
Understanding the Relationship between Missing Link Community
Smell and Fix-inducing Changes

Toukir Ahammed, Moumita Asad and Kazi Sakib
Institute of Information Technology, University of Dhaka, Bangladesh

Keywords: Community Smell, Fix-Inducing Change, Software Bug.

Abstract: Missing link smell implies the situation when developers contribute to the same source code without commu-
nicating with each other. Existing studies have analyzed the relationship of missing link smells with code smell
and developer contribution. However, the relationship between missing link smell and the introduction of bug
has not been explored yet. This study investigates how missing link smell is related with Fix-Inducing Change
(FIC). For this purpose, Spearman’s rank correlation is measured between the number of smelly commits and
FIC commits. The result shows that missing link smell and FIC are positively correlated. Furthermore, it is
found that bugs introduced in smelly commits are mostly major type in terms of severity.

1 INTRODUCTION

Community smells can be defined as organizational
and social anti-patterns in a development community
(Tamburri et al., 2015). Community smells may lead
to the emergence of social debt which denotes unfore-
seen project costs connected to a sub-optimal soft-
ware development community. Although community
smells may not be an immediate obstacle for software
development, these can affect software maintenance
negatively in the long run (Palomba et al., 2018c).
Missing link is one of the most commonly reported
community smells which occurs if developers do not
communicate with each other while working collabo-
ratively (Magnoni, 2016).

Missing link community smell implies the lack of
communication among developers that can create a
knowledge gap in the development community (Tam-
burri et al., 2019). As a software product can be
thought of as the combined effort of all developers,
the lack of communication and cooperation can neg-
atively affect mutual awareness and trust among de-
velopers (Magnoni, 2016). Previous studies found
that community smells including missing link smell
are related to code smells (Giarola, 2018) and have an
impact on code smell intensity (Palomba et al., 2018b;
Palomba et al., 2018c). Since code smells are found to
be successful indicators of bugs in software systems
(Khomh et al., 2012; Palomba et al., 2018a), the re-
lationship between community smells and bugs needs
to be investigated.

In previous studies, the definition and detection
of missing link smell in open-source projects have
been studied. A few studies have explored the im-
pact of missing link smell on different software arti-
facts such as code smell. Magnoni proposed the iden-
tification pattern of missing link community smell
(Magnoni, 2016). Tamburri et al. examined the re-
lationship between community smells and different
socio-technical factors, e.g., socio-technical congru-
ence, turnover, etc. (Tamburri et al., 2019). They
considered missing link, organizational silo, black
cloud and radio silence community smell. Palomba et
al. investigated the impact of missing link smell and
four other community smells on code smell intensity
(Palomba et al., 2018c). Catolino et al. analyzed the
role of four community smells including missing link
smell on gender diversity and women’s participation
in open-source communities (Catolino et al., 2019).
Although existing studies focused on analyzing com-
munity smell from different perspectives, there has
been no study investigating the relationship between
missing link smell and bug introduction so far.

In this context, the current study analyzes the rela-
tionship between missing link smell and Fix-Inducing
Changes (changes that introduce error into the sys-
tem). For analysis, seven diverse and open-source
projects such as ActiveMQ and Cassandra are se-
lected based on several criteria (e.g., availability of
developer mailing list). First, missing link smells are
identified in each project finding cases where a collab-
oration link does not have its communication counter-

Ahammed, T., Asad, M. and Sakib, K.
Understanding the Relationship between Missing Link Community Smell and Fix-inducing Changes.
DOI: 10.5220/0010500604690475
In Proceedings of the 16th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2021), pages 469-475
ISBN: 978-989-758-508-1
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

469

part. Then, the developers involved with each smell
are identified by extracting the instance of smell.
Then, commits that have been submitted by devel-
opers involved in missing link smell are marked as
smelly commits. Besides, commits that represent FIC
are identified by analyzing the project repository. Fi-
nally, a correlation analysis is performed between the
number of smelly commits and FIC commits using
Spearman’s rank correlation coefficient (Spearman,
1987). To understand the severity of bugs that are in-
troduced by developers who are involved in missing
link smell, FIC commits that are submitted by smelly
developers have been linked to the bug repository. Af-
ter linking FIC to the bug repository, the information
of severity is extracted from the bug report.

