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Recent climate data has risen attention to many problems related to the global warming effect caused by the
emission of greenhouse gases. The rise in the global average temperature has many consequences and it is very
close to the established threshold in which, immediate actions must be taken or the damage to our planet will be
irreversible. The transportation sector, responsible for 23% of the global CO, emissions, and the public power,
aware of the situation, have been trying to innovate and solutions such as electric vehicles are getting much
attention and growing in popularity. This work aims to help logistic companies by proposing a metaheuristic
algorithm and a novel methodology for the planning of electric vehicle infrastructures composed by battery
recharging stations and battery swap stations. Different from previous works, we consider a long-term horizon
planning by using the proposed algorithm itself to pre-process data and improve results by considering the
synergy of long-term location and short-term routing problems. Computational experiments shows that our
algorithm is able to reduce the cost of electric vehicles infrastructures compared to previous work.

1 INTRODUCTION

The concerns on the global warming effect in our
planet has risen the attention of many people around
the globe and has being an important subject to
many heads of state, even generating some con-
flicts in diplomatic relationships. According to The
Guardian (Harveyn, 2020), during the Climate Ambi-
tion Summit 2020, the United Nations secretary gen-
eral, Anténio Guterres, urged for governments around
the world to declare climate emergency due to re-
cent analysis on climate data collected over the last
years. As stated by the World Meteorological Orga-
nization (WMO, 2019), the global average tempera-
ture in 2019 was 1.1 degree Celsius above the pre-
industrial period - the second highest since the record
began - and, such worries rises from the last Inter-
governmental Panel on Climate Change (IPCC) report
(Rogelj et al., 2018) that discuss the consequences of
an increase of 1.5 degree Celsius in the global aver-
age temperature above the pre-industrial era, in both
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environmental and economic aspects. Among many
problems here we cite a few: the decrease of pollina-
tion of crops and plants due to insects’ lost of habitat,
the change in weather events patterns, making them
more dangerous to humans and other species, and the
endangerment of over 6 million people that live in
coastal areas that are vulnerable to the sea-level rise
at the given temperature increase.

The IPCC report also discusses how can humanity
mitigate the path to the 1.5 degree Celsius increase
in the context of sustainable development. One of its
highlights is the transportation sector’s contribution
in the emission of Greenhouse Gases (GHGs) that,
in 2014, was responsible for 23% of global energy-
related CO, emissions. Zhao et al. (2019), analyze
China’s GHGs emission and shows that electric ve-
hicle (EV) deployment has a better long-term de-
carbonization effect, while fuel economy regulations
shows a better result in the short term. It is concluded
that by adopting a deployment plan of electric vehi-
cles together with fuel economy regulations, by the
year 2026, China could reach its peak of gases emis-
sions, 4 years earlier then what was agreed during
the 2015 United Nations Climate Change Conference,
where China government agreed to achieve its emis-
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sion peak of CO, before the year 2030. The use of
electric vehicle is not the sole solution for this huge
climate problem that the world is facing, other ac-
tions such the improvement in the cleanliness of en-
ergy production must be taken and will be required
to reverse the pathway to the 1.5 degrees Celsius in-
crease.

Changing the engine profile in vehicle fleets is not
an easy task. Due to the use of internal batteries to
store energy, EVs have some critical differences com-
pared to ICE vehicles that makes this transition much
more difficult. EVs require a longer time to recharge
the batteries reducing drastically its range, while, in
contrast, ICE vehicles require no more than a few
minutes to go from empty to full gas tank, extend-
ing its range quickly. Due to the limitations in battery
technology currently used in EVs, its autonomy has
limitations that directly impact its range. While the
fastest recharge method, the super charger power out-
let, can provide up to 80% of battery capacity in 40
minutes, if one is available, the most common power
outlet can take many hours to provide a full battery
charge. This makes the vehicle’s range the second
most important factor that individuals consider when
purchasing an electric vehicle, after the price range
(Cecere et al., 2018).

