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Abstract: Automatic identification of heart irregularities based on the respective acoustic emissions is a relevant research
field which receives ever-increasing attention over the last years. Devices such as digital stethoscope and
smartphones can record the heartbeat sounds and are easily accessible, making this method more appealing.
This paper presents different automatic procedures to classify heartbeat sounds coming from such devices into
five different labels: normal, murmur, extra heart sound, extrasystole and artifact so that even people without
medical knowledge can detect heart irregularities. The data used in this paper come from two different datasets.
The first dataset is collected through an iPhone application whereas the second one is collected from a digital
stethoscope. To be able to classify heartbeat sounds, time and frequency domain features are extracted and
modeled by different machine learning algorithms, i.e. k-NN, random forest, SVM and ANNs. We report the
achieved performances and a thorough comparison.

1 INTRODUCTION

The leading cause of global death is represented by
cardiovascular diseases (CVDs), whose death rate is
estimated at 17.9 million people every year. One third
of these deaths occur prematurely in people under 70
years old1.It is of fundamental importance to be able
to promptly identify the symptoms of these diseases
in order to ensure the patient the most suitable med-
ical care and avoid possible premature death. How-
ever, medical experts and physicians may not always
be available to provide an accurate diagnosis (Schnei-
derman, 2001; Roy et al., 2002). At the same time,
tools such as smartphones and digital stethoscopes are
easily accessible and can provide a first evaluation in
finding any CVDs very quickly even by people with-
out specific medical knowledge or, as in the case of
digital stethoscopes, they can be of support to med-
ical staff to facilitate the diagnosis. The aim of this
study is to create machine learning models that can
autonomously identify a CVD using heartbeat sounds
from applications and digital stethoscopes. The data
come from a challenge (Bentley et al., 2011) in which
there are two distinct datasets: the first contains data
collected by iStethoscope Pro, an iPhone app that al-
lows the user to record the sound of his heartbeat,
while the second contains recordings of heartbeat

1World Health Organization, Cardiovascular Diseases,
https://www.who.int/health-topics/cardiovascular-diseases

sounds coming from DigiScope, a digital stethoscope.
These data are divided into 5 categories: normal, mur-
mur extra-heart sound, artifact and extrasystole.

From and audio analysis point of view, a heartbeat
includes two sound events: the first (S1 or lub) marks
the beginning of a systole (the contraction movement
of the myocardium), while the second (S2 or dub)
marks the end of systole and the beginning of dias-
tole (the relaxation phase after contraction). The beat
of a healthy heart is formed by the succession of S1
and S2 sounds i.e. the succession of systole and di-
astole. There may be two other sounds, S3 and S4
which are called extra heart sounds which are not part
of the normal heart sound. They can be found either
individually or together, while they are typically lo-
cated between S2 and S1. It is not certain that it com-
prises a sign of a specific disease; nonetheless, they
can reveal different clinical conditions2. Murmurs are
other types of heartbeat sounds that may appear dur-
ing auscultation; they arise from the flow of blood
within the heart or large vessels and can be caused
by structural abnormalities of the heart or by an in-
crease in blood flow. They are classified according
to their occurrence within the normal cardiac cycle,
so they can be systolic, diastolic or continuous. Sys-
tolic murmurs are not necessarily a sign of disease

2University of Washington School of
Medicine, Technique: Heart Sounds & Murmurs,
https://depts.washington.edu/physdx/heart/tech.html
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Figure 1: Representative Mel-spectrograms and Constant-q transforms extracted from normal, murmur, extra heart sound,
extrasystole and artifact classes existing in the datasets A and B.

and are often perceived in patients with normal heart
structure. The diastolic and continuous murmurs, on
the other hand, always indicate a structural disease
(Davey et al., 2018b). An extrasystole is often a pre-
mature heart impulse that is not part of the normal
heart cycle. More frequently, they originate from the
ventricles taking the name of ventricular extrasystole
or premature ventricular complexes; less frequently,
they originate from atria, the atrioventricular junction
or, rarely, from the sinus node. Extrasystoles can ap-
pear after every second or third beat (Davey et al.,
2018a). The following section describes the existing
works in the area of automatic classification of heart-
beat sounds.