The result of the study shows that there is a sig-
nificant positive correlation between the number of
smelly commits and FIC commits. The study also
finds that bugs occurring in smelly commits are re-
lated to major loss of functionality.

2 BACKGROUND

This section provides the basic idea of Missing Link
Community Smell and Fix-Inducing Change.

2.1 Missing Link Community Smell

Missing link community smell refers to the situa-
tion when two developers collaborate in a part of
source code but do not communicate with each other
(Magnoni, 2016). This smell can be identified by
finding those collaborations for which there is no
communication found in the defined communication
channel, e.g., mailing list. The occurrence of miss-
ing link smell is described below with a sample soft-
ware development community taken from (Ahammed
et al., 2020).

Figure 1 represents a software development com-
munity of six developers. Developers are connected
through the solid line if they communicate with each
other. The dashed line connects developers to the
source code on which they work. Two types of De-
veloper Social Network (DSN) can be generated from
this development community to identify missing link
smell. Firstly, a communication DSN can be gen-
erated from Figure 1 by considering only communi-
cation links which is displayed in Figure 2. Then,
a collaboration network can be generated by linking
developers who work in the same part of the source
code. Figure 3 represents the collaboration DSN for
the considered development community. For exam-
ple, developer A and developer B work in the same

source code file (Figure 1), so they are connected in
the collaboration DSN (Figure 3).

Missing link smell now can be identified by com-
paring the collaboration network with the communi-
cation network. It can be easily observed that one
link, E −F , in the collaboration network (Figure 3)
does not have the corresponding counterpart in the
communication network (Figure 2). Hence, it repre-
sents an instance of missing link smell between de-
veloper E and developer F .

Figure 1: A Sample Software Development Community.

Figure 2: Communication DSN.

Figure 3: Collaboration DSN.

2.2 Fix-Inducing Changes (FIC)

Fix-Inducing Changes (FIC) are the changes to code
that create error in the system and cause a fix later
(Śliwerski et al., 2005). FIC can be identified start-
ing from the point where the bug is fixed (Kim et al.,
2008). The changes that fix a bug is called Fixing
Changes (FC). FC commits can be found by search-
ing the commit message for bug fixing keywords such
as “Fix”, “Bug” or “Patch”. FC commit contains the
change that is modified or deleted to fix the bug. By
tracking the origin of these changes, FIC commits can
be identified where the buggy code is introduced.

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

470

3 RELATED WORK

In recent times, community smells are studied to in-
corporate the organizational and social aspects of the
software development community in software engi-
neering research. Some studies focused on defining
different types of community smell (Tamburri et al.,
2013; Tamburri et al., 2015) while others focused
on identifying these smells in open-source projects
(Magnoni, 2016; Tamburri et al., 2019). Besides, a
few studies investigated the relationship and the im-
pact of community smells on different software arti-
facts such as code smell, socio-technical congruence
(Palomba et al., 2018c; Tamburri et al., 2019).

The concept of community smell is first intro-
duced in an industrial case study (Tamburri et al.,
2015). The authors defined nine different commu-
nity smells and proposed a list of possible mitigations
of these smells such as learning community, cultural
conveyor, stand-up voting, etc. Magnoni proposed the
identification pattern of four community smells and
developed a tool named Codeface4Smells (Magnoni,
2016) extending an existing socio-technical network
analysis tool Codeface1 (Joblin et al., 2015). The tool
is capable of detecting community smells in open-
source projects.

Tamburri et al. explored the diffuseness of com-
munity smells and how developers perceived their
presence and effect (Tamburri et al., 2019). The au-
thors found that community smells are highly dif-
fused in open-source projects and developers recog-
nized them as relevant problems for software evolu-
tion. The authors also analysed the relationship be-
tween community smell and socio-technical factors
such as socio-technical congruence, turnover, etc.