Logistics companies are a lot more sensible to this
problem since their activities are very time-sensitive
and waiting for the vehicle’s battery to recharge may
cause issues in their delivery performance. Waiting
too much for the battery to recharge, can potentially
make companies need more vehicles to be able to ful-
fill all the customers demand, or in some cases make
even impossible for the company to reach a deter-
mined customer in a day. A different approach to the
EVs battery recharging problem, that is not exclusive
to, but very helpful in the matter of logistic compa-
nies, is the battery swapping. This method allows the
driver to head the vehicle to a special facility, named
battery swap station (BSS), where the battery can be
quickly replaced by a fully charged one. This method
is getting much attention in China where some com-
panies already use it. A company called NIO has
141 BSSs installed across the country and claims to
have made more then 700000 battery swaps (Tianyu,
2020).

Despite the difficulties, companies are trying to in-
corporate cleaner transportation in their fleets. Given
the climate urgency, they are either trying to fit gov-
ernment laws and make use of incentive polices or
trying to innovate in order to catch the public at-
tention. Companies such as DHL have already an-
nounced back in 2014 that they would start to incor-
porate EVs in their fleets (DHL, 2021) and in 2018
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they even started to operate with electric vehicles in
the state of Rio de Janeiro, Brazil (DHL, 2018). To
make the adoption of EVs easier for the general pub-
lic and companies, the presence of a reliable and well
built infrastructure network that can provide the ser-
vices necessary for the vehicle’s operation is a deci-
sive step and optimization techniques can be used to
design them in a more effective way and with lower
costs.

The Electric Location-Routing Problem (ELRP) is
a combinatorial optimization problem in which a fleet
of electric vehicles must have their routes defined to
serve a set of customers alongside their travel and the
location to install a set of facilities must be chosen,
where the vehicles can be recharged or have its bat-
tery replaced so they can finish their delivery routes.
This is a combination of two others well known op-
timization problem, the facility location and vehicle
routing problems. Due to their classification as a NP-
Hard problem, the ELRP is also in this category and
there is no known algorithm able to solve it in a poly-
nomial time. Many variants have been proposed, for
example: the possibility of partial charging at BRS
(Schiffer and Walther, 2017); combination of BRSs
and BSSs (Paz et al., 2018); and stations with differ-
ent charging speed (Li-Ying and Yuan-Bin, 2015).

In this work we study the Multi-Depot Electric
Location-Routing Problem with Time Windows, Bat-
tery Swapping and Partial Recharging (Paz et al.,
2018; Corréa and dos Santos, 2020), for the design
of EVs infrastructures that incorporate the well estab-
lished BRSs and the innovating BSSs in an unified
network for logistic companies. We extended the pre-
vious works by developing a new heuristic algorithm,
due to the ELRP’s NP-Hard classification, to solve
the problem for large-sized instances and address the
two subproblems simultaneously, one with short-term
and the other with long-term characteristics to further
optimize electric vehicle infrastructures. It is a step
to solve an issue often found in the location-routing
problem literature, as in most of the previous works
the location component is solved in short-term hori-
zon in order to optimize the routing component, but
in real-life applications the solution of the location
component is to be used in a long-term horizon, for
several short-term routing problems.

The remainder of this work is organized as fol-
lows: in Section 2 we present a brief review on the
literature related to electric vehicle infrastructures; in
Section 3 we present a formal definition of the prob-
lem; in Sections 4 and 5 we present a heuristic algo-
rithm and our methodology to improve solutions with
a preprocessing procedure; in Section 6 we present
the test instances elaborated for the experiments and
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the results obtained with them; and finally, in Section
7 we discuss the results and present some insights for
future works.

2 LITERATURE REVIEW

An electric vehicle infrastructure can be composed by
arange of elements going from battery recharging sta-
tions (BRS) to special road lanes that allow cars to
have their batteries charged wirelessly while driving.
However, most of the studies consider either the use
of battery swap stations (BSS), BRS or a combination
of both. A slightly different approach was made by
(Cui et al., 2018). They considered a special type of
BRS that is placed in the truck body, so they can move
the station to another place according to the daily traf-
fic flow. This vehicle is called mobile charging ve-
hicle (MCV) and it is requested by customers via a
mobile app and must be drove to the scheduled place.
The MCYV can also support multiple types of charges.
The authors present a mathematical formulation of
the problem based on the single-depot ELRP. The ob-
jective is to minimize the total travelled distance and
determine the vehicles’ route, the MCV’s allocation,
and the type of charger in each station; while meeting
the time-windows, battery charge and vehicle capac-
ity constraints.

