How to Identify the Infeasible Test Requirements using Static Analyse?

An Exploratory Study

Jodo Choma Neto!' @2 Allan Mori', Ricardo Ferreira Vilela!@®®, Thelma E. Colanzi>®°¢

Keywords:

Abstract:

and Simone R. S. de Souza'
LDepartment of Computer Systems, University of Sdo Paulo, Sio Carlos, Sdo Paulo, Brazil

2Department of Informatic, State University of Maringd, Maringd, Parand, Brazil

Software Testing, Structural Testing, Non-exacutability Problem.

Context: Software testing is an essential activity to ensure the quality of the software. However, the selection
and generation of test cases can be an expensive and hard task. A large number of infeasible test requirements
(e.g. infeasible paths) collaborate to increase the effort on test data generation, and it is not a trivial task to
identify them. Objective: To investigate and analyze an process of properties of infeasible test requirements
identification in a static way without inputs data through an exploratory study. Methodology: We gathered a
set of statistical properties to identify infeasible test requirements without the use of input data. We manually
verified the identification process using a benchmark with 19 Java programs. Results and conclusions: The
alternative process identified infeasible requirements without using input data and proved effective. This study
highlights the tester’s role in the process of identifying the infeasible elements and also the need to automate
this process because level of complexity in decision making.

1 INTRODUCTION

In the context of enterprise information systems, it is
essential that the system works well, preferably with-
out faults. Testing activity should be employed in a
systematic way to improve the software quality. De-
spite it is possible to automatize the software test-
ing activity, some parts involve a high interaction of
tester, for instance, to generate good test cases or to
analyse the executability of some code paths. In this
sense, solutions to facilitate the tester interaction is
mandatory in order to reduce the testing activity time
without compromise the quality of this activity.
Structural testing is a technique widely employed
to validate software. This technique examine the in-
ternal structure of the program and thus ensure that
functional requirements were tested. A limitation of
this technique is the high number of test requirements
to be covered and, consequently, the identification
of infeasible test requirements (Vergilio et al., 2006;
Yates and Malevris, 1989; Yates and Malevris, 1989;
Ngo and Tan, 2008; Delahaye et al., 2015). An ele-

https://orcid.org/0000-0001-6504-7932
@ https://orcid.org/0000-0001-5242-4938
¢ https://orcid.org/0000-0001-9761-1999

782

Neto, J., Mori, A., Vilela, R., Colanzi, T. and S. de Souza, S.

How to Identify the Infeasible Test Requirements using Static Analyse? An Exploratory Study.

DOI: 10.5220/0010497107820789

ment is infeasible if there is no input data that leads to
the execution of that element (Clarke, 1976; Frankl,
1987). The structural testing criteria use a coverage
measure to assess the evolution of the testing activity,
helping to decide if the software is being sufficiently
tested. As the test activity is performed, new test cases
are generated to execute required uncovered elements
and thereby improve the testing coverage. In this pro-
cess, a problem faced is the non-executable, which
refers to required elements (e.g. paths) that, due to
program semantics, are infeasible.

Most software has infeasible test requirements due
to the program semantics. These infeasible test re-
quirements interfere in the coverage evolution and
progress of the testing activity when generating in-
put data and the identification of them depends di-
rect on tester skills (Barhoush and Alsmadi, 2013;
Frankl, 1987; Bueno and Jino, 2000; Ngo and Tan,
2008; Yates and Malevris, 1989). This problem is
recognized as a limitation of test activity as it depends
on tester analysis and is an undecidable problem, so
completely automating its determination is a difficult
task (Clarke, 1976).

Some works have proposed approaches to face
this issue due to the impact of infeasible test re-
quirements on structural testing (Frankl, 1987; Bueno

In Proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS 2021) - Volume 1, pages 782-789

ISBN: 978-989-758-509-8

Copyright (© 2021 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

How to Identify the Infeasible Test Requirements using Static Analyse? An Exploratory Study

and Jino, 2000; Barhoush and Alsmadi, 2013). The
problem of non-executability presents itself in sev-
eral program categories. Treating and mitigating
the problem is not a trivial task and, for this rea-
son, different approaches have been proposed. Sym-
bolic execution, control-flow and data-flow analyses,
branch correlation, polymorphic call are examples of
used approached (Kundu et al., 2015; Papadakis and
Malevris, 2010; Wang et al., 2014; Du and Dong,
2011; Pathade and Khedker, 2018; Ngo and Tan,
2008). The studies aforementioned above relied on
input data to find infeasible elements, increasing the
cost and testing effort. Despite the diversity of pro-
posals, we found a relevant research gap related to
features in the source code to find infeasible test re-
quirements statically and with no input data.