The relationship between community smells and
code smells was investigated in (Giarola, 2018). A
community-aware code smell intensity model was
proposed in (Palomba et al., 2018c) to investigate
the impact of community smells on predicting code
smell intensity. The authors found that community
smells influenced the intensity of code smells more
than other community related factors.

Catolino et al. analysed the impact of gender
diversity and women’s participation on community
smells (Catolino et al., 2019). The authors found that
gender-diverse teams had fewer community smells
compared to non-gender-diverse teams and the pres-
ence of women in teams can reduce the number of
community smells. Catolino et al. suggested some
refactoring strategies to deal with community smells
in practice such as mentoring, creating communi-
cation plan and restructuring the development com-

1http://siemens.github.io/codeface

munity (Catolino et al., 2020). The involvement
of developers in missing link smell was analysed in
(Ahammed et al., 2020). The authors found that a
small part of community members was involved in
missing link smell and the involvement in smell was
correlated with developer contribution.

The existing studies focused on defining and de-
tecting community smells as well as relating it with
other technical aspects such as code smell. However,
the relationship between missing link smell and bug
introduction has not been investigated yet.

4 METHODOLOGY

This study aims at understanding the relationship be-
tween missing link smell and bug introduction in soft-
ware projects. First, the smelly commits are identi-
fied by finding the missing link smell in the project.
Then, the Fix-Inducing Changes (FIC) are identified
from the project repository by finding erroneous code
changes that induce a fix later. Finally, the relation be-
tween smelly commits and FIC commits is analysed.

4.1 Smelly Commits Detection

To identify smelly commits, missing link smells are
detected according to the identification pattern intro-
duced by (Magnoni, 2016). The projects are analysed
using a six-month window. For each window, a col-
laboration DSN is generated analysing the project’s
GitHub repository. All commits are analyzed and de-
velopers who contribute to the same part of source
code within that window are connected through an
edge. Next, a communication DSN is constructed
examining the mailing list of the project. All mes-
sages in the mailing list are analysed and developers
who replied in the same email within a given window
are connected. Finally, collaboration DSN and com-
munication DSN are compared to find missing link
smell. For each edge in the collaboration network,
the corresponding communication part is searched in
the communication DSN. Any edge that is present in
collaboration DSN but absent in communication DSN
is identified as missing link smell.

The above mentioned steps are performed using
Codeface4Smells tool2. This tool returns the list of
missing link smell per window along with the corre-
sponding developers involved with these smells. The
developers are identified as smelly developers and
their all commits in that window are marked as smelly
commits.

2https://github.com/maelstromdat/CodeFace4Smells

Understanding the Relationship between Missing Link Community Smell and Fix-inducing Changes

471

4.2 Fix-Inducing Changes (FIC)
Detection

FICs are the erroneous changes to the code that in-
duce fixes in the future. The process of detecting FIC
adopted in this study is similar to (Kim et al., 2008;
Huq et al., 2019). To find FIC, the following steps are
followed:

The first step of detecting FIC is finding changes
that fix a bug, called the Fixing Changes (FC). To
find the FCs, all commit messages are extracted from
the project repository. Then, commit messages are
searched for keywords - “Fix”, “Bug”, “Patch” in-
cluding their past and gerund form. These commits
indicate bug fixing activities and are labeled as FC
commits. Next, changes made in each FC commit
are extracted comparing with its immediate parent
commit. Diffj tool3 is used to obtain the location of
changes, i.e, modified or deleted line numbers. Diffj
tool ignores white space or other formatting changes
and thus can mitigate the possibility of finding false
FICs (Kim et al., 2006). Finally, the origin of these
change locations is tracked using git-blame4 com-
mand. The command is used to identify which com-
mit is responsible for the latest changes made to a
specific line of a file. This leads to the commit that
introduces the bug that is FIC. Both FIC and the cor-
responding FC commits are stored for analysis.

