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Abstract: An intelligent tool for type annotations in Python would increase the productivity of developers. Python is
a dynamic programming language, and predicting types using static analysis is difficult. Existing techniques
for type prediction use deep learning models originated in the area of Natural Language Processing. These
models depend on the quality of embeddings for source code tokens. We compared approaches for pre-
training embeddings for source code. Specifically, we compared FastText embeddings to embeddings trained
with Graph Neural Networks (GNN). Our experiments showed that GNN embeddings outperformed FastText
embeddings on the task of type prediction. Moreover, they seem to encode complementary information since
the prediction quality increases when both types of embeddings are used.

1 INTRODUCTION

Statically typed programming languages allow detect-
ing some errors during the development process and
before the execution. This is one reason why dynam-
ically typed programming languages like Python and
JavaScript adopt optional type hinting. However, pro-
viding type hints is labor-intensive, and it can often be
neglected. A helper tool that would assist program-
mers with type annotations is needed.

Researchers have tried to address type prediction
using the tools of machine learning and deep learn-
ing. Some results were achieved by analyzing doc-
umentation for functions (Boone et al., 2019; Ma-
lik et al., 2019). However, documentation some-
times is not available, especially for small projects
and projects in the early stages of development. Other
approaches viewed the source code as a sequence of
tokens and the type prediction task — as sequence
tagging (Pradel et al., 2019; Hellendoorn et al., 2018).
A handful of studies interpreted the source code as a
graph (Raychev et al., 2015; Allamanis et al., 2020;
Wei et al., 2020).

This paper takes a hybrid approach to type pre-
diction for Python. We view source code as both: a
sequence of tokens and as a graph. We adopt a com-
mon Natural Language Processing (NLP) approach
for sequence tagging to predict Python types. The in-
formation from a source code graph is incorporated
into the prediction process by concatenating embed-

dings from the graph built from source code with the
FastText embeddings trained on a corpus of Python
repositories. The work that is closest to ours is (Al-
lamanis et al., 2020). They predict type annotations
for Python using Graph Neural Networks. However,
we use a hybrid technique that combines the strength
of NLP-based approaches and the strength of Graph
Neural Networks for modeling long-range dependen-
cies.

Our experiments show that introducing graph-
based embeddings into the prediction process allows
increasing the type prediction quality from 68% (us-
ing NLP model) to 75% when measured with the top-
1 F-score. The contribution of this paper is the fol-
lowing:

• We prepare a dataset for predicting types for
Python variables1;

• We demonstrate a method that allows incorporat-
ing graph-based source code embeddings into a
standard NLP processing pipeline;

• We demonstrate that graph-based embeddings
are complementary to FastText embeddings for
source code and that using them allows increasing
the quality of type prediction for Python variables.

The rest of this paper is organized as follows. Sec-
tion 2 overviews existing approaches for predict-
ing type annotations for dynamic programming lan-

1https://github.com/VitalyRomanov/python-type-prediction
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guages. Section 3 explains data collection and pro-
cessing methods. Section 4 overviews the design of
our type prediction model. Section 5 explains the ex-
perimental setup. Section 6 discusses limitations of
the current approach. Section 7 concludes the paper.

2 RELATED WORK

Researchers have explored the possibility of predict-
ing type annotations for dynamic languages already
for some time. The earliest most relevant work on
this subject is related to predicting type annotations
for JavaScript programs using Conditional Random
Fields (CRF) (Raychev et al., 2015).

Another approach for predicting types in
JavaScript relies on extracting relevant information
from JSDoc (Malik et al., 2019). The authors used
a natural language description for each argument
to predict the required type. Their approach has
demonstrated a decent performance, but it relies on
documentation that is not always available. A similar
approach was used for Python in DLTPy (Boone
et al., 2019). Researchers used variable names,
docstring, comments, and return expressions as input
features. This approach also relies on meaningful
names and does not take into account the program’s
structure.