2 RELATED WORK

Several studies have been conducted designing meth-
ods able to correctly identify cardiovascular diseases,
while several of them have used data from phonocar-
diograms (PCGs), i.e. a plot of the heartbeat sound
generated by a phonocardiograph which is accurate
but, at the same time, also expensive (Ntalampiras,
2020). In their study, OH, Shu Lih, et al. (Oh et al.,
2020) use this type of data achieving satisfactory re-
sults. Such PCG signals have been used to train a deep
WaveNet model, which is an artificial neural network
composed of several layers of neurons, managing to
obtain a training accuracy of 97%.

There is a series of studies using data coming from
recordings made from smartphones or digital stetho-
scopes, where various audio feature extraction tech-
niques have been used towards training different ma-
chine learning methods. In (Chao et al., 2018) the
following classifiers were used: Naive Bayes, support
vector machine (SVM), Decision Trees, AdaBoost,

Random Forest and Gradient Boosting, managing to
obtain an f1-score of 71.37% from the SVM using
data from smartphone recordings and an f1-score of
71.26% obtained through a random forest, using data
from digital stethoscope recordings. Further improve-
ments were achieved for heartbeat sound recordings
from the digital stethoscope thanks to the use of recur-
rent neural networks reaching an accuracy of 80.8%
(Raza et al., 2019).

3 AUDIO FEATURES

From these two datasets several audio features are
extracted: energy, zero-crossing rate, spectral roll-
off, spectral centroid, mel-frequency cepstral coef-
ficients (MFCCs), mel spectrogram and constant-Q
transform. These features are then used for training
different classifiers, and finally, the results are com-
pared in terms of precision, recall and f1-score eval-
uation metrics. It should be mentioned that for the
extraction we used Librosa, a Python package for pro-
cessing audio and music signals (McFee et al., 2015).

During the feature extraction process, the signal
is divided into equal-sized frames of 25ms with an
overlap of 50%. The extraction can take place in the
time domain or in the frequency domain; in the latter
case, the Discrete Fourier Transform (DFT) is used to
generate the spectrogram of the signal.

Signal energy is calculated for each frame using
the root mean square. Zero crossing rate indicates
the number of times the signal changes sign i.e. goes
from positive to negative or negative to positive, di-
vided by the length of the frame. Spectral rolloff is
the frequency below which a certain percentage of the
magnitude distribution is concentrated. Spectral cen-
troid is the center of gravity of the signal spectrum.
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Chroma vector is a twelve-element representation of
the spectral energy and is calculated by grouping the
DFT coefficients of a short term window in twelve
bins. Each bin represents one of the twelve tones of
Western music. MFCCs comprise a short-term power
spectrum signal representation, where the frequency
bands are distributed according to a Mel-scale instead
of the linearly-spaced approach. This type of feature
is widely used in the field of audio analysis due to its
discriminating power (Ntalampiras, 2016). The Mel-
scale filter bank maps the powers of the spectrum us-
ing triangular overlapping windows. Mel-scale has a
distortion effect of the frequencies in order to con-
form to the human auditory system which is able to
more easily distinguish the low-frequency region (Gi-
annakopoulos and Pikrakis, 2014). Representative
Mel-spectrograms and Constant-q transforms charac-
terizing the employed datasets are illustrated in Fig. 1.
Last but not least, the calculation of constant-Q trans-
form is similar that of the Fourier transform, with the
difference that it has a constant ratio between center
frequency and resolution. As such, a constant pattern
in the frequency domain is obtained for the sounds
whose harmonic frequency has been plot, unlike the
standard DFT where the spacing between the frequen-
cies is constant (Brown, 1991).

4 CLASSIFICATION
TECHNIQUES

Aiming at evaluating the performance of diverse clas-
sifiers on the present problem, we used the follow-
ing five techniques: k-nearest neighbors (k-NN), ran-
dom forest (RF), support-vector machines (SVM),
and Artificial neural networks (ANN) including con-
volutional neural network (CNN).

k-NN. the specific classifier has been thoroughly
applied to audio classification problems, such as dis-
crimination of an audio stream in speech, music, am-
bient sound and silence (Lu et al., 2001). The k-NN
implementation used for this project is that of scikit-
learn (Pedregosa et al., 2011); the algorithm gener-
ates several k-NN instances in order to search for the
optimal number of neighbors and ultimately, the one
offering the highest f1-score is chosen.