4.3 Analysing Relationship and Bug
Severity

To understand the direction of the relationship be-
tween the number of smelly commits and the num-
ber of FICs, correlation analysis is conducted. As a
monotonic trend is observed between these two vari-
ables, Spearman’s rank correlation (Spearman, 1987)
method is chosen. A monotonic trend implies both
variables tend to increase together and decrease to-
gether, or the opposite, but not exactly at a constant
rate like a linear relationship. In Spearman’s rank
correlation coefficient, the relationship between two
variables can be assessed using a monotonic func-
tion. The interpretation of the correlation coefficient
is adapted from (Dancey and Reidy, 2007) and dis-
played in Table 1. The correlation coefficient, ρ, in-
dicates the strength of the correlation. The value -1
or +1 means a perfect relationship and 0 means no
relationship between two variables. As the value ap-
proaches -1 or +1, it indicates more strong correla-
tion. A value closer to 0 indicates a weaker relation-

3https://github.com/jpace/diffj
4https://git-scm.com/docs/git-blame

ship. The positive value indicates a positive correla-
tion whereas the negative value indicates a negative
correlation. The correlation coefficient is considered
significant in this study if the p-value is less than 0.01.

To understand the severity of bugs that are intro-
duced while developers are involved in missing link
smell, Smelly FIC commits are analysed. For every
Smelly FIC commit, the corresponding FC commits
are identified from the mapping stored in FIC detec-
tion step. Only those FC commits are considered that
contain bug ID in their commit message. The corre-
sponding bug report is retrieved from the bug reposi-
tory using that bug ID. Thus Smelly FIC commits are
linked to the bug repository and the severity of bugs
introduced in these commits can be known.

Table 1: Interpretation of the Spearman’s rank correlation
coefficient.

ρ (Negative) ρ (Positive) Interpretation
ρ = 0 ρ = 0 Zero

-0.4<ρ<0.0 0.0<ρ≤0.4 Weak
-0.7<ρ≤-0.4 0.4≤ρ<0.7 Moderate
-1<ρ≤-0.7 0.7≤ρ<1 Strong

ρ = -1 ρ = 1 Perfect

5 EXPERIMENTATION AND
RESULT ANALYSIS

This section presents the dataset description and the
result analysis of the study.

5.1 Dataset

This study aims at investigating the relationship be-
tween missing link smell and FIC. To perform the
analysis, the study needs some specific software arti-
facts such as collaboration information, communica-
tion information and bug severity information. Thus
the choice of the subject systems for this study is
guided by the following factors:

1. Publicly available source code hosted in version
control system

2. Publicly available archive of Developer mailing
list

3. Bug repository maintaining the information of
bug severity

Therefore, seven open-source projects from Apache
ecosystem are selected for analysis considering the
above criteria. The name of the selected projects is
provided in Table 2 with their source code repository,
mailing list and analysis period. These projects are

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

472

Table 2: List of Analysed Projects.

Project Source Code Mailing List Analysis Period
1 ActiveMQ github.com/apache/activemq gmane.comp.java.activemq.devel Apr-2006 - Dec-2020
2 Cassandra github.com/apache/cassandra gmane.comp.db.cassandra.devel Oct-2009 - Sep-2020
3 Cayenne github.com/apache/cayenne gmane.comp.java.cayenne.devel Nov-2007 - Aug-2020
4 CXF github.com/apache/cxf gmane.comp.apache.cxf.devel Nov-2010 - Sep-2020
5 Jackrabbit github.com/apache/jackrabbit gmane.comp.apache.jackrabbit.devel Dec-2005 - Sep-2020
6 Mahout github.com/apache/mahout gmane.comp.apache.mahout.devel Oct-2008 - Aug-2020
7 Pig github.com/apache/pig gmane.comp.java.hadoop.pig.devel Oct-2010 - Aug-2020

hosted in the online version control system GitHub.
The development mailing list archive is available on
Gmane5. All the selected projects use Jira6 as the is-
sue tracker. Projects of different ages and sizes are
chosen for analysis. The age of the selected projects
ranges from 10 to 15 years and the number of com-
mits ranges from 2,451 to 17,098.