Based on the literature and existing techniques, it
was observed whether there are features present in the
source code that enhances the generation of infeasible
test requirements. These features can be organized
into properties that can support the identification of
infeasible test requirements. The properties can be
separated into two groups. Group 1: properties where
the infeasible test requirements are revealed through
input data. Group 2: properties where the infeasible
test requirements are revealed without input data. We
did not find in the literature studies that analyze and/or
measure the identification of infeasible test require-
ments through properties from Group 2.

This paper presents a compilation of a catalog of
properties to support the identification of infeasible
test requirements without input data. We built the cat-
alog based on seven studies that discussed character-
istics in the source code that revealed the infeasible
behavior. The cataloging process considered prop-
erties that can logically and systematically applica-
ble without dependence on input data. Therefore, the
catalog is composed of five properties. [P1] Assign-
ment of a constant value to a variable (Bodik et al.,
1997; Vergilio et al., 1992). [P2] Opposite Predi-
cates - Equal Predicates (Vergilio et al., 2006; Ngo
and Tan, 2007). [P3] Correlation between conditional
statements (Ngo and Tan, 2008; Bodik et al., 1997).
[P4] Change of the definition of a variable during the
analyzed path (Ngo and Tan, 2007; Hedley and Hen-
nell, 1985) and [P5] Analyzes the existence of dead
code (Barhoush and Alsmadi, 2013).

Our work presents an alternative process to iden-
tify infeasible test requirements. We developed an
exploratory study to investigate the applicability of
the catalog of properties to identify code snippets that
lead to infeasible test requirements. The process uses
the catalog to support the identification of code re-
gions that are likely to generate infeasible required el-

ements. Unlike existing process, our study statically
identifies requirements before executing the code.

The exploratory study manually applied the prop-
erties cataloged in a set of 19 Java programs, available
in (Ziviani, 2010). These programs present data struc-
tures normally employed in information systems. The
suspicious code region were identified and marked
with flags. We based the application of the flag on
the guidelines formulated in the catalog. Later, based
on the regions identified in the source code, we cal-
culated the number of required elements that reaches
the suspicious region and which ones are, in fact, in-
feasible required elements.

The results indicate that the proposed process is
effective; however, we realize the importance of the
tester in the process of mitigating the problem of in-
feasible requirements, since the tester’s experience
implies a speed of decision making. Finally, this
study shows that an automated process that does not
use input data is promising in addressing the problem
of infeasible test requirements.

This paper is structured as follows: Section 2
presents how the properties were cataloged showing
examples of their application. Section 3 presents the
exploratory study, including its design, execution, and
main results. Section 4 presents external and internal
threats of our study. Section 5 summarizes the con-
clusions and make suggestions for future work.

2 CATALOG OF PROPERTIES
FOR LOCALIZATION OF THE
INFEASIBLE TEST
REQUIREMENTS

This section presents a catalog with properties for
identifying infeasible test requirements that do not use
input data. The cataloged properties were taken from
records in the literature and were organized based on
their logic and systematic identification. We discuss
the characteristics and functioning of the properties in
detail and explained them through the complimentary
examples.

P1: Assignment of a Constant Value to a Vari-
able (Hedley and Hennell, 1985; Vergilio et al.,
1992). A constant assigned to a variable may imply
a specific conditional direction causing an infeasible
test requirement.

Property P1 is based on the dependency relation-
ship that can exist between two instructions in the
code, which are: a constant assignment statement and
the conditional statement that uses the constant for

783

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

verification. The code in Listing 1 provides an ex-
ample of this property.