Three works are the closest to what we are trying
to build. The first approach was presented in (Hel-
lendoorn et al., 2018). In this work, authors treat a
program as a sequence of tokens and process Python
functions using a Recursive Neural Network (RNN).
They point out that relevant information about a vari-
able can be spread over a long distance in source
code. For example, one can guess the type of a vari-
able by looking at the usage patterns. However, rel-
evant usages can be spread over long distances in a
function. Their solution to this problem is to take
the representations for all mentions of a target vari-
able and average them together. This averaged rep-
resentation is used for type prediction. Another ap-
proach based on RNNs is called TypeWriter (Pradel
et al., 2019). This approach combines probabilistic
and search-based predictions. First, the types of vari-
ables are predicted using an RNN. Then, the predicted
type undergoes a refinement process to verify the va-
lidity of the predicted annotation. Because of the
second step, this approach can ensure type correct-
ness. The third approach is called Typilus (Allamanis
et al., 2020) where authors represented source code as
a graph and addressed an open world type prediction
problem, where the set of target type classes is not
predefined.

Our method is based on a text Convolutional Neu-
ral Network (CNN). Similarly to (Pradel et al., 2019;
Hellendoorn et al., 2018), we process the source code
as a sequence of tokens. However, we also intro-
duce additional information in the form of graph em-
beddings. Graph embeddings naturally address long-
range dependencies in source code because such de-
pendencies are represented as adjacent nodes in a
graph. Moreover, they were demonstrated to be useful
for predicting return types for Python functions (Ro-
manov, 2020).

3 DATASET

Our goal is to explore the effectiveness of graph em-
beddings for predicting types for Python variables.
However, we were not able to find suitable datasets
for this task. We are aware of two datasets with
Python functions that also come with a parsed ab-
stract syntax tree (AST): 150k Python Dataset (Ray-
chev et al., 2016) and CodeSearchNet (Husain et al.,
2019). Unfortunately, ASTs in these datasets are lim-
ited to the scope of a single function, and it is im-
possible to resolve function calls reliably. We believe
that the information about function calls is important
for predicting types. For this reason, we decided to
collect our own dataset.

3.1 Source Code Graph

Our dataset consists of a collection of interdependent
packages. We selected a set of popular Python li-
braries and their dependencies from GitHub. We fil-
tered those packages that contain type annotations in
their sources. The remaining were analyzed with an
open-source indexing tool Sourcetrail 2, which stores
the source code index in graph format where source
code elements, such as modules, methods, classes,
and variables are represented as nodes. Edges rep-
resent relationships between nodes, for example, def-
initions or function calls. The process of package in-
dexing is time-consuming, and we plan to index more
packages in the future. The example of Sourcetrail
output is shown in Figure 1. The list of indexed pack-
ages can be found in Appendix.

Sourcetrail resolves the mentions of variables,
functions, and classes in the source code. However, it
does not store information from AST. For this reason,
we implemented a tool for creating a graph represen-
tation of Python AST and merging this representation
with the Sourcetrail graph index. We used a standard

2https://www.sourcetrail.com/
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Figure 1: Example of source code graph that captures defi-
nition and usage of a simple Python class.

Python library for AST parsing.
Some nodes in the AST have identical names.

This is usually the case for AST nodes that do not
represent named elements in the code such as vari-
ables and functions. The examples of these other AST
nodes are control flow statements such as for, if, or
while, operators, assignments, slices, attributes, and
others. To avoid these nodes being merged, which
would result in different functions exchanging infor-
mation during the message-passing stage in GNN, we
create a new node for each instance of AST node that
does not represent a user-assigned name. Overall,
the graph construction process is similar to (Romanov
et al., 2020).

The final graph contains 690676 nodes and
2971025 edges (Table 1). The inclusion of AST nodes
dramatically increases the graph size. An example
that extends the graph in Figure 1 is shown in Fig-
ure 2. Due to the size of the graph, only a fragment
of it is shown here. The source code that was used for
producing this graph is given in Appendix.

AST nodes and edges are provided by Python’s
ast package. The number of different node and rela-
tionship types reaches several dozens. However, the
GNN model that we use for computing graph embed-
dings does not distinguish node types. The reason is
discussed in Section 4. We believe that it is important
to include information about node types into the final
graph because it possesses high predictive power. For
this reason we add AST type nodes into the graph.