5.2 Correlation Analysis Result

To get an idea regarding the proportion of develop-
ers involved in missing link smell, the ratio of smelly
committers to total committers is calculated. Table 3
shows the ratio of smelly committers per six-month
analysis window for each evaluated project. The
first column shows the name of the project, the sec-
ond column shows the number of windows analysed
in each project. The average number of committers
and smelly committers are presented in the third and
fourth column. Finally, the ratio of smelly commit-
ters to total committers is shown in the last column.
The result suggests that on average 53% committers
are involved in missing link smell per window.

In this study, the relationship between missing link
smell and bug introduction is examined. To under-
stand the relation, Spearman’s rank correlation is per-
formed between the number of smelly commits and
the the number of FIC commits for all projects indi-
vidually. The number of smelly commits and num-
ber of FIC commits are calculated for each window.
The result of correlation analysis is shown in Table 4
with Spearman’s correlation coefficient (ρ) and corre-
sponding p-value.

The correlation coefficient is interpreted accord-
ing to Table 1 and considered to be significant if the
p-value is less than 0.01. The result suggests that there
is a significant positive correlation between number
of smelly commits and FIC commits. Among seven
evaluated projects, CXF, Pig, ActiveMQ, Cayenne,
Jackrabbit and Mahout show a strong positive cor-

5http://gmane.io
6https://issues.apache.org/jira/

relation. A moderate positive correlation is found in
Cassandra.

These results suggest that missing link smell and
bugs are correlated in terms of number of smelly com-
mits and number of FIC commits. It indicates that
commits submitted by smelly developers, i.e., smelly
commits, are very likely to introduce bugs in the sys-
tem. This information can help the reviewing process
in open-source projects. Smelly commits should be
reviewed thoroughly to avoid possible bug introduc-
tion.

5.3 Bug Severity Analysis Result

Smelly FIC commits are analysed to understand the
severity of bugs introduced by developers who are in-
volved in missing link smell. The following five bug
severity categories are found in Jira for these projects.

1. Blocker. These bugs block development and/or
testing work. The production can not run.

2. Critical. These bugs cause crashes, loss of data,
or severe memory leaks.

3. Major. These bugs result in major loss of func-
tion.

4. Minor. These bugs cause minor loss of function
or other problems where an easy workaround is
present.

5. Trivial. These bugs are about cosmetic problems,
e.g., misspelled words or misaligned text.

All the evaluated projects except Cassandra use the
above categorization for bug severity.

Table 5 reports the severity of bugs introduced
in Smelly FIC commits. For example, Smelly FIC
commits introduce 4.4% Blocker bugs, 7.7% Criti-
cal bugs, 74.4% Major bugs, 11.4% Minor bugs and
2.2% Trivial bugs in CXF project. Figure 4 shows
that most of the bugs produced by smelly commits
are major bugs. On average, 78.5% Smelly FIC intro-
duce Major bugs, 15.6% introduce Minor bugs, 3.6%
introduce Critical, 1.4% introduce Blocker bugs and
0.9% introduce Trivial bugs in the system.

Understanding the Relationship between Missing Link Community Smell and Fix-inducing Changes

473

Table 3: Percentage of Smelly Committers per window.

project #analysedWindows Avg. #committers Avg. #SmellyCommitters Ratio
1 ActiveMQ 30 13.27 7.17 0.54
2 Cassandra 26 6.85 4.00 0.58
3 Cayenne 20 23.05 12.55 0.54
4 CXF 30 9.83 4.77 0.48
5 Jackrabbit 16 12.75 4.63 0.36
6 Mahout 24 8.21 4.25 0.52
7 Pig 20 6.10 4.70 0.77

Overall 166 11.17 5.92 0.53

Table 4: Correlation Analysis.