When an instruction denotes a constant in the code
(e.g., in line nl (final int x = 10;)), its value will be
store in memory at the compilation time, and it is not
possible for any change of definition is allowed during
code execution. Therefore, a statement of the condi-
tional type, e.g. IF or WHILE, that uses the constant x
(line n/ of Listing 1) in its comparison structure may
create an infeasible test requirement. Listing 1, con-
stant x has the value 10 assigned, and it will be fixed
to the constant at compilation time. Even if another
variable uses constant x, the fixed value will still ex-
ist.

/% nl «/ final int x = 10;

/% n... w/

/% n25 #*/ int age = X;

[# n... %=/ ...

/+ nl75 %/ if (name="Joao” && age >
18){

[+ nl76 =/ System.out. printl (7
True”);

/% nl77 =/ } else {

[+ nl78 «/ System.out. printl (7
False”);

/% nl79 =/ }

[n... =/ ...

/% n575 =/ if (x > 21 && height <
1.80){

/% n576 x/ System.out. printl (7
True”);

/% n577 =/ } else {

/% n578 #/ System.out. printl (7
False™) ;

/% n579 =/ }

[+ n... x/

/% nl1000 =/}
Listing 1: Example of Property P1.

We infer that after a few lines of code variable age
(line n25 of Listing 1) have being used in the condi-
tional instruction of line n/75, there will be no input
data that covers any requirement that uses instruction
set (n175, nl176), a branch or path, for example. Like-
wise, if the constant x is used on line n575, there will
be no input data that covers any requirement that uses
instruction set (n575, n576), a branch or path, for ex-
ample.
P2: Opposite Predicates - Equal Predi-
cates (Vergilio et al., 2006; Ngo and Tan, 2007). A
dependency between opposite or equal predicates in
one path may lead to infeasible paths because of the
conditional assessment of one predicate interfering
with the evaluation of the following predicate.
Property P2 is based on the dependency relation-
ship that can exist between two instructions of the
conditional type, exclusively the instruction of the IF

784

type. The dependency can exist both for equal instruc-
tions (if a < b) and (if a < b) and for opposite instruc-
tions (if a < b) and (if a > b). Listing 2 provides an
example of this property.

/% nl %/

/% n... %=/ ...

/% nl75 =/ if (a > b){

/% nl76 =/ System.out. println ("A
")

/% nl77 =/ } else{

/+ nl178 x/ System.out. println (7!
A7)

/% nl79 =/ }

[n... %=/ ...

/% n275 =/ if (a > b){

/% n276 =/ System.out. println ("B
")

/% n277 =/ } else{

[+ n278 x/ System.out. println (7!
B”);

/% n279 =/ }

I« n... %/ ...

/% n375 =/ if (¢ > d){

/% n376 =/ System.out. println (7C
")

/% n377 =/ } else{

/% n378 x/ System.out. println (7!
C7)s

/% n379 x/ }

[n... %[...

/% n475 =/ if (c < d){

/% n476 =/ System.out. println ("D
")

/% nd77 =/ } else{

/+ n478 =/ System.out. println (!
D7)

/% n479 =/ }

/% n %/

[nlOOO x/}
Listing 2: Example of Property P2.

We can associate the dependency relation denoted by
P2 with a truth table of the logical expression XOR
and XNOR (Table 1). In this table, there are always
two equal lines and two exclusive lines.

Listing 2 present a dependency between two equal
conditional statements in lines n/75 and n275. On
the basis of these two conditional, four different paths
were derived to be covered. This denotes the four pos-
sibilities of the XOR truth table, where two of them
are infeasible. The possible cases are those that the
condition is false or true, for both predicates. The
possible cases are those that the condition is false or
true, for both predicates. 0 I and I 0, requirements
are infeasible. Any test requirement that is in the fol-
lowing paths: nl75, 176, ..., n277, n278 and nl78,
nl79, ..., n275, n276, is infeasible. For the case of
opposite instructions, n375 and n475, the problem is
the same, but, unlike the previous example, the truth

How to Identify the Infeasible Test Requirements using Static Analyse? An Exploratory Study

table is XNOR. Therefore, any instruction that con-
templates the exclusive cases will be feasible, since
the cases of equal predicate will be infeasible. After-
ward, any test requirement that traverses the following
paths: n375, n376, ..., n475, n476 and n378, n379, ...,
n478, n479, is infeasible.