Li-Ying and Yuan-Bin (2015) elaborate a mixed
integer programming model and an algorithm for the
Multiple Charging Station Location-Routing Problem
with Time Window of Electric Vehicle (EV-MCS-
LRPTW). Besides the usual constraints and features
of the ELRP like time windows, vehicle battery and
vehicle loading capacity constraints, they also con-
sider four types of charging stations: slow charging
station (SCS), fast charging station (FCS), super-fast
charging station (SFCS), and the BSS. The model’s
objective function is to minimize the total cost in-
cluding the cost of siting stations, the cost of electric-
ity to recharge batteries and the drivers wage. The
designed algorithm is an Adaptive Variable Neigh-
borhood Search mixed with the Tabu Search algo-
rithm. It was implemented on Java with a single
core code and the model implemented on the CPLEX
solver. Experiments were conducted with instances
for the Pollution-Routing Problem (PRP) (Demir
et al., 2012), adapted for the EV-MCS-LRPTW, a to-
tal of nine sets of instances with different sizes. The
results show that the proposed algorithm can find near
optimal solutions in the smaller sets of instances and
provide convincing results in moderate run time on
the largest sets. As future work, they pointed out to
extend the problem to multiple depots, to consider a

mixed fleet of electric and internal combustion vehi-
cles and also to consider public charging stations.

Schiffer and Walther (2017) define a more com-
plete version of the ELRP in which time windows
and partial recharging are considered. Time windows
constraints are very common in practical applications
and partial recharging allow the electric vehicle to use
service time to recharge battery, increasing its auton-
omy. The authors present a novel mixed integer pro-
gramming model called Electrical Location-Routing
Problem with Time Windows and Partial Recharging
(ELRP-TWPR). They also provide 5 different objec-
tive functions to meet various requirements, e.g. min-
imizing distance traveled, number of vehicles used,
number of charging stations sited, number of vehicles
plus number of recharging stations (convex combina-
tion) and total costs. They conducted experiments
with new instances created based on instances from
the literature and compared the solutions obtained uti-
lizing all of the 5 objective functions proposed. As
suggestion for future works they highlighted the im-
plementation of heuristic solution method in order to
solve large instances for real world problems, the ap-
plication of the proposed model in practical case stud-
ies and extend the model for heterogeneous or mixed
fleet.

A variant of the ELRP called battery swap station
location-routing problem with stochastic demands
(BSS-EV-LRPSD) is introduced by (Zhang et al.,
2019). The main contribution is the addition of
stochastic demands which turn the proposed model
more applicable in real life situations. For this prob-
lem they propose an algorithm called Hybrid Vari-
able Neighborhood Search (HVNS) which incorpo-
rates the Binary Particle Swarm Optimization (BPSO)
and a Variable Neighborhood Search (VNS) algo-
rithms. The basic concept behind it is that both BPSO
and VNS are used iteratively to solve the BSS location
problem and routing planning. They present as well,
a Pareto optimality for the BSS location stage. The
HVNS is compared with five others algorithm from
the literature and its performance is evaluated using
adapted test instances from other authors. In general,
the HVNS was able to find better solutions then the
other algorithms and showed good stability and con-
vergence. As future works that can be done to im-
prove their model, time windows constrains and BSS
capacity can be considered to give more applicabil-
ity to the model. Their work does not consider the
possibility of recharging station and the energy con-
sumption and traveling times are constants.

A mixed integer programming model for the
ELRP with simultaneous BSS and BRS is presented
by (Paz et al., 2018). The authors presents three mod-
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els of which two are for the BSS and BRS individually
and a third one for BSS and BRS mixed. The model’s
objective function is to minimize the total traveled
distance. The models were solved with CPLEX 12.5
and the experiments limited to a maximum run-time
of 8 hours. It is worth to mention the amount of big M
constraints in the model, a total of 12 out of 21 con-
straints have big M, which makes the model less ef-
ficient. Some preprocessing was done to improve the
computational time. In their methodology they use a
set of dummy nodes representing duplicated stations,
so they can be visited multiple times, being one ex-
tra visit per dummy node set. They suggested as fu-
ture works, the design of solution strategies for large-
scale instances and application on real case data. A
step in this direction was made by Corréa and dos
Santos (2020), who proposed a hybrid heuristic for
the same problem: permutations of the customers
are generated by a Simulated Annealing (SA) heuris-
tic; a Greedy Randomized Adaptive Search Proce-
dure (GRASP) maps each permutation into an array
of routes inserting BSS stations by a greedy choice,
later improved by a local search conducted by a VNS.
The results were compared to the MILP model solved
via Gurobi limited to two hours. While the solver
was not able to find solution in most instances, the
SA found solution in every case and was able to find
some global optimal solutions.

