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Abstract: Software Defined Networking (SDN) devices (e.g., switches) route traffic according to the configured flow
rules, and thus a set of virtual paths gets implemented in the data plane. We propose a novel preventive ap-
proach for verifying that no misconfigurations (e.g., infinite loops), can occur given the requested set of paths.
Such verification is essential since when configuring a set of data paths, other not requested and undesired
paths (including loops) may be unintentionally configured. We show that for some cases the requested set of
paths cannot be implemented without adding such undesired behavior, i.e., only a superset of the requested
set can be implemented. We present a verification technique for detecting such issues of potential misconfig-
urations and estimate the complexity of the proposed method. Finally, we propose a technique for debugging
and repairing a set of paths in such a way that the corrected set does not induce undesired paths into the data
plane, if the latter is possible.

1 INTRODUCTION

Traditional networks have currently evolved largely
due to the incorporation of software engineering ap-
proaches. One of the technologies that contributes
to this evolution is the Software Defined Network-
ing (SDN) paradigm, that allows implementing var-
ious data paths employing common resources. When
using SDN technology, the network entities are man-
aged through the controller that works independently
of the network equipment and is ‘responsible’ for in-
stalling the necessary rules to the forwarding devices
(e.g., switches) (Sezer et al., 2013). As a result,
SDN provides agile controllability and observability
by separating the control and data planes. SDN is a
new technology entering novel domains (for exam-
ple, the IoT domain) (Mohammed et al., 2020) with
novel applications actively being developed. To guar-
antee the requested network is configured correctly,
SDN components and compositions need to be thor-
oughly tested and verified. For example, one can be
interested in verifying the absence of loops and packet
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loss, or the security and access control issues. Such
data plane verification has been largely investigated,
especially in the past decade.

Related Work. Recent works devoted to verifi-
cation and testing of an SDN data plane and related
data paths can be intuitively split into several groups.
The first group focuses on the application of for-
mal verification and model checking approaches to
data plane verification or forwarding devices in isola-
tion; in this case, classical networks (not necessarily
SDN) with related access control, security and other
network properties are considered. Correspondingly,
these techniques mostly differ in the underlying for-
malism utilized for describing the specified behavior
and related properties. Boolean functions and their
satisfiability, symbolic model checking / execution
and SMT solving (Mai et al., 2011), (Canini et al.,
2012), (Dobrescu and Argyraki, 2013) as well as al-
gebra of sets (Boufkhad et al., 2016) have been con-
sidered for checking for example, reachability issues,
absence of loops, etc. The problem can also be solved
via corresponding static analysis when the network
device is implemented in the programming language
(for example, P4) (Stoenescu et al., 2018).

Approaches of the second group tend to focus on
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active testing of a data plane via corresponding traffic
generation and monitoring of the forwarding behav-
ior of switches of interest (Zeng et al., 2012), (Fayaz
et al., 2016), (David et al., 2014). In automatic traffic
generation, the packets / flows to be sent through the
switches are generated at hosts in an active mode such
that specific network failures can be captured when
monitoring the data plane.

The third group of techniques relies on model
based testing. Existing model based testing tech-
niques either consider a given SDN component, such
as for example an SDN enabled switch (Yao et al.,
2014) or an SDN framework as a whole can be tested
(Berriri et al., 2018), (Yevtushenko et al., 2018).