Table 1: Truth Table.

XOR 0|01 | XNOR |O|O|O
XOR|0|1|0|XNOR O |11
XOR|1|0|0|XNOR | 1|01
XOR |1 |11 |XNOR |1|1]60

P3: Correlation between Conditional State-
ments (Ngo and Tan, 2008; Bodik et al., 1997).
Correlation between conditional statements along the
way can cause infeasible test requirements. Property
P3 is similar to P2, however, we deal with the exist-
ing dependency between a conditional of type IF and
type WHILE.

/% nl w0 L.

/% n2 #*/ b = 100;

[+ n... %/ ...

/% nl175 =/ while (a > b && short=="
true”){

/% nl76 =/ System.out.println (”
while”) ;

/% n... =/

/% n276 =/ if (a < 100){

[+ n277 =/ System . out.
println (7A”);

/% n... %/

/% n300 =/ }

/% n... #/

/% 11000 #/ }

Listing 3: Example of Property P3.

Property P3 is based on the dependency relationship
that can exist between two instructions in the code,
which are: a conditional instruction of type /F and a
loop instruction of type WHILE. The purpose of this
property is to identify code snippets with great poten-
tial to present an infeasible test requirement. If the
predicate in the /F statement is equal to or opposite to
the predicate in the WHILE statement, it means that,
as in the case of P2, the behavior of the paths will be
according to the XOR or XNOR truth table. Listing 3
provide an example for our discussion.

Lines nl175 and n276 of Listing 3 are dependent
because they use the same variable a. If the variable
a does not change definition until the line n276, then
there will be at least one infeasible test requirement,
the one in which the conditions are opposite. In the
cases of IF presenting an ELSE there will be infea-

sible test requirements when the conditions are the
equals.

P4: Change of Definition of a Variable During the
Analyzed Path (Ngo and Tan, 2007). Changing the
definition of a variable can generate an infeasible path
in the presence of loops.

/% nl w0 L.

/% n2 #/ int 1 = 11;

/+ nl175 «/ while (a > b && short=="
true”){

/% nl76 =/ System.out. println (”
while”);

[n... =/

[+ n276 x/ if (buyTool){

[+ n277 =/ System. out.
println ("A”);

[n... =/

/% n300 =/ } else{

/% n301 =/ i = —1;

/% n302 =/ }

[n... =/

/+ n476 x/ if (a < 100 && i > 10)
{

[+ n4T77 x/ System . out.
println ("A”);

/% n... =/

/% n500 =/ }

/% n501 =/ }

/% n... =/

/% nl000 =/ }
Listing 4: Example of Property P4.

Property P4 was based on the dependency relation-
ship that can exist between variables (use and def-
inition), conditional structures, and loop structures.
This property have a set of feature that must be ful-
filled: (i) the variable must be defined before or dur-
ing the repetition loop; (ii) the variable must be used
inside the repetition loop by an instruction of the con-
ditional type and; (iii) the variable must have a defi-
nition changed within the repetition loop. These fea-
tures can help to reveal code snippets that are prone
to infeasible test requirements. However, due to the
number of features this property deals with, it is not
possible to state that the identified instructions reveal
an infeasible test requirement. In this context, the
tester’s expertise is needs to be considered to analyze
whether the occurrence of P4 is in fact an infeasible
test requirement or not.

P4 can be illustrated by analyzing, in Listing 4,
the lines n2 (variable definition), n175 (loop), n301
(change of variable definition) and n476 (condi-
tional). In this case, due to the change of definition
of variable i in line n301 before the conditional in-
struction in line n476, it will not be possible to cover
the positive condition of line n477, thus there being
an infeasible test requirement.

785

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

P5: Analyzes the Existence of Dead Code (Bar-
housh and Alsmadi, 2013). Logically inconsistent
predicates related to dead codes cause an infeasible
test requirement due to no possibility of execution of
the code path. Property P5 was based on the identifi-
cation of snippets of the code that are not used during
the execution of the code and must be tested. All ex-
isting classes in the program must be tested, if there is
a class not instantiated, then it will not be possible to
cover any type of test criteria. In this way, this prop-
erty searches for class-type instructions that are not
called at any time in the entire program.