When predicting types inside Python function’s
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Figure 2: Example of source code graph including AST
edges. Due to the size of the graph, only a fragment of
the graph is shown here. AST nodes that do not represent
user-defined names are assigned a unique identifier.

body, we match source code elements with graph
nodes and use graph embeddings for predictions.

3.2 Python Type Annotations

For the task of type annotation, we extract labels from
the source code itself. Type annotations in Python can
be provided for: (i) variables defined in the function’s
signature, (ii) variables defined inside the function’s
body, and (iii) the function itself (return type). In
this work, we focus on predicting type annotations for
variables and leave the prediction of the function’s re-
turn type out of consideration. We strip type annota-
tions from source codes and use them as labels within
Named Entity Recognition (NER) framework. Over-
all, our dataset contains 2166 functions with 4548
type labels.

Some types are composite, for example
List[Str] or Union[Str, Int]. We decided
to simplify these annotations and predict only the
most outer-level type description, e.g., (List and
Union). A similar approach was used in (Allamanis
et al., 2020). We resort to this measure to simplify
the neural network architecture in the first stages
of research since we can use a simple classifier to
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Table 1: Node and edge types present in Python source graph.

Node Type Node Count Edge Type Edge Count

AST related 643369 AST related 2179648
Function 28863 Usage 588120
Class field 6961 Function Call 91882
Global Variable 4156 Defines 49584
Class 3857 Type Usage 42977
Module 1780 Import 16389
Class Method 1286 Inheritance 2424

Figure 3: Distribution of type labels for the task of predict-
ing type annotations in Python. Only the top 12 labels are
demonstrated. Top 20 labels were used in this paper for
experiments.

predict labels. In the future, we plan to explore
more complex prediction strategies, similar to one
presented in (Hellendoorn et al., 2018). Overall
we have 127 unique type labels. However, the
distribution of the labels in our dataset seems to
follow the power law. To ensure that the learning
model has enough training data for each label, we
use the top 20 type annotations and replace the rest
with a label Other. Again, similar filtration was also
applied in (Allamanis et al., 2020). The distribution
of the labels is given in Figure 3.

Sometimes docstring contains information useful
for type inference (Boone et al., 2019). We wanted
to find out how well a model can predict types when
no such documentation is available. In other words,
we wanted our models to perform inference by only
reading the code. For this reason, we remove all doc-
umentation from the functions that we process.

4 MODEL

We explore the usefulness of two representations
of source code for predicting type annotations for
Python: representation as a sequence and representa-
tion as a graph. We decided to treat type annotations

the same way Named Entities are treated in NLP. We
chose a model that classifies each token as a part of an
entity or an outside token. Specifically, we adopted
the BILUO tagging scheme.

We wanted to compare the performance of our
model with and without the graph embeddings. For
this reason, we wanted to adopt an architecture where
we can easily add new information to the model. We
chose an architecture from (Collobert et al., 2011)
that received the Test of Time Award at ICML 2018.
We use this architecture because of the simplicity of
implementation and fast training times. In our fu-
ture work, we plan to experiment with more up-to-
date language modeling techniques for code (Kanade
et al., 2020; Feng et al., 2020). Our current architec-
ture is shown in Figure 4.

4.1 Source Code Embeddings

First, we tried predicting type annotations without the
use of graph embeddings. Instead, we used embed-
ding models popular in NLP. Our original goal was
to use CuBERT embeddings for source code that was
presented in (Kanade et al., 2020). Unfortunately, the
model was not published for public access at the time
we completed our work. Our second choice was to
use pre-trained FastText embeddings for Python pre-
sented in (Efstathiou and Spinellis, 2019). However,
we found that this model does not have embeddings
for many language keywords and punctuation char-
acters that seem to be useful for predicting type an-
notations. We decided to pre-train our own FastText
embeddings that preserve frequent tokens. For this,
we downloaded repositories listed in CodeSearchNet
(Husain et al., 2019) and extracted Python sources.
As a result, we had a Python corpus of 2.8 GB, 2
GBs more than the corpus used in (Efstathiou and
Spinellis, 2019). We trained FastText embeddings us-
ing Gensim (Řehůřek and Sojka, 2010) for 20 epochs
with standard parameters (context size 5, vector size
100).
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4.2 Graph Embeddings

