2 qθ β= + , 2 2 qθ β= − , and atan( / )a bβ = . It can 
be proved that the torques generated by the springs 
can be obtained as the following form. 

0 2
1 1

0 2
2 2

( ) (1 ( )) sin(2 )
( ) (1 ( )) sin(2 )

M q k L L q c q
M q k L L q c q

β
β

= + − +

= − − −
 (1) 

where k  denote the springs stiffness coefficients,  
L1(q) and L2(q) are the spring lengths, 0L  are control 
inputs, while c  and β are the geometric parameters 
described above (see Fig. 1). So, taking into account 
the external torque Mext applied to the moving 
platform, the static equilibrium equation for the 
considered mechanism can be written as M(q)+Mext 
=0, where M(q)= M1(q)+ M2(q) and 

( ) 02 cos(2 )sin cos( )sin( 2)M q ck c q L qβ β = −   (2) 

It should be noted that the static stability of this 
mechanism highly depends on the equilibrium 
configuration defined by q. As follows from the 
relevant analysis, the function M(q) can be either a 
monotonic or non-monotonic one (Fig. 2), so the 
single-segment mechanism may have multiple stable 
and unstable equilibriums, which are studied in detail 
in (Zhao, Pashkevich et al. 2020). As follows from the 
relevant analysis, the stability condition for this 
mechanism can be expressed via the derivative sign 
at the zero point, i.e. ( ) 0| 0qM q =′ < , which is easy to 
verify in practice. So, the relevant analytical 
expression for the derivative  

02 cos(2 )cos cos c )) 2( os(cM k c q L qq β β′  = −   (3) 

allows us to present the condition of the torque-angle 
curve monotonicity as follows  

 ( )0 22 1 ( )L b a b> ⋅ −  (4) 

This expression is extensively used below. 

3 MECHANICS OF  
MULTI-SEGMENT 
MANIPULATOR 

The serial manipulator considered in this paper is 
composed of n similar sections connected in series as 
shown in Fig. 3, where the left-hand-side is assumed 
to be fixed. For the initial straight configuration, the 
stiffness properties of this manipulator were studied 
in our previous paper, where the buckling  
 

 
Figure 3: Geometry of a multi-segment manipulator. 
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Table 1: Two typical initial configurations of the manipulator for the end-point location (x0, y0) = (7.7b, 0). 

 Initial shape Initial configuration angles 
q1 q2 q3 q4 

Case #1 U-shape:  ‒0.3093 +0.1348 +0.4246 +0.2288 
Case #2 Z-shape: ‒0.1136 +0.3768 ‒0.6242 +0.7869 

 
phenomenon (similar to the Euler column) was 
discovered and the critical force was computed. In 
this paper, a general case is considered where the 
initial shape is assumed to be non-straight, and the 
stiffness analysis is carried out for the loaded mode. 

Let us assumed that the initial configuration of the 
n-link manipulator is a non-straight one, which 
corresponds to the non-zero angles (

0 0, 1,2,...,iq i n≠ = ) and the initial end-point 
location is 0 0( , ) (2 , 0)x y n b x= ⋅ − Δ  with 0xΔ > . It 
is assumed that the corresponding control inputs 

0 0
1 2( , ) 1,2,..,i iL L i n=  are computed from the 

equilibrium conditions, where 0 0
1i iL L= − Δ , 

0 0
2i iL L= + Δ  and 0L b=  (causing the pre-stress). It is 

clear that if 3n ≥  this manipulator is redundant with 
respect to the end-effector location control in the (x, 
y)-plane. So, for given 0 0( , )x y  the configuration 
angles 0

iq  cannot be computed in a unique way. For 
this reason, we will consider two typical initial shapes 
of the manipulator, which in our previous paper were 
referred to as the U-shape and Z-shape (Zhao, 
Pashkevich et al. 2020). Examples of such initial 
configurations for n=4 are shown in Table 1, and their 
elastostatic properties will be carefully studied below.  