An example of a dead code was presented in List-
ing 5 and 6, Cfc class (Listing 5) was not used in the
main program (Listing 6). Cfc class is a disconnected
snippet of the main program, and, in reason of this
scenario, do not allow test input to test the snippet of
the code. Then, any requirement existing on lines n/
to n500 will be infeasible.

/+ nl w0 L.
/% n2 x/ public class Cfc {
[+ n... =/ ...
/% n500 =/ }
Listing 5: Example of Property P5. Class Cfc.

/+ nl %/ .

/% n2 x/ public class Main {

[n... %=/ ...

/+ nl55 x/ public static void

main(final String[] args) {

/% n... %/

/% n... %/ OtherClass other =
new OtherClass () ;

/% n... %/

/+ nl1000 =/ }
Listing 6: Example of Property P5. Main code.

3 EXPLORATORY STUDY
DESIGN

Several areas use exploratory studies to analyze and
improve concepts, methods, and techniques (Baral
and Offutt, 2020; Zhu et al., 2018; Rodrigues and
Brancher, 2019). Our major objective in this study
was to analyze the application process of the Proper-
ties for localization of the infeasible test requirements
and measure their effectiveness. For this, we aim to
answer a research question:

RQ1: Are the cataloged properties useful for the
identification of infeasible test requirements?

For this, we conducted an exploratory study with
its design inspired by empirical studies in several do-
mains (e.g., mutation testing, testing robotic systems,
and educational games) (Baral and Offutt, 2020; Koc

786

et al.,, 2019; Rodrigues and Brancher, 2019). The
study followed a strategy based on the concepts of
empirical software, and we collected quantitative and
qualitative data (Shull et al., 2001; Baral and Of-
futt, 2020; Koc et al., 2019; Rodrigues and Brancher,
2019). As aresult, the experimental study was defined
as follows.

3.1 Data-set

Java programs were taken from (Ziviani, 2010). The
set brought together 19 programs that were developed
for academic purposes and theoretically they do not
have faults. These programs were selected because
they are commonly used in the literature and their data
structure are normally present in enterprise software
systems. Moreover, these programs present charac-
teristics found in real programs, such as definition and
use of variables, changes in variable definition, repeti-
tion structures, decision structures, classes and meth-
ods. The source codes of the programs and a brief
description of their features are present on GitHub .
In our study, we used all-use testing crite-
rion (Rapps and Weyuker, 1985). This criterion re-
quires that all associations between definition and use
of a variable be exercised by at least one test case.
Each association to be covered is formed by the def-
inition of a variable and its consequent use. A defi-
nition occurs when a value is assigned to a variable;
the use occurs when the variable value is employed
in computation or an expression. The criterion was
applied with the support of Baduino testing tool 2.

3.2 Procedure

Data-set programs were analyzed looking for the sat-
isfaction of properties, taking into account the prop-
erties catalog. When the properties appear in the pro-
gram, their localization is marked with a flag that
identifies which properties are presented into the pro-
gram (e.g., P1, P2). The programs were executed in
Baduino testing tool, and the list of required elements
from the all-uses testing criterion was obtained. In
the next step, the obtained required elements were an-
alyzed to verify which one is affected by the flags in-
serted into programs. If the required element is af-
fected, it is marked as probably infeasible.

Thttps://github.com/JoaoChomariceis2021
Zhttps://github.com/saeg/baduino

How to Identify the Infeasible Test Requirements using Static Analyse? An Exploratory Study

3.3 Data Collection

Quantitatively, we calculate the number of lines of the
codes and the required elements affected by the prop-
erties. Qualitatively, we analyzed the process of iden-
tifying the properties and how the properties can sup-
port the identification of infeasible test requirements.

3.4 Results

Table 2 includes some features of the results in ques-
tion. The first column shows the analyzed program
name, while the number of lines of the code of each
program in the second column. The columns P1 to
PS5 indicate the number of code lines affected by each
property. The column Affected LOCs shows the sum
of the lines of the code affected by the properties.
The column Test Requirements displays the number
of test requirements generated by the all-use testing
criterion. Finally, the last two columns indicate the
number of test requirements affected by the properties
and the number of identified infeasible requirements.
The infeasible test requirements were identified by the
authors, based on structure of each program.