FastText embeddings were designed to address repre-
sentation learning for natural languages. Specifically,
natural language models usually try to predict a word
inside a given context. However, objectives like this
are arguably less useful for source code, primarily due
to a greater amount of neologisms and the presence of
long-range dependencies (Allamanis et al., 2018). At
the same time, we can provide information about de-
pendencies explicitly by extracting relationships be-
tween variables, functions, and classes from sources.
Moreover, we can use additional source-code-specific
objectives. We decided to use the following objec-
tives:

• Node Name Prediction: where we predict names
for classes, variables, or functions. This objec-
tive is semantically challenging. The names can
be predicted by looking at usage patterns or the
implementation;

• Variable Use Prediction: where we predict the
names of variables that are used in the body of a
given function. This objective captures the top-
ical semantics of the code. For example, if we
know that this function is related to networking, it
is likely to have variable names such as client and
server. Variable names are predicted for nodes
that represent functions. These nodes aggregate
information from all AST nodes in the function’s
body;

• Next Call Prediction: where we predict which
function will be called next given the current func-
tion. This objective encourages the model to learn
usage patterns of different functions. Once again,
the objective is applied to nodes for functions to
encourage the usage of AST nodes.

We train graph embeddings using a version of Graph
Neural Network called Relational Graph Convolu-
tional Network (Schlichtkrull et al., 2018). A dis-
tinctive feature of this model is that it incorporates
relationship types into the modeling process. RGCN
is a message-passing model. During training and in-
ference, nodes share their embeddings with adjacent
neighbors. A learned relationship-type-specific func-
tion is applied to node representation during the mes-
sage passing. It transforms a node embedding before
sending it to the adjacent node. Each node incorpo-
rates messages from other nodes into its own embed-
ding. In our case, we use three message passing turns.
On each turn, a different message-passing transfor-
mation is applied, which corresponds to three layers
of Graph Neural Network. The final embeddings are
used as an input for our three objective functions. The

use of a relation-specific GNN model is motivated by
the high diversity of relationship types in our source
code graph.

All nodes in our graph have the same node type,
and the only way to understand that we are working
with a variable and not with an if expression is by
looking at the relationships with the adjacent neigh-
bors. The incorporation of node types into the graph
leads to a much higher requirement for memory and
processing time. For this reason, instead of assign-
ing types to nodes, we introduced nodes that repre-
sent types. We use such nodes only in relationships
with AST nodes. Such an approach introduces lit-
tle memory overhead but still allows the inclusion of
node types.

The use of shared nodes (e.g. type nodes or nodes
that represent user-defined names) is a concern for en-
suring that the graph that represents an implementa-
tion of a function is isolated from all other functions.
Since the message passing is used for training, shared
nodes can be gateways for information leakage be-
tween parts of the graph that represent completely un-
related code. To prevent this we restrict the message
passing from shared nodes only in one direction.

4.3 Type Prediction Model

We use a text CNN model for predicting Python types.
The model is inspired by (Collobert et al., 2011). The
main reason for choosing this model was the simplic-
ity of the implementation and training speed. The
overview of the model is given in Figure 4. In the
first stage of the prediction process, the tokens of a
Python’s function are embedded using FastText and
graph embeddings. Additionally, we add embeddings
for prefixes and suffixes for tokens to improve the
ability to process rare short tokens. Prefixes and suf-
fixes have a fixed length of three characters. All em-
beddings for each token are concatenated and then
passed to a convolutional layer. The context size de-
pends on the window size. We explore different win-
dow sizes during hyper-parameter optimization.

After passing data through two convolutional lay-
ers, embeddings for each token are passed through
two fully connected layers that produce the final label
on the output. We use the BILUO scheme for encod-
ing the output classes for each token. We evaluate the
performance of the model using the top-1 F1-score.

5 EXPERIMENT

For training, we used a desktop computer with Intel
i5-7400 CPU and GeForce 1050Ti GPU. We trained
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Figure 4: Architecture of our simple CNN model for type
prediction.