Random Forest. This is a popular classifier which
consists in an ensemble of decision trees where their
outcomes are averaged in order to improve the overall
accuracy. In this work, the number of used decision
trees is equal to 200.

Support Vector Machine. This is another popular
classifier used in audio analysis (Lu et al., 2003);
SVM aims at discovering the optimal hyperplane sep-
arator that minimizes the classification error on a val-
idation set of data. The radial basis function was
employed as a kernel during the SVM learning (Zhu
et al., 2007).

Artificial Neural Network. ANNs are structures
inspired by the animal and human brain and they have
been quite successful in diverse applications such as
commerce, industry and finance (Kruse et al., 2016).
ANNs have been shown to produce good results in
the classification of abnormal heart sound using data
coming from phonocardiogram (Ari and Saha, 2009).
The model used in this project is a multilayer percep-
tron network with three hidden layers trained with the
standard version of the back-propagation algorithm
(Rojas, 1996).

Convolutional Neural Network. Following the re-
cent success of CNNs in audio pattern recognition ap-
plications (Purwins et al., 2019; Ntalampiras, 2020).
Here, two different methods have been used: for the
first model uses the same features as the ANN. The
net is composed of three convolutional layers acti-
vated by a rectified linear unit (ReLU). Each convo-
lutional layer is followed by one max-pooling layer
and one dropout layer. The last two hidden layers are
standard fully-connected ones, while the output layer
employed softmax as the activation function. For the
second method, the already computed features log-
mel spectrogram and constant-Q transform have been
used as inputs. They were downsampled to 177x44px
and converted to RGB. It should be mentioned that
the two features are then evaluated separately. For
each model hyperparameter tuning is based on ran-
dom search, while maximizing the obtained accuracy
comprises the overall objective. Finally, CNN’s struc-
ture is similar to the first method with the only dif-
ferences being the input shape, which fits the input
image, and the hyperparameters.

It should be mentioned that log-mel spectrogram
and constant-Q transform were employed only dur-
ing CNN training as dictated by the related literature
(Purwins et al., 2019).

5 EXPERIMENTAL SET-UP AND
RESULTS

5.1 Data
The present set of data originates from a challenge
where the purpose is to classify heartbeat sounds in
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Table 1: The obtained results for all considered classifiers when applied on Dataset A. The highest rate per figure of merit is
emboldened.

Classifier Precision Recall f1-score
k-NN 0.86 0.80 0.82

Random forest 0.81 0.75 0.73
SVM 0.77 0.75 0.73
ANN 0.79 0.78 0.76

CNN+MFCC 0.78 0.67 0.69
CNN+log-mel spectrogram 0.79 0.67 0.65
CNN+constant-Q transform 0.57 0.58 0.55

order to promptly help diagnose CVDs (Bentley et al.,
2011). Two different datasets are available: in the first
(dataset A) the data were gathered using IStethoscope
Pro, an iPhone app, while in the second (dataset B)
the data were gathered in a hospital setting during a
clinical trial using a digital stethoscope called DigiS-
cope. Dataset A contains 124 audio files sampled at
44100 Hz while dataset B contains 312 audio files
sampled at 4000 Hz. The files are labeled with the
normal and murmur classes for both datasets, while
dataset A additionally contains the artifact (various
types of sounds unrelated to the heartbeat) and ex-
tra heart sounds classes. Interestingly, dataset B con-
tains the extrasystole class as well. It should be noted
that all classifiers operated on identical test, valida-
tion, and train sets of data so as to obtain a reliable
comparison. The division was 70% for training, 10%
for validation and 20% for testing.

5.2 Preprocessing

This phase precedes the feature extraction phase and
serves to prepare the dataset so that the data are pro-
cessed effectively by the various machine learning
models. Following the challenge’s guidelines, audio
files lasting less than two seconds have been elim-
inated as they could not represent a heartbeat full
cycle. Subsequently, files coming from dataset A
were downsampled to 4000 Hz, while files belonging
to both datasets the files were trimmed to the same
length. It should be mentioned that standard normal-
ization techniques including mean removal and vari-
ance scaling (z = x−µ

σ
, where µ is the mean of the

training samples and σ is the standard deviation of the
training samples) have been applied on the extracted
features before being used by the classifiers (Ntalam-
piras, 2021).