The data-set and the results are organized in a
repository in GitHub 3, promoting the replication of
this study.

We applied the properties through the syntactic
and semantic analysis of the programs to identify fea-
tures that represent these properties. In the first step,
we map the code snippets according to each investi-
gated property. It is important to note that, in most
cases, at least two lines of code were affected when a
property was identified. The program analysis phase
was the one that most demanded the tester’s skills and
time.

Through the syntactic and semantic analysis of
code, we come across code snippets that present prop-
erties characteristics that cold cause an infeasible test
requirement but up not result in an infeasible test re-
quirement. This characteristic makes the testing ac-
tivity more challenging. Although the localization of
the property can be performed automatically, the de-
termination of infeasible test requirements is based on
the tester’s skills.

Determining an infeasible test requirement is an
error-prone and costly task, even for a tester with ex-
ceptional expertise. Also, an incorrect determination
of an infeasible test requirement may not guarantee
that a fault can be identified in the program under test.
In view of this, we believe that the use of recommen-
dation and optimization algorithms can be useful to

3https://github.com/JoaoChoma/iceis2021

decrease the tester’s effort and prevent infeasible test
requirements from being incorrectly classified.

We noted that there are not tools for automation of
infeasible test requirements identification without the
use of test input in the literature. Therefore, we rec-
ognize the need to automate and systematize the pro-
cess of identifying infeasible test requirements. An
automated approach contributes to reduce the tester’s
work and decreasing the cost of generating input data.
This reduction is because the infeasible test require-
ments will no longer be included in structural test-
ing. Despite reducing the tester’s work, the automa-
tion will not replace him/her as there are properties
that need the tester’s contribution to increasing their
effectiveness. For this reason, we realized that includ-
ing human perception in the automation process will
be beneficial to the treatment of the infeasible test re-
quirements.

Finally, we can answer the research question that
motivated this experimental study, Are the cataloged
properties useful for the identification of infeasible
test requirements?. On the basis of the results of the
exploratory study, we believe that the application pro-
cess of the cataloged properties was effective. Once
test requirements infeasible was found, even in pro-
grams constantly investigated in the literature.

4 THREATS TO VALIDITY

We recognize the following external and internal
threats that could have affected the validity of our re-
sults.

A possible threat to external validity refers to the
generalization of the results because our data-set sam-
ples were not selected under any rigor, they were se-
lected due to their low level of complexity and be-
cause they are a popular reference. Therefore, we
cannot generalize the results of this exploratory study,
as it is not possible to guarantee that the set of 19
programs used are sufficiently representative and free
from bias. Moreover, in this study, programs written
in Java were used, so we cannot guarantee the gener-
alization of results for other programming languages.
Although the evidence shows that the cataloged prop-
erties were modeled in a generic way, to apply them
in different contexts, new studies regarding other sce-
narios must be conducted to mitigate this threat. An-
other threat to external validity refers to the size of the
programs used in the experiment. The programs are
not as complex as real programs, however, as we are
in an initial and exploratory study, we understand that
the complexity of the data-set can be increased as the
process matures.

787

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

Table 2: Data collected during the exploratory study.

Affected Test Affected Infeasible

Programs LOC|P1|P2|P3 P4 P5 LOCs |Requirements | Requirements | Requirements
MaxMinl 13/]0[{0|0|4]0 4 38 19 0
MaxMin2 14 (0]0]0|4]0 4 38 19 1
MaxMin3 25 |2]|6(0]10]|0 18 100 15 2
MergeSort 23 12(0(2]4]0 8 83 36 0
Sort 71 (21212 118]0 24 244 65 0
Fibonacci 11 {2]0]{0]|4]0 6 16 12 0
StackArray 25 (41010810 12 21 10 0
QueueArray 27 12]0({0]4]0 6 29 10 0
HeapSort Max 25 |0|4|10]8]|0 22 57 26 0
HeapSort Max2 | 62 | 0| 4 |[10/10| O 24 145 57 0
HeapSortMinlnd | 59 |0 | 0|2 |12] 0 14 165 56 0
BinaryTree 88 | 0|16/ 0 14| 0 30 159 72 24
Hashing 77 |14]10{ 4|4 |0 32 103 7 0
DepthFirstSearch | 42 |10 2 | 0| 8 | 0 20 77 16 6
BreadthFirstSearch | 57 |12 2 |0 | 4|0 18 105 31 3
Graph 85 | 2]14(21]40|0 48 179 79 9
PrimAlg 45 |6 |10|0]6|0 12 94 11 0
ExactMatch 54 |4]10]6/(10]|0 20 210 68 0
AproximateMatch | 28 |2 |0 |0 | 8|0 10 85 8 0