FastText embeddings for source code (dimensional-
ity 100) using Gensim 3 library for 20 epochs. We
trained graph embeddings (dimensionality 100) using
an RGCN model developed with DGL 4 library for
100 epochs. The training time was about 8 hours
for both FastText and GNN embeddings. We per-
formed a hyper-parameter search by tuning the perfor-
mance of GNN embeddings on the test set. The best
performance was achieved when we used three mes-
sage passing turns (3 layers) of RGCN. Using more
message passing turns resulted in a decreased perfor-
mance. This phenomenon is well-known (Wu et al.,
2020) but is not yet completely resolved.

In addition, we performed a hyper-parameter
search for a text CNN model. The training time for
each trial took about 2.5 hours. Overall, we explored
33 hyper-parameter configurations for CNN-type pre-
dictor. The search was performed with and without
the inclusion of graph embeddings in order to eval-
uate their impact. Optimized parameters include the
number of channels in CNN layers, the dimensional-
ity of dense layers, the dimensionality of prefix and
suffix embeddings, the size of the context window,
the learning rate. The best performance was achieved
when we used 40 CNN channels for both layers, 30
units for both dense layers, context size 5, prefix and
suffix embedding size 50, and learning rate 0.0001.

For each hyper-parameter set, we trained a model
several times to account for randomness in the initial-
ization. We selected hyper-parameters only based on
the best trial. Sometimes models would fail to con-
verge during one of the trials but successfully con-
verge during others.

3https://github.com/RaRe-Technologies/gensim
4https://github.com/dmlc/dgl

We tested four embedding approaches for text
CNN. The first one explores type prediction for
Python when embeddings only for suffixes and pre-
fixes are used. These embeddings are trained specifi-
cally for the task of type prediction. The performance
of this model likely demonstrates the dependence of
type prediction performance on variable names as
well as the present default values.

In the second model, we add FastText embed-
dings. This case serves as a valid baseline for our
model. FastText embeddings are pre-trained on a
large corpus of source code and can capture semantic
dependencies between variable names. Again, these
embeddings primarily demonstrate the importance of
variable names for type prediction. The FastText em-
beddings are frozen during the training.

In the third model, we used embeddings for pre-
fixes and suffixes as well as graph embeddings. This
model allows assessing how useful graph embeddings
are when compared with FastText embeddings. Graph
embeddings should encode more structural informa-
tion about source code. The graph embeddings are
frozen during the training.

The fourth model involves training a model that
utilizes prefix, suffix, FastText, and graph embed-
dings. This experiment would help us identify
whether FastText and graph-based embeddings are
complementary to each other. The FastText and graph
embeddings are frozen during the training. The re-
sults of these experiments are shown in Table 2.

From the results, we see that the FastText base-
line allows predicting a significant portion of the type
annotations correctly — F-score 68.2. When using
graph embeddings, the performance achieves 71.7.
This indicates that the information learned by graph
embeddings appears to be beneficial for type predic-
tion. Finally, when using both kinds of embeddings,
the F-score jumps 75.19. This suggests that FastText
and graph-based embeddings appear to contain com-
plementary information that is useful for predicting
variable types. The demonstrated results are similar
to ones reported in (Allamanis et al., 2020). For the
comparison of our results with their work, we refer
the reader to the next section.

Examples of predicted types can be found in Ap-
pendix.

6 DISCUSSION OF RESULTS

Our work is the most similar to (Allamanis et al.,
2020): structured representation of code and GNNs
are used for type prediction. However, we started
our experiments before this paper was published and
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Table 2: Best Python type prediction performance for mod-
els with different embeddings.

Embeddings Top-1 F-score

Prefix, Suffix 61.7
Prefix, Suffix, FastText 68.2
Prefix, Suffix, Graph 71.7

Prefix, Suffix, FastText, Graph 75.19

therefore we have a different dataset and different ar-
chitectures. Further, we will perform a comparison
with respect to the dataset, architecture, and perfor-
mance.

The dataset used by (Allamanis et al., 2020) is
an order of magnitude larger. Their dataset consists
of 592 packages (118 440 files), and ours only from
132 (67 486 files). Moreover, their dataset contains
252 470 annotated symbols (possibly with annotated
return types) whereas ours has only 4548 annotated
variables (no return type annotations). The huge dif-
ference comes from the fact that they perform addi-
tional type inference using pytype to make the dataset
larger. The ways the datasets were collected are dras-
tically different. They build their graph from AST
and the binary code produced by Python. Our ap-
proach involves indexing with an open-source tool
called Sourcetrail. Packages in our graph are inter-
dependent and connected to each other whereas (Al-
lamanis et al., 2020) analyze disassociated reposito-
ries. Their graph has less than dozen relationship
types while we preserve all AST types.