3 PROBLEM DEFINITION

The problem studied here can be divided in two.
First, a daily delivery optimization is considered as
a variant of the ELRP called the Multi-Depot Elec-
tric Location-Routing Problem with Time Windows,
Battery Swapping and Partial Recharging (Paz et al.,
2018; Corréa and dos Santos, 2020) and is defined as
follow. A set of customers, each one with time win-
dow and demand parameters, must have their demand
supplied by an electric vehicle within its time win-
dow. A set of vehicles must depart from the depots,
perform a route delivering goods and return to the
same initial depot. The vehicle has a limited auton-
omy based on its battery capacity and to address this
problem two measures can be taken: (i) use the ser-
vice time to perform a recharge in the customer’s BRS
or (ii) go to a BSS and have its battery swapped for a
fully charged one. When at the customer, the vehicle
can use the service time to give its battery a charge
but should not stay longer than that. Additionally, the
locations of the stations to be sited and the amount of
depots must be decided. The goal is to site depots,
site battery swap stations, define the route of the ve-
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hicles for goods delivering and determine a recharge
plan by defining when and where the vehicles have
to recharge or swap the battery; while minimizing the
total cost composed by the BSSs installation cost, the
vehicle cost, the drivers wage, depot siting cost and
energy cost in BSSs and BRSs.

The second problem is the short and long-term
conflict between the facility location and the vehicle
routing problems. Considering that a logistic com-
pany will serve certain region for a long period of
time, the infrastructure optimized by the ELRP con-
sidering a single day might not be optimal or not even
be usable for other days of delivery. Considering
the given scenario the second problem is the long-
term optimization of electric vehicle infrastructures
according to the one described as the first problem,
but routes are still to be decided for each day.

4 VARIABLE NEIGHBORHOOD
SEARCH

The Variable Neighborhood Search (VNS) (Hansen
and Mladenovié, 1997) is a metaheuristic widely used
to solve optimization problems and was used in this
work. It work as follows: starting from an initial so-
lution, the VNS cycles between a solution shake step
and a local search procedure until it reaches a stop cri-
teria. It is essential to define a solution representation,
a polynomial algorithm capable of generating an ini-
tial solution and a set of neighborhood structures to
be used to perform movements in the solution.

The solution is represented as an array of routes,
in which every route starts in a depot represented by
the first element and finishes in the same depot repre-
sented by an arrival node in the last position. Figure 1
illustrates the solution representation. Vertex 0 is the
depot, vertexes 1 and 2 are BSSs - BSS 2 is sited and
1 is not - and the rest are customers.

o[s]8]7]2]6]0]
0]4]3]o

Figure 1: The solution represented as an array of routes.

The VNS requires to be provided with an initial so-
lution, so a greed algorithm is purposed. The greed
algorithm starts siting a depot in the most populous
depot-able city and creating an initial route with this
depot and no customer nor BSS. This initial route is
then, added to the yet empty set of routes. The algo-
rithm then, search in the last route added in the set
for the closest customer from the last visited place on
the route. When found, the customer is added in the
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route and the procedure addStations proposed by
Corréa and dos Santos (2020) verifies if the route is
feasible. addStations is a procedure that generates
a recharge plan for a route, i.e., determine where the
vehicle must recharge its battery and where to swap
the battery, so it can complete the route. If a recharge
plan is possible, the customer is added into the route,
and is removed from the customer set. When no cus-
tomer is found, i.e., the vehicle has not enough battery
to keep driving, the route is closed and a new empty
route with the current depot is created and the algo-
rithm repeats. When the last created route remains
empty after checking every customer, the remaining
customers cannot be reached from any route starting
from the current depot, so the last created route is
deleted and the process is repeated by opening a de-
pot in the next depot-able city in population size. In
the case of the last created route remained empty af-
ter checking every customers and the current depot is
sited in the last depot-able city, the given instance is
infeasible. The initial solution algorithm is detailed in
Algorithm 1.

Algorithm 1: Initial solution algorithm.