The threats to internal validity include the con-
struction of the property catalog, to mitigate the
threat, the construction of the catalog was inspired
on consolidated studies published on relevant bases.
Another threat to internal validity is in the developed
process used to carry out the exploratory study, to
mitigate this threat, we inspired on empirical studies
that explored concepts (Baral and Offutt, 2020; Koc
etal.,2019; Zhu et al., 2018; Rodrigues and Brancher,
2019) and we base our exploratory process on the
study (Shull et al., 2001) that defines guidelines for
the development of empirical studies.

S CONCLUSIONS

The problem of non-executability presents itself in
several program categories and mitigating the prob-
lem is not a trivial task and, for this reason, differ-
ent approaches have been proposed. The exploratory
study showed that is possible to identify infeasible
test requirements without using test data. The pro-
posed process reduces the cost of generating test data
allowing to statically mitigate the problem of non-
executability. To develop this process, we designed
a exploratory study to measure the applicability of a
catalog of properties surveyed in the literature. As it
was an preliminary study, the results are promising
and will inspire new directions.

788

In general, properties presented in the literature
can be classified into two major groups, the group of
properties that uses input data to identify infeasible el-
ements and those that do not need. As the properties
that uses input data are handled by the automatic gen-
eration of test data through brute force, we identified
that there was a need to improve the process to iden-
tify infeasible test requirements. Nevertheless, we re-
alized the need to assess the effectiveness of proper-
ties that do not use input data to identify infeasible
requirements.

The contributions of this study are the process and
the catalog of properties for the identification of test
requirements. The process is static and does not use
input data. Besides, we reveal that the properties are
effective in identifying snippets in the source code
where there is a problem of infeasible requirements,
and; we understand that the application process can
be automated due to its systematization. Also, we
suggest optimization and recommendation algorithms
aid the tester in deciding whether a required element
achieved by an infeasible property is an infeasible el-
ement.

Furthermore, this study highlighted other research
questions that have not yet been analyzed: Can the
properties be applied in other program languages?
Can the properties be applied to other programming
paradigms? (e.g. concurrent programs) Is the au-
tomation process trivial? How much will the process
of identifying infeasible requirements reduce the cost

How to Identify the Infeasible Test Requirements using Static Analyse? An Exploratory Study

of generating test data? How much automation pro-
cess will reduce the testator’s workload?

We propose the following future studies with tar-
get to mature research: Design an alternative ap-
proach for application of properties to identify infea-
sible test requirements without input data. Implemen-
tation of the automation proposal. Measure the num-
ber of eliminated infeasible test requirements during
the automated process. Other proposals will certainly
emerge along this path. Therefore, this exploratory
study gave us the initial impetus to develop a new ap-
proach to address the problem of non-executability.

ACKNOWLEDGEMENTS

The authors acknowledge the Sao Paulo Research
Funding, FAPESP, for the financial support under pro-
cesses 2018/25744-6 and 2019/06937-0.

REFERENCES

Baral, K. and Offutt, J. (2020). An empirical analysis of
blind tests. In 2020 IEEE 13th International Confer-
ence on Software Testing, Validation and Verification
(ICST), pages 254-262.

Barhoush, B. and Alsmadi, I. (2013). Infeasible paths de-
tection using static analysis. [jj.Acm.Org, 1I(Iii).
Bodik, R., Gupta, R., and Soffa, M. L. (1997). Refining data
flow information using infeasible paths. ACM SIG-

SOFT Software Engineering Notes, 22(6):361-377.