project rho (ρ) p-value
1 ActiveMQ 0.858 <0.01
2 Cassandra 0.648 <0.01
3 Cayenne 0.797 <0.01
4 CXF 0.944 <0.01
5 Jackrabbit 0.768 <0.01
6 Mahout 0.769 <0.01
7 Pig 0.941 <0.01

Table 5: Bug Severity of Smelly FIC Commits.

pr
oj

ec
t

B
lo

ck
er

(%
)

C
ri

tic
al

(%
)

M
aj

or
(%

)

M
in

or
(%

)

Tr
iv

ia
l(

%
)

1 ActiveMQ 4.4 7.7 74.4 11.4 2.2
2 Cayenne 0.0 0.6 88.5 10.8 0.0
3 CXF 0.3 4.3 82.1 13.0 0.3
4 Jackrabbit 3.2 5.3 68.4 22.1 1.1
5 Mahout 0.0 1.5 67.0 31.0 0.4
6 Pig 0.7 2.1 90.7 5.0 1.4

Average 1.4 3.6 78.5 15.6 0.9

These results suggest that developers introduce
mostly Major level bugs in their FIC commits while
involved in missing link smell. Major bugs are found
to have longer fixing time in the literature (Panjer,
2007). Hence, extra maintenance effort and cost may
be needed to fix these bugs introduced by the devel-
opers who are involved in missing link smell.

6 THREATS TO VALIDITY

This section presents several potential threats that
may affect the validity of this study.

• Threats to External Validity. Threats to external
validity deal with the generalization of the results
of the study. Seven open-source projects from

P
ro
je
ct

amq

cayenne

cxf

jackrabbit

mahout

pig

0% 25
%

50
%

75
%

10
0%

Blocker Critical Major Minor Trivial

Figure 4: Bug Severity of Smelly FIC Commits.

Apache are analysed in this study. The choice of
these projects is guided by several factors such as
the availability of source code repository, mailing
list archive and bug repository. However, projects
of different sizes and ages are selected for analy-
sis to mitigate this threat. The age of the evaluated
projects varies from 10 to 15 years and the size of
projects ranges between 2,451 to 17,098 in terms
of number of commits.

• Threats to Internal Validity. Threats to internal
validity deal with the factors that may threaten the
validity of the result but are not accounted for. An
open-source tool, Codeface4Smells, is used to de-
tect missing link smell in this study. The identified
smells are directly included in the analysis of this
study without further verification. However, this
tool is commonly used to detect community smell
in related studies (Palomba et al., 2018c; Catolino
et al., 2019). Moreover, this tool uses mailing list
as the source of communication data to generate
communication network. The result can be differ-
ent if other communication channels, e.g., Skype,
Slack, etc. are considered. However, according
to contribution guidelines of evaluated projects,
mailing list is the primary communication chan-
nel in these communities. Besides, mailing list is
used as the communication source in other related
studies (Joblin et al., 2015; Tamburri et al., 2019).

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

474

7 CONCLUSION AND FUTURE
WORK

This study investigates the relationship between miss-
ing link smells and FIC. Furthermore, it examines the
severity of bugs that are introduced in the system by
the developers who are involved in missing link smell.

For this purpose, seven diverse and open-source
projects from Apache are analysed. The correlation
analysis shows there is a significant positive correla-
tion between the number of smelly commits and FIC
commits. In addition, results reveal that developers
mostly introduce major bugs in the system while in-
volved in missing link smell.

In the future, more open-source projects will be
analyzed to generalize the observed result. Further-
more, other types of community smell, e.g., organiza-
tional silo, radio silence, can be included to find how
they relate to the introduction of bugs.

ACKNOWLEDGEMENTS

The virtual machine facility used in this research is
provided by Bangladesh Research and Education Net-
work (BdREN).

REFERENCES

Ahammed, T., Asad, M., and Sakib, K. (2020). Under-
standing the involvement of developers in missing link
community smell: An exploratory study on apache
projects. In QuASoQ@APSEC, pages 64–70.