Input: D = depots, S = stations, C = customers
Output: routes
sort(D); // by population size
routes < set(); // create the route set
for din D do
while depotOk = true do
depotOk < false;
addEmptyRoute(routes, D);
route <— last(routes);
while size(C) > 0 do
¢ < searchCustomer(route);
r_ < route; // backup route
addCustomer(c, route);
addStations(route);
if isFeasible(r) = true then
C.remove(c);
depotOk < true;
else
/* skip customer */
route <—r_; // restore route
aux.add(c); C.remove(c);
end

end

C < aux;

route < last(routes);

if isEmpty(route) = false then
routes.remove(route);
depotOk < false;

else

\ addEmptyRoute(routes, D);
end

end
end

In total, 5 neighborhood structures are used,
namely: Union Route, Shift Customer, BSS Replace-
ment, Change Depot and 20PT. None of them are
able to directly modify the solution’s recharge plan.
They modify characteristics such as BSSs available,
depots sited or customers order of visit. However,
they all use the addStations procedure to recon-
struct the recharge plan of the modified routes, so they
indirectly modify this characteristic. Union Route
consists of a neighborhood structure where 2 routes
are chosen and a new set of routes is constructed using
the customers from those routes. The idea is to solve
a subproblem consisting of only customers contained
in the two selected routes and use the same logic of
the greed initial solution algorithm to reconstruct the
routes. Using this structure, 2 routes may generate
a larger one or a set of 2 or more different routes.
The BSS Replacement neighborhood structure aims
to reduce the solution cost by reducing the number
of BSSs on it. To do so, it removes any occurrence
of a chosen BSS from the solution and the affected
routes are reconstructed with the addStations pro-
cedure. Change Depot works in a similar way as the
BSS Replacement, a depot is chosen and all its oc-
currences are replaced by another depot. The affected
routes are then, reconstructed with the addStations
procedure. The 20PT structure swaps two arcs in a
route and the Shift Customer shifts forward or back-
ward a given customer by a certain number of po-
sitions in the route. In our solution representation
both structures are achieved similarly. The 20PT is
achieved by removing the route’s recharge plan, in-
verting part of the customer order and reconstructing
the recharge plan with the addStations algorithm.
Analogous, the Shift Customer is achieved by remov-
ing the route’s recharge plan, shifting backward or
forward in an amount of positions a given customer
and reconstructing the recharge plan.

The local search is conducted by a best-
improvement hill-descent metaheuristic and the stop-
ping criterion adopted is the maximum amount of
time running and number of iterations without im-
provement.

S PRE-PROCESSING METHOD
FOR THE LONG-TERM
LOCATION

Most of the works dealing with location-routing prob-
lem considers an amortization of the costs of in-
stalling facilities, as they are to be used for a long
period of time, not only for the particular set of cus-
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tomers considered in the routing component of the
problem. In addition to the usual amortization ap-
proach used to address this short-term and long-term
duality in Location-Routing Problems, we present
a novel methodology to further optimize problems
based on this model. Considering that logistics com-
panies will install a set of depots and BSSs that will be
fixed during a very long period of time, and the cus-
tomers itself and its demand may vary quickly over
the days, our approach consists in the execution of
an algorithm to solve the ELRP multiple times con-
sidering different days of delivery, extract informa-
tion about the most frequently used facilities and re-
execute the algorithm with a subset of facilities cre-
ated with the previous solution results. The BSS lo-
cation is then decided once for the whole planning
horizon, while the routing is decide day-by-day using
the pre-selected BSSs. For this method, we consider a
set of instances consisting in many delivery days and
with the same parameters such as vehicle range, num-
ber of depot candidates, number of BSSs candidates,
etc. The difference among the instances is the cus-
tomer set, representing the different days of delivery.

We execute the VNS to solve each day individ-
ually and then, compute the frequency in which the
BSSs were used. Next, a subset of BSSs must be de-
termined to be passed to the VNS again. This is done
by sorting the BSSs by frequency of use and doing
the following steps. An initial percentage x of BSSs
is determined and the top x most frequent BSSs are
chosen. To determine whether those BSSs will be
enough to at least generate initial solution in each day
so the VNS can run, the initial solution algorithm is
executed for every day. If a feasible solution is gener-
ated for all days, the process stop. If any execution is
unable to provide feasible initial solution in any day,
the value x is increased by certain amount y and the
process is repeated. The worst case scenario happens
when x = 100, meaning that the method could not re-
move any BSS, and the ones chosen previously by the
VNS are the minimum required to generate feasible
initial solutions.