Bueno, P. M. S. and Jino, M. (2000). Identification of po-
tentially infeasible program paths by monitoring the
search for test data. Proceedings ASE 2000: 15th
IEEE International Conference on Automated Soft-
ware Engineering, pages 209-218.

Clarke, L. A. (1976). A system to generate test data and
symbolically execute programs. [EEE Transactions
on software engineering, (3):215-222.

Delahaye, M., Botella, B., and Gotlieb, A. (2015). Infea-
sible path generalization in dynamic symbolic execu-
tion. Information and Software Technology, 58:403—
418.

Du, Q. and Dong, X. (2011). An improved algorithm for
basis path testing. BMEI 2011 - Proceedings 2011 In-
ternational Conference on Business Management and
Electronic Information, 3:175-178.

Frankl, P. G. (1987). The Use of Data Flow Information for
the Selection and Evaluation of Software Test Data.
PhD thesis, New York, NY, USA. AAI8801533.

Hedley, D. and Hennell, M. A. (1985). The causes and ef-
fects of infeasible paths in computer programs. pages
259-266.

Koc, U., Wei, S., Foster, J. S., Carpuat, M., and Porter, A. A.
(2019). An empirical assessment of machine learning
approaches for triaging reports of a java static analysis

tool. In 2019 12th IEEE Conference on Software Test-
ing, Validation and Verification (ICST), pages 288—
299.

Kundu, D., Sarma, M., and Samanta, D. (2015). A
uml model-based approach to detect infeasible paths.
Journal of Systems and Software, 107:71-92.

Ngo, M. N. and Tan, H. B. K. (2007). Detecting large
number of infeasible paths through recognizing their
patterns. Proceedings of the the 6th joint meeting
of the European software engineering conference and
the ACM SIGSOFT symposium on The foundations of
software engineering - ESEC-FSE "07, page 215.

Ngo, M. N. and Tan, H. B. K. (2008). Heuristics-based
infeasible path detection for dynamic test data gen-
eration. Information and Software Technology, 50(7-
8):641-655.

Papadakis, M. and Malevris, N. (2010). A symbolic execu-
tion tool based on the elimination of infeasible paths.
Proceedings - 5th International Conference on Soft-
ware Engineering Advances, ICSEA 2010, pages 435—
440.

Pathade, K. and Khedker, U. P. (2018). Computing par-
tially path-sensitive mfp solutions in data flow analy-
ses. Proceedings of the 27th International Conference
on Compiler Construction, pages 37-47.

Rapps, S. and Weyuker, E. J. (1985). Selecting software test
data using data flow information. IEEE transactions
on software engineering, (4):367-375.

Rodrigues, L. A. L. and Brancher, J. D. (2019). Playing an
educational game featuring procedural content gener-
ation: which attributes impact players’ curiosity?

Shull, F.,, Carver, J., Bldg, A., and Travassos, G. (2001). An
empirical methodology for introducing software pro-
cesses. ACM SIGSOFT Software Engineering Notes,
26.

Vergilio, S. R., Maldonado, J. C., and Jino, M. (1992).
Non-executable paths: Characterization, prediction
and determination to support program testing - in por-
tuguese.

Vergilio, S. R., Maldonado, J. C., and Jino, M. (2006). In-
feasible paths in the context of data flow based testing
criteria: Identification, classification and prediction.
Journal of the Brazilian Computer Society, 12(1):73—
88.

Wang, Y., Xing, Y., and Zhang, X. (2014). A method
of path feasibility judgment based on symbolic exe-
cution and range analysis. [International Journal of
Future Generation Communication and Networking,
7(3):205-212.

Yates, D. and Malevris, N. (1989). Reducing the effects
of infeasible paths in branch testing. ACM SIGSOFT
Software Engineering Notes, 14(8):48-54.

Zhu, Q., Panichella, A., and Zaidman, A. (2018). An inves-
tigation of compression techniques to speed up muta-
tion testing. In 2018 IEEE 11th International Confer-
ence on Software Testing, Verification and Validation
(ICST), pages 274-284.

Ziviani, N. (2010). Algorithms Project with Implementa-
tions in JAVA and C ++ (in Portuguese). Cengage
Learning Edi¢des Ltda.

789