First, let us investigate the force-deflection 
relations ( )xF xδ and ( )yF xδ corresponding to the 

end-effector displacement with 0yδ = , i.e. from the 
initial location 0 0( , ) (2 , 0)x y n b x= ⋅ − Δ  to the 
current one ( , ) (2 , 0)x y n b x xδ= ⋅ − Δ − where xδ is 
the end-effector deflection caused by the external 
forces ( , )x yF F  and xΔ  denotes the initial 
displacement of the end-effector. Let us apply the 
energy method (detailed of this elastic energy were in 
Zhao, 2020) allowing us to find possible equilibrium 
configurations corresponding to the given xδ . It 
should be noted that the geometric constraint coming 
from the given end-effector location is  

-1

1 1 1

-1

1 1 1

2 cos cos 2

2 sin sin 0

jn n

i i x
j i i

jn n

i i
j i i

b b q b q nb x

b q b q

δ
= = =

= = =

 + + = − Δ − 
 
  + = 
 

  

  
 (5) 

and allows us to reduce the number of variables in the 
energy function 1 2 2( , ,... )nE q q q −  by applying the 2-
link manipulator inverse kinematics to compute the 
remaining angles 1( , )n nq q− . Further, by detecting the 
max/min and saddle points of the function 

1 2 2( , ,... )nE q q q − , it is possible to find the 
configuration angles for all possible equilibriums. To 
evaluate their stability and compute the external 
forces ( , )x yF F  corresponding to the end-effector  
 

 
Figure 4: The energy function 1 2( , )E q q  and manipulator equilibriums for initial U-shape configuration (end-effector deflection 
δx/b=0.4, δy=0;  geometric parameters a/b=1.0;  q4>0). 
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Figure 5: The energy function 1 2( , )E q q  and manipulator equilibriums for initial Z-shape configuration (end-effector deflection 
δx/b=0.2, δy=0;  geometric parameters a/b=1.0;  q4>0). 

 
Figure 6: The energy function 1 2( , )E q q  and manipulator equilibriums for initial U-shape configuration (end-effector deflection 
δx/b=0.8, δy=0;  geometric parameters a/b=1.0;  q4>0). 

deflection xδ , let us apply the Moore-Penrose 
pseudo-inverse on the static equilibrium condition, 
which is shown as follows, 

 
11T T ...

q
x

y
qn

MF
F M

−        = − ⋅ ⋅         
q q qJ J J  (6) 

where both the Jacobian qJ  and the joint torques 

iMq  are computed using the configuration angles iq  
corresponding to the stable equilibriums. 

Examples of the obtained energy surfaces for n=4 
are presented in Figs 4, 5 and 6, where the end-
effector elastic deflection is  { }0.2 ,0.4 ,0.8x b b bδ ∈  
and the initial shapes correspond to the end-effector 
displacement 0.3x bΔ =  (see Table 1). As follows 

from these figures, for the initial U-shape (see Fig. 4) 
there are two cases of the energy surfaces 1 2( , )E q q  
corresponding to q4>0 and q4<0 which are 
symmetrical. Totally, they have 6 critical points; each 
of them contains a single maximum, a single 
minimum and a single saddle point. Also, their 
evolution with respect to xδ  is continuous, their 
topology remains the same while increasing the 
deflection xδ . In contrast, for the initial Z-shape (see 
Figs. 5, 6), the energy surfaces 1 2( , )E q q  are quite 
different, their evolution with respect to xδ  is 
discontinuous. The latter leads to sign-changing of 
some configuration angles iq  under the external 
loading F as shown in the figures (see angle q1 for 
instance). Besides, if the deflection xδ  is large 
enough as in Fig. 6, the energy surfaces may contain  
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Figure 7: Force-deflection curves Fx(δx), Fy(δx) and manipulator shape changing under the loading for initial U-shape for 
(x0, y0) = (7.7b, 0), geometric parameters a/b=1.0 and δy=0. 