Catolino, G., Palomba, F., Tamburri, D. A., Serebrenik, A.,
and Ferrucci, F. (2019). Gender diversity and women
in software teams: How do they affect community
smells? In 2019 IEEE/ACM 41st International Con-
ference on Software Engineering: Software Engineer-
ing in Society, pages 11–20. IEEE.

Catolino, G., Palomba, F., Tamburri, D. A., Serebrenik,
A., and Ferrucci, F. (2020). Refactoring community
smells in the wild: the practitioner’s field manual.
In Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering: Software Engi-
neering in Society, pages 25–34.

Dancey, C. P. and Reidy, J. (2007). Statistics without maths
for psychology. Pearson education.

Giarola, F. (2018). Detecting code and community smells
in open-source: an automated approach.

Huq, S. F., Sadiq, A. Z., and Sakib, K. (2019). Understand-
ing the effect of developer sentiment on fix-inducing
changes: an exploratory study on github pull requests.
In 2019 26th Asia-Pacific Software Engineering Con-
ference (APSEC), pages 514–521. IEEE.

Joblin, M., Mauerer, W., Apel, S., Siegmund, J., and
Riehle, D. (2015). From developer networks to
verified communities: a fine-grained approach. In
2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, volume 1, pages 563–573.
IEEE.

Khomh, F., Di Penta, M., Guéhéneuc, Y.-G., and Antoniol,
G. (2012). An exploratory study of the impact of an-
tipatterns on class change-and fault-proneness. Em-
pirical Software Engineering, 17(3):243–275.

Kim, S., Whitehead, E. J., and Zhang, Y. (2008). Classify-
ing software changes: Clean or buggy? IEEE Trans-
actions on Software Engineering, 34(2):181–196.

Kim, S., Zimmermann, T., Pan, K., James Jr, E., et al.
(2006). Automatic identification of bug-introducing
changes. In 21st IEEE/ACM international conference
on automated software engineering (ASE’06), pages
81–90. IEEE.

Magnoni, S. (2016). An approach to measure community
smells in software development communities.

Palomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto,
R., and De Lucia, A. (2018a). On the diffuseness and
the impact on maintainability of code smells: a large
scale empirical investigation. Empirical Software En-
gineering, 23(3):1188–1221.

Palomba, F., Tamburri, D. A., Serebrenik, A., Zaidman,
A., Fontana, F. A., and Oliveto, R. (2018b). Poster:
How do community smells influence code smells? In
2018 IEEE/ACM 40th International Conference on
Software Engineering: Companion, pages 240–241.
IEEE.

Palomba, F., Tamburri, D. A. A., Fontana, F. A., Oliveto,
R., Zaidman, A., and Serebrenik, A. (2018c). Beyond
technical aspects: How do community smells influ-
ence the intensity of code smells? IEEE transactions
on software engineering.

Panjer, L. D. (2007). Predicting eclipse bug lifetimes. In
Fourth International Workshop on Mining Software
Repositories (MSR’07: ICSE Workshops 2007), pages
29–29. IEEE.

Śliwerski, J., Zimmermann, T., and Zeller, A. (2005). When
do changes induce fixes? ACM sigsoft software engi-
neering notes, 30(4):1–5.

Spearman, C. (1987). The proof and measurement of asso-
ciation between two things. The American journal of
psychology, 100(3/4):441–471.

Tamburri, D. A., Kruchten, P., Lago, P., and van Vliet, H.
(2013). What is social debt in software engineering?
In 2013 6th International Workshop on Cooperative
and Human Aspects of Software Engineering, pages
93–96. IEEE.

Tamburri, D. A., Kruchten, P., Lago, P., and Van Vliet, H.
(2015). Social debt in software engineering: insights
from industry. Journal of Internet Services and Appli-
cations, 6(1):10.

Tamburri, D. A., Palomba, F., and Kazman, R. (2019). Ex-
ploring community smells in open-source: An auto-
mated approach. IEEE Transactions on software En-
gineering.

Understanding the Relationship between Missing Link Community Smell and Fix-inducing Changes

475