5.3 Results

To thoroughly measure the classifiers performances,
we employed standardized figures of merit, i.e. pre-

cision, recall and f1-score. Table 1 includes the re-
sults with respect to dataset A. In this case, the best-
performing classifier is k-NN which offers the high-
est scores for precision, recall and f1-score (k = 120).
More in detail, classes artifact and mumrur are identi-
fied with significantly higher rates with respect to the
rest of classes, having an f1-score of 0.91 and 0.90
respectively. Interestingly, the present approach out-
performs the state of the art reported in (Chao et al.,
2018), where the obtained f1-score is equal to 0.713.
The remaining classifiers offer similar performances,
managing to better classify data associated with ar-
tifact and murmur. Unfortunately, performances as-
sociated with deep CNNs are worse than shallow ap-
proaches, while performances are better for artifact
and murmur classes. This could be an indication that
more data is needed in order to allow the deep net-
work to learn the distributions associated with the spe-
cific classes of heartbeat sounds.

Table 2 illustrates the results for every classifier
when applied on dataset B. In general, we see that the
classifiers performed poorer in this case, while there is
no winning classifier for all figures of merit. The ran-
dom forest approach performed better in recall and
f1-score, while k-NN achieved the highest precision
rate (k = 264). Overall, every classifier demonstrates
similar results in terms of correct and incorrect clas-
sifications. It should be noted that for Dataset B,
the presented rates are lower with respect to the ones
shown in (Chao et al., 2018), where f1-score is 0.71.
Moreover, it is often that extrasystole are murmur are
misclassified as normal. At the same time, normal
samples are correctly classified, while random forest
reached f1-score of 0.82 in this case. However, log-
mel spectogram as input offered the highest f1-score
(0.85) for the normal class. We conclude that the
task represented by Dataset B is more challenging due
to noises/interferences associated with sounds emit-
ted from other human organs. Similarly to dataset A,
increasing data quantity could be particularly useful
especially for the deep learning based solutions.

3https://github.com/lindawangg/Classifying-Heartbeats
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Table 2: The obtained results for all considered classifiers when applied on Dataset B. The highest rate per figure of merit is
emboldened.

Classifier Precision Recall f1-score
k-NN 0.64 0.69 0.60

Random forest 0.62 0.73 0.66
SVM 0.61 0.69 0.60
ANN 0.59 0.61 0.60

CNN+MFCC 0.59 0.72 0.64
CNN+log-mel spectrogram 0.58 0.72 0.64
CNN+constant-Q transform 0.60 0.68 0.57

6 CONCLUSIONS

In this paper, a great variety of machine learning
methods has been extensively evaluated on heartbeat
sound classification, with the aim being the detec-
tion of abnormalities such as extrasystole, extra heart
sound and murmurs. To this end, several tempo-
ral and spectral audio features have been exploited.
Such an automatic framework aims at supporting de-
cisions made by healthcare professionals, as well as
early diagnosis, e.g. using a smartphone, so as to
quickly check for any existing heartbeat abnormali-
ties and contact an expert physician. It was shown
that the recognition rates reached by such audio pat-
tern recognition methods differ significantly between
dataset A (smartphone) and dataset B (stethoscope).
In the first datasets, the methods achieved quite good
results in distinguishing artifacts and murmurs, while
in the second the results were worse, especially for the
extrasystole class where no model was able to classify
correctly.

The results of the present experiments could be
primarily improved by expanding the datasets. More
specifically, it would be especially useful to have
available more heartbeat samples representing the ex-
tra heart sound classes, i.e. extrasystole and mur-
mur. Further improvements could be obtained by cor-
rectly extracting and labeling the S1 and S2 sounds
of the heartbeat, and use them as an additional input
feature for the different classifiers. From a machine
learning perspective, it would be interesting to exper-
iment with a) data augmentation methods, including
transfer learning (Ntalampiras and Potamitis, 2018),
b) modeling temporal properties of heartbeats, us-
ing e.g. temporal convolutional networks (Yan et al.,
2020), and c) employed one-shot learning techniques
(Lake et al., 2015) accommodating scarce data avail-
ability.
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