(Allamanis et al., 2020) perform a comparison
of their GNN approach with seq2seq and path-based
models. Out of those models that they have imple-
mented, we can compare ours with Seq2Class and
Graph2Class. Their Seq2Class model is based on
BiLSTM and processes the functions as sequences.
It achieves the performance of 64% which is simi-
lar to our model that used FastText embeddings. The
Graph2Class model uses Gated Graph Neural Net-
work for processing graph representations. The per-
formance of this model is 75% for common Python
types, which, again, is similar to our results. How-
ever, their GNN uses 8 layers, whereas ours uses only
three. The validity of this comparison is under ques-
tion because the sizes of the datasets and the number
of unique types in datasets are dramatically different.

It is very challenging to perform a fair perfor-
mance comparison. First, the dataset sizes are differ-
ent. The performance of their approach is provided
per epoch, which will be different when the datasets
of different sizes are used. Second, they train their
models from scratch for the sole task of type predic-
tion. We use pre-training of FastText embeddings and

GNN embeddings, both of which can be later reused
for other tasks. Third, the hardware is also very differ-
ent. They use a K80 GPU whereas we had to pre-train
FastText and GNN embeddings using CPU and only
used GTX 1050i for training text CNN. They report
that their model takes 86 seconds of GPU time for one
epoch. Our GNN model takes on the order of 200-300
seconds of CPU time per epoch. We have to account
for the fact that our GNN model performs pre-training
on three objectives and computationally more expen-
sive. However, this results in graph embeddings that
later can be reused. Our text CNN model takes 18s
per epoch to train on GPU. The proper comparison
of performance is challenging because the graph size,
function lengths, efficiency of the implementation -
all have to be taken into account. If we assume that
the GNN embeddings are pre-trained and shared be-
tween different tasks, then the CNN model alone is far
less complex and less computationally intensive than
a Gated Graph Neural Network used by (Allamanis
et al., 2020). Moreover, our model uses 3 message
passing turns for pre-training instead of 8 message
passing turns as in the other work. When dealing with
graphs, increasing the number of message-passings
results in an exponential increase of complexity.

Nevertheless, both works demonstrate that GNNs
are useful for the task of type annotation. Moreover,
we perform pre-training of graph embeddings that can
be also applied for other tasks such as variable misuse
detection or name suggestion (since these tasks rely
on names, and our pre-training objectives optimize for
correct names).

It is worth noting that in the field of Natural Lan-
guage Processing, text CNN and BiLSTM models
were demonstrated to have an inferior performance
compared to transformers. A comparison of more
modern GNN models (Busbridge et al., 2019) versus
transformers (Kanade et al., 2020; Feng et al., 2020)
should be performed.

7 CONCLUSION

We explored different types of embeddings for pre-
dicting types for Python variables. Our experiments
showed that type prediction depends a lot on the cur-
rent variable names because the prefix and suffix em-
beddings alone are great predictors for the target type
label. Models that rely on lexical embeddings (such
as FastText) show decent performance even with a
simple CNN model. Moreover, embeddings that were
designed to model source code structure allow achiev-
ing a greater performance than lexical embeddings.
Using both types of embeddings resulted in the best
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performance in our experiments. We demonstrated
that the achieved performance is similar to recent
work by other researchers while being less compu-
tationally intensive.
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APPENDIX

Source Code for Illustrations

The examples on the Figures 1 and 2 were generated
using a small example presented in the Listing 1.

Prediction Examples

Figure 5 demonstrates a prediction example where a
model misjudged the type of arguments self and re-
sults. In Figures 6 and 7 the results of successful type
prediction are demonstrated.