To evaluate this method, the cost considering all
instances must be computed. Instead of simply sum-
ming up every solution cost, a special calculation
must be done, otherwise, by summing up the solution
objective function values, duplicated costs are going
to be accounted. To do so, the cost is divided in two
parts, the fixed and the variable. The fixed cost is
composed by the costs that will be shared across the
days, such as acquiring vehicles and siting BSSs and
depots. The variable cost is composed by the daily
costs incorporating the energy cost in the BSSs and
BRSs, the fixed cost of operating a BSS to swap the
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battery and the drivers wage. For every solution from
the VNS daily execution, the four variable costs are
summed up and the fixed cost must be processed and
then also summed up. The vehicle acquiring cost is
determined by the solution with the highest number
of routes, the depot cost is determined by the set of
depots used in every solution, as well as BSS siting
cost that is determined by the set of BSSs used in the
daily solutions.

6 COMPUTATIONAL
EXPERIMENTS

In this section, the results of the computational exper-
iment are shown and also, the test instances and the
method used to generate them. The experiments were
executed in a machine equipped with a processor In-
tel(R) Core(TM) i7-7700HQ and 16GB RAM. The al-
gorithm was implemented in C++ using the Microsoft
Visual Studio compiler. The VNS was set to stop at
25 iterations without improvement or 3600 seconds
of runtime, whichever happens first, and its neigh-
borhood exploration order was set to random, i.e., in
each iteration, after a worsening solution is found, a
random neighborhood is chosen independently from
the previous one. The parameters for the Select BSS
subset Algorithm were set to x =S and y = 9, i.e.,
for the long-term location problem, at least 5% of the
BSSs used in the first VNS round are selected, and
5% more is added until a feasible solution is found by
the greedy algorithm for all instances of the set.

6.1 Test Instances

Instances set from previous work are limited and are
not fit to test our new methodology, we require in-
stances that represents a long-horizon period, with
multiple days of delivery to get a more real world rep-
resentation. Thus, we created a new instance set based
on the state of Minas Gerais, Brazil, to contemplate
every characteristic needed to represent our problem.
The new set has multiple-day instances, i.e., instances
representing multiple days of goods’ demand in the
same geographical space, with each day containing
a different set of customers but the same general pa-
rameters. The State of Minas Gerais is divided in ten
administrative regions, and 7 are used in this work,
namely: Alto Paranaiba, Central, Centro-Oeste, Mata,
Rio Doce, Sul and Tridngulo. The remaining 3 re-
gions were not used because they are very sparse and
were not fit to our instance generation method. Each
instance set contains customers from one administra-
tive region.
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Three real world information were required: the
cities geographical coordinate, the distances between
each pair of cities, and the cities’ population. We get
the coordinates by the Open Street Map (OSM), us-
ing the Nominatim Python API. The distance matrix
was obtained with the Open Source Routing Machine
(OSRM) and the cities’ population were gathered
from the Brazilian Institute of Geography and Statis-
tics (IBGE) information retrieval system SIDRA!,
considering the last census done in the country in the
year 2010.

For each instance set, we had to determine one set
of cities to be candidates to receive a depot and an-
other set of cities to be a candidate to receive BSSs.
The depot-able set is determined by its city popula-
tion size. We sort the cities by this criteria and choose
the ones with highest population to be part of the set.
However, we did not choose near cities and a mini-
mum distance between the cities in this set is estab-
lished as the half the maximum vehicle range.

The BSS-able set is chosen by solving a facility
location model. The intention is to obtain a good dis-
tribution of BSSs candidates, hence minimizing the
probability of generating infeasible instances, due to
cities being very far from the depot with no BSS for
a vehicle to reach it. The proposed model is based on
the p-Center facility location problem, in which a set
of facilities must be assigned to a set of customers in
order to minimize the maximum distance of a facil-
ity to a customer. In our case, we want to define p
cities as candidates to sit BSSs in order to minimize
the maximum distance of a city to the nearest BSS
candidate.