 
Figure 8: Force-deflection curves Fx(δx), Fy (δx) and manipulator shape changing under the loading for initial Z-shape for (x0, 
y0) = (7.7b, 0), geometric parameters a/b=1.0 and δy=0. 

a “hole”, i.e. an unfeasible area, caused by the 
violation of the geometric constraints max

i iq q≤   
inside of the manipulator segments. 

4 MANIPULATOR STIFFNESS 
UNDER THE LOADING 

By applying the above-presented energy method and 
computing minimums of the energy function 

1 2 2( , ,... ) minnE q q q − →  for different xδ , it is 
possible to obtain the desired force-deflection 
relations ( )xF xδ and ( )yF xδ describing the 
manipulator stiffness properties. Examples of such 
computations for n=4 are presented in Figs 7 and 8.  

For the initial U-configuration (see Fig. 7), the 
change of the manipulator shape is smooth, the 
manipulator resistance against the external loading is 
gradually increasing while the deflection xδ
becomes larger. Also, the stiffness coefficient in the 
x-direction is decreasing continuously. This tendency 
is observed until the manipulator reaches its 
geometric constraints.  

In contrast, for the initial Z-configuration (see Fig. 
8), there are two intervals of the manipulator 
deformation. In the beginning when xδ  is relatively 
small the manipulator maintains its Z-shape and the 
resistance against the external force is monotonically 
increasing, similar to the previous case. Further, when 
the deflection xδ is larger than some critical value, 
the buckling phenomenon is occurring, and the 
manipulator resistance against the external force is 
not increasing anymore. Correspondingly, the 
stiffness coefficient  xdF dx  becomes very small, 
the stiffness coefficient  ydF dx  changes its sign and 
the manipulator does not keep its initial Z-shape 
(some of the angles iq  change the signs). Finally, 
after the buckling, the manipulator moves in the 
direction of its internal geometric constraints. Hence, 
in practice, it is preferable to use the U-shape of the 
manipulator if the task space obstacles (external 
constraints) allows. It should be also noted that for the 
Z-shape it is necessary to avoid high loadings 
exceeding the critical force causing buckling. 

Further, in addition to the above presented force-
deflection relations ( )xF xδ  and ( )yF xδ  derived 
from the assumption of varxδ = , 0yδ = , let us 
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analyze the changing of the manipulator stiffness 
coefficients under the loading ( ),x yF F  without 
imposing any kinematic constraints of the end-effector 
location. To obtain the desired relations it is necessary 
to compute the configuration angles 1( ,..., )nq q  
corresponding to the manipulator equilibriums for 
different given external forces ( ),x yF F . It is clear that 
these angles can be found numerically by solving the 
system of n independent equations  

 
×

  = 
T

q q n 2
M + J F 0   (7) 

describing the static equilibrium condition (by 
applying Newton’s method for instance). However, 
the initial guess of the angles 0 0

1( ,..., )nq q  should be 
evaluated correctly, to ensure that they are in the 
neighborhood of the minimum energy configuration, 
because only such cases can be observed in practice. 
Such initial guess can be obtained using the above-
presented energy method applied in the space 

1( ,..., )nq q  with rather rough grid with large step. 
Also, the desired angles corresponding to the external 
loading ( ),x yF F  can be found using the Matlab 
function fminsearch which minimizes the sum of the 
squared residuals i.e.     

 
2

T
1 2

arg min
n n× ×

    = + ⋅     q qq
q M J F  (8) 

where both the internal torques qM  and the Jacobian 
qJ  depend on the angles 1( ,..., )nq q . It should be also 

mentioned that it is possible to simplify the problem 
of the initial guess 0 0

1( ,..., )nq q  selection by gradually 
increasing the forces ( ),x yF F  and using solutions 
from the previous loaded-equilibrium as the initial 
guess for the next one corresponding to 
( ),x x y yF F F F+ Δ + Δ . However, when the forces 

( ),x yF F  approach the buckling point, the initial 
guess from the previous step is not suitable because 
the configuration angles are changing essentially and 
only the straightforward energy method allows to 
obtain the correct initial guess. 