List of Indexed Packages

absl-py, boto, cymem, h5py, jsonpatch, mkl-fft,
openstacksdk, pbr, pycrypto, pytest, Scrapy, term-
color, Werkzeug, ansible, catalogue, debtcollector,
httplib2, jsonpointer, mkl-random, opt-einsum,
Pillow, PyDispatcher, pytest-runner, service-identity,
testtools, wrapt, appdirs, certifi, decorator, hyperlink,
jsonschema, mkl-service, osc-lib, plac, PyHamcrest,
python-dateutil, shade, thinc, zipp, asn1crypto,
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# ExampleModule2 . py
from ExampleModule1 import ExampleClass

i n s t a n c e = ExampleClass ( None )

def main ( ) :
p r i n t ( i n s t a n c e . method1 ( ) )

main ( )

# ExampleModule1 . py

c l a s s ExampleClass :
def i n i t ( s e l f , a rgument ) :

s e l f . f i e l d = argument

def method1 ( s e l f ) :
re turn s e l f . method2 ( )

def method2 ( s e l f ) :
v a r i a b l e 1 = 2
v a r i a b l e 2 = s t r ( 2 )
re turn v a r i a b l e 2

Listing 1: A simple class definition and use in Python.
Source code graph for this code is given in Figure 1.

Predicted

def _update_inplace( self FRAMEORSERIES , result STR , verify_is_copy BOOL = True) :

        # NOTE: This does *not* call __finalize__ and that's an explicit
        # decision that we may revisit in the future.

        self._reset_cache()
        self._clear_item_cache()
        self._data = getattr(result, "_data", result)
        self._maybe_update_cacher(verify_is_copy=verify_is_copy)

Ground Truth

def _update_inplace(self, result, verify_is_copy BOOL_T = True) :

        # NOTE: This does *not* call __finalize__ and that's an explicit
        # decision that we may revisit in the future.

        self._reset_cache()
        self._clear_item_cache()
        self._data = getattr(result, "_data", result)
        self._maybe_update_cacher(verify_is_copy=verify_is_copy)

Figure 5: Example of incorrect type prediction. Model pre-
dicts incorrect types for variables self and result.

Predicted

def __init__(self, string STR ) :
        if not isinstance(string, str):
            raise TypeError("IsEqualIgnoringCase requires string")
        self.original_string = string
        self.lowered_string = string.lower()

Ground Truth

def __init__(self, string STR ) :
        if not isinstance(string, str):
            raise TypeError("IsEqualIgnoringCase requires string")
        self.original_string = string
        self.lowered_string = string.lower()

Figure 6: Model correctly predicts type for function argu-
ment.

Predicted

def parse_config_file( path STR , final BOOL = True) :

    return options.parse_config_file(path, final=final)

Ground Truth

def parse_config_file( path STR , final BOOL = True) :

    return options.parse_config_file(path, final=final)

Figure 7: Model correctly predicts type for function argu-
ment.

cffi, Django, idna, Keras-Applications, mono-
tonic, os-client-config, pluggy, PyNaCl, python-
ironicclient, simplejson, tornado, zope.interface,
astor, chardet, dogpile.cache, importlib-metadata,
Keras-Preprocessing, more-itertools, oslo.i18n,
preshed, pyOpenSSL, python-mimeparse, six,
tqdm, atomicwrites, Click, extras, incremental,
keystoneauth1, msgpack, oslo.serialization, pret-
tytable, pyparsing, pytz, spacy, traceback2, attrs,
cliff, fabric, invoke, kiwisolver, munch, oslo.utils,
Protego, pyperclip, PyYAML, sqlparse, Twisted,
Automat, cmd2, fixtures, iso8601, linecache2,
murmurhash, os-service-types, protobuf, PyQt5,
queuelib, srsly, unittest2, Babel, constantly, Flask,
itsdangerous, lxml, netaddr, packaging, py, PyQt5-
sip, requests, stevedore, urllib3, bcrypt, cryptography,
gast, Jinja2, Markdown, netifaces, pandas, pyasn1,
PyQtWebEngine, requestsexceptions, tensorboard,
w3lib, blis, cssselect, google-pasta, jmespath,
MarkupSafe, numpy, paramiko, pyasn1-modules,
pyrsistent, scikit-learn, tensorflow, wasabi, bokeh,
cycler, grpcio, joblib, matplotlib, olefile, parsel,
pycparser, PySocks, scipy, tensorflow-estimator,
wcwidth
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