We generated 3 instances set for each region with
a total of 30 days of customer’s demand. They differ
by the percentage of cities chosen to compose each
day. For example, the instance set Central region
has a total of 157 cities. The set central_20 contains
30 daily customers (20% of the regions size) while
the set central_80, 121. The parameter p was set as
20% of the number of cities.

6.2 Results

In order to evaluate our preprocessing methodology,
we run 10 times the VNS algorithm followed by the
VNS with the pre-processing method for each in-
stance set and compare the VNS execution average
cost with the VNS limiting the BSSs. Table 1 report
the results. Column ‘Initial’ displays the average so-
lution cost in the first algorithm step (VNS). Column
‘%BSS’ displays the percentage reduction of BSSs in
the second step, i.e., 100 - x. Column ‘Improv.” the

Uhttps://sidra.ibge.gov.br/home/ipcal 5/brasil

percentage of cost reduction in the second VNS exe-
cution with the BSSs limited. Column ‘Time’ shows
the average execution time in seconds.

Table 1: Average results for each instance set.

inst Initial %BSSs | Improv. | Time
alto_paranaiba_20 | 219147 0 - 3
alto_paranaiba_50 | 229406 0 - 8
alto_paranaiba_80 | 236943 0 - 22
central 20 308337 5 1,25 55
central _50 343652 10 1,79 963
central _80 373142 10 1,19 | 5537
centro_oeste_20 419186 0 - 5
centro_oeste_50 244848 35 3,46 38
centro_oeste_80 252815 25 2,43 134
mata_20 283462 50 9,72 34
mata_50 305084 50 8,68 733
mata_80 325686 50 6,62 | 3312
rio_doce_20 263211 5 0,93 23
rio_doce_50 286969 50 6,60 274
rio_doce_80 300725 45 5,00 1326
sul_de_minas_20 486770 30 3,57 49
sul_de_minas_50 335420 50 8,87 762
sul_de_minas_80 359989 50 8,20 | 3953
triangulo_20 226701 10 0,47 3
triangulo_50 248408 10 2,27 12
triangulo_80 257977 10 1,68 33

The results demonstrate that our algorithm was ca-
pable to further optimize the cost after the BSS can-
didate list reduction. The instance set in which the
reduction percentage was a 0% did not show cost re-
duction, because no BSS could be removed for the
second VNS execution, thus both executions were the
same. In most of the instances the pre-processing
method could reduce the number of BSSs installed,
thus reducing the overall cost in the long-term hori-
zon, although the transportation and energy cost on
each day may increase because of the reduced num-
ber of BSS. We can observe 29% of average reduction
percentage in the BSS candidate list and an average
of 4,28% in the cost reduction. The 4,28% of average
economy can sound a low economy and not worth,
however, considering the long run and that BSSs are
the second most expensive component in the consid-
ered electric vehicle infrastructure, this economy will
potentially grow. Take for example the instance set
sul_de_minas_50. Considering the cost of half a mil-
lion dollars per BSS (Tianyu, 2020) and the reduc-
tion of 50% in the BSS allocation, over time, the sited
BSSs will be used more often and, the economy will
scale as we consider a bigger period of time.
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7 CONCLUSIONS

In this paper, we present an algorithm for the NP-
Hard problem called Multi-Depot Electric Location-
Routing Problem with Time Windows, Battery Swap-
ping and Partial Recharging and a novel methodology
to address the long and short-term conflict derived
from Location-Routing Problems. The algorithm is
based on the Variable Neighborhood Search and uses
a set of 5 neighborhood structures to explore the solu-
tion space with a constructive greed algorithm to pro-
vide an initial solution. In addition, we presented a
novel method to address the long and short-term prob-
lem mentioned. This method consists in the use of
the presented VNS to optimize individually each day
in the instance set and then, select a subset from the
used BSS set to reexecute the VNS limiting the BSSs
it can use.

We evaluate the proposed preprocessing method-
ology in its capabilities to further reduce electric vehi-
cle infrastructure costs. The results demonstrate a av-
erage cost reduction of 4.28% considering instances
set of 30 days of delivery, however the cost reduction
will scale as more delivery days are considered due to
the reuse of BSSs over time.

As future works, we suggest the exploration of
other ways to decide the subset of BSSs that will be
used in the second VNS execution and the creation
of instances representing the three regions not used in
this work and instances combining different regions
to execute the proposed methodology on even bigger
instances.
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