5 EVOLUTION OF STIFFNESS 
COEFFICIENTS 

If the equilibrium configuration angles 1( ,..., )nq q  
corresponding to the given force ( ),x yF F  are 

computed, it is possible to find the desired stiffness 
coefficients using the formula for the loaded case, 

 ( )
11 T

−− = − F q q g qK J K K J  (9) 

that includes two essential components, the first of 
which qK  corresponds to the unloaded case, and the 
second one gK describes the external force influence 
on the stiffness. In this expression, the n×n matrix of 
the joint elastic stiffness coefficients 

1( ,..., )eq eqidiag K K=qK  can be computed using the 
segment torque equilibrium equation from section 2, 
which yields  

 
( )2 2

0 0 0 0
1 2 1 2

2 cos
cos sin

2 2 2 2

i

i i

eq

i

i

i i i

k b a q
L L q L L qk b

K

a

= − −
+ − − − 

 
 (10) 

It should be stressed that here, the control inputs 0
1iL  

and 0
2iL  are constant values, which correspond to the 

initial unloaded joint angles iq .  
The second matrix gK  containing the stiffness 

coefficients caused by the loading is symmetrical and 
can be computed as T

iq∂ ∂ ⋅gK J F , which gives us 
the following formula 

 
21 11 2 1

2 1

...
... ... ...
... ...

x y n x n y

n x n y

J F J F J F J F

J F J F

− + − + 
=  

− +  
gK  (11) 

where Jij denotes the element of the Jacobian matrix 
Jq with the ith row and jth colomn. 

It is obvious that when the external forces are 
equal to zero, the stiffness matrix expression is 
reduced to the form, which is known from the 
unloaded mode analysis 11 T

0
−−=   q q qK J K J . It should 

be also mentioned that, in contrast to the classical n-
link serial manipulators, here the diagonal matrix qK  
is configuration dependent (not constant) because 
each initial configuration with the angles 1( ,..., )nq q  
produces its own control inputs 0

1iL  and 0
2iL  included 

in the expression (10). Besides, here the unloaded 
compliance matrix 0C  can be expressed analytically 
in the following way  

 

2 2
11 1

1 2 20 21 2

1

... *

* ...

n

q qn
n

q qn

J J
K K J J

K K

 + + 
=  

+ + 
 

C  (12) 

To illustrate the practical importance of the 
above-presented results, they were applied to the case 
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Figure 9: Stiffness coefficients under the Fx- and Fy-loading for initial U-shape configuration with (x0, y0) = (7.7b, 0) and 
geometric parameters a/b=1.0.

n=4 assuming that the initial (unloaded) endpoint 
location is ( ) ( )0 0, 7.7 , 0x y b= , and the initial shape is 
either U- or Z- one. The configuration angles under 
the loading, corresponding to the external force 

( ),x yF F F= , were computed numerically using the 
technique proposed above. Relevant results of the 
initial U-shape and Z-shape are presented in Figs. 9 
and 10 respectively. As follows from these figures, 
the manipulator stiffness essentially changes if the 
external loading is applied. For the initial U-shape 
case, the absolute value of the manipulator stiffness 
coefficient |Kxx| decreases first, while the force Fx is 
increasing (see Fig. 9a) , until Fx is reaching some 
critical value when |Kxx| is the minimum, then it 
begins to increase slowly. In contrast, the stiffness 

coefficient Kxy (describing the manipulator reaction in 
the y-direction) changes its sign under the loading. 
These stiffness properties can be also interpreted from 
the geometrical and physical point of view, using the 
right-hand side of the Fig. 9a, which shows the 
evolution of the manipulator configuration under the 
loading. In general, such manipulator behavior can be 
treated as “quasi-buckling”, because for certain 
loading Fx the stiffness in both x- and y-direction is 
very small. And the manipulator rotates quickly until 
one of the segment goes close to its joint limits, where 
the equivalent rotational stiffness coefficient is very 
low. Hence, in practice, it is necessary to avoid 
applying too high loading in x-direction causing 
approaching either to the “quasi-buckling” or the 
joint limits and losing the manipulator stiffness.  
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Figure 10: Stiffness coefficients under the Fx-loading for initial Z-shape configuration with (x0, y0) = (7.7b, 0) and geometric 
parameters a/b=1.0. 

On the other side, while increasing the force Fy 
(i.e. in the orthogonal direction), the absolute value of 
the stiffness coefficient |Kyy| is monotonically 
increasing first, then it keeps the same tendency 
slowly (see Fig. 9b) because of the restriction of the 
geometric length of the manipulator. At the same 
time, the stiffness coefficient Kyx demonstrates non-
monotonic behavior. Such performance can be seen 
from the evolution of the manipulator configuration 
at the right-hand side of Fig. 9b, where the 
manipulator end-point moves towards the extreme 
location, as far as possible from the initial one. 
Therefore, the high loading in y-direction should be 
also avoided, to prevent from the manipulator 
changing its shape change to a pure straight line (see 
case IV).  

However, for the second case study dealing with 
the initial Z-shape, the stiffness properties under the 
loading are quite different compared to the U-shape 
case. In particular, as follows from Fig. 10, under the 
Fx-loading, the absolute value of the stiffness 
coefficient |Kxx| decreases gradually at the beginning, 
then it decrease quickly to zero. In contrast, the 
absolute value of the stiffness coefficient |Kxy| 
increases monotonically. This phenomenon can be 
also treated as “quasi-buckling” because for certain 
loading the manipulator stiffness in x-direction is 
equal to zero, and the stiffness in y-direction is very 
high. These results are illustrated geometrically by 
the right-hand side of Fig. 10 showing the evolution 
of the manipulator configuration under the Fx –
loading. It is clear that here each segment of the 
manipulator tends to move close to its geometric 
limits before the “quasi-buckling” is occurring. In this 

configuration, even a quite small change of the 
external force may lead to large manipulator 
deflection, so in practice, it is reasonable to avoid 
such situations. It is worth mentioning that the case of 
Fy –loading is not presented in Fig. 10, because it is 
quite similar to the U-shape case.  

Hence, for the manipulator under study, the 
stiffness properties are essentially non-linear with 
respect to the loading force. Moreover, if the loading 
exceeds a certain value, the stiffness coefficients may 
become very low or even change their sign. The latter 
may be treated as the quasi-buckling, which normally 
should be avoided.  

6 CONCLUSIONS 

The paper focuses on the stiffness analysis of a new 
type of compliant serial manipulator under the 
loading, which is composed of multiple dual-
triangle segments. It is a specific case of the 
tensegrity mechanisms that currently are widely 
used in soft robotics. The main attention is paid to 
the initial non-straight configuration of the 
manipulator. It was proved that under the external 
loading there may be the quasi-buckling 
phenomenon, which suddenly changes the 
manipulator resistance in one direction of its 
deflection, but may do not influence the resistance 
in another direction. It was also demonstrated that 
normally there are six equilibrium configurations of 
this manipulator (two stable ones and four unstable 
ones). But if the deflection of the end-effector is 
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large enough some of the equilibriums may be 
unfeasible due to the geometric constraints.  

To find the possible equilibriums and to analyze 
the manipulator shape under the loading, the energy 
method was used. Further, the stiffness analysis was 
based on the VJM approach allowing to find 
linearized relations between the end-effector 
deflection and the external force. Relevant simulation 
confirmed the obtained results. In the future, this 
technique will be used for the development of 
relevant control algorithms and related redundancy 
resolution. 
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