Contribution. The existing approaches often rely
on a current network configuration, i.e., the rules have
been already pushed to the switches while in this pa-
per, we propose a novel preventive model-based ap-
proach for verifying programmable network proper-
ties. Indeed, given the set of paths to be implemented
on the data plane for connecting appropriate hosts, if
this set is not consistent or can lead to potential loops
then its implementation should be avoided (the soft-
ware should not be reconfigured as per the request).
Let P be a set of paths which should be implemented
on the data plane for packets of a given traffic type.
The set P should be ‘inspected’ before its actual im-
plementation, checking whether it is possible to pre-
cisely implement the set P on the data plane or there
will be additional (unintended) paths implemented?
In the latter case, it can happen that there are imple-
mented paths which are not edge simple and thus, a
loop for packets of a given traffic type can occur. In
this paper, we show that given a traffic type which
is defined by the packet headers (packets with the
same traffic type follow the same data paths) and a set
of (requested) paths P, the implementation of P can
induce new paths appearing on the data plane, and
moreover, if all the paths of P are edge simple (no
loops should occur) it does not guarantee the absence
of potential cycles on the data plane. We establish
the criterion for the absence of those that relies on the
property of the set P to be arc closed (Section 3). This
criterion and the preventive verification method on its
basis form the main contributions of the paper. Ex-
perimental results built over well-known SDN com-
ponents (the Onos controller and Open vSwitches)
confirm the necessity of such preventive verification;
otherwise, in the implemented network, the packets
generated at a certain host can go into infinite loops,
i.e., can simply flood the network. These results can
be used when developing any SDN application or
when engineering SDN controllers, in order to im-
plement safe SDN controllers. Another contribution

of the paper is a technique for an automatic debug-
ging and repairing of a set P of paths that did not pass
the verification in such a way, that the resulting set
of paths becomes arc closed (and thus safe to imple-
ment). For both, verification and debugging / repair-
ing approaches, their related complexity is discussed.

This paper is a short version and thus, it omits sev-
eral fundamental and experimental details, the inter-
ested reader can refer to of (Burdonov et al., 2019).

The structure of the paper is as follows. Section
2 presents the necessary background. Section 3 dis-
cusses the possibility of inducing undesired paths on
the data plane that can cause, for example, infinite cy-
cles. The proposed preventive verification approach
for the set of paths P, together with the criterion for
the absence of undesired links and the related com-
plexity analysis is presented in Section 4. Automatic
debugging and repairing of the set of paths for which
the verification failed, is proposed in Section 5. Sec-
tion 6 concludes the paper.

2 PRELIMINARIES

SDN is a networking paradigm that consists in sep-
arating the control and data plane layers (OpenNet-
workingFoundation, 2012); this paradigm relies in
software components: controller, forwarding devices,
and applications. With a centralized SDN controller,
SDN applications can reconfigure the SDN data plane
(the forwarding devices). SDN-enabled forwarding
devices steer the incoming network packets based on
so-called flow rules installed (through the controller)
by the SDN applications. A flow rule consists of three
main (functional) parts: a packet matching part, an
action part and a location / priority part. The match-
ing part describes the values which a received network
packet should have for a given rule to be applied. The
action part states the required operations to perform
to the matched network packets, while the location /
priority part controls the hierarchy of the rules using
tables and priorities. We focus on the resulting im-
plemented data paths (produced by the rules installed
at the forwarding devices); more precisely, we focus
on the analysis of such data paths and the potentially
unintended additional data paths resulting from a con-
figuration.

The SDN resource topology (data plane) or re-
source network connectivity topology (RNCT) is rep-
resented as an undirected graph G = (V,E) where
E ⊆ {{a,b}|a ∈ V & b ∈ V} without multiple edges
and loops. The set V = H ∪ S, H ∩ S = /0, of nodes
represents network devices such as hosts (the set H)
and switches (the set S). Edges of the graph (the set
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E) represent connections (links) between two nodes
in G and each link can transmit packets in both di-
rections. Correspondingly, we write (a,b) if a packet
is transmitted from a to b and (b,a) when it is trans-
mitted from b to a. We reasonably assume that each
host is connected exactly with one switch and that G
is connected; otherwise, each (connected) component
can be treated as a separate network.

Data paths1 are sets of paths which carry pack-
ets, i.e., those paths can have appropriate parameters
according to which the packets are then forwarded;
in other words, each packet belongs to an appropri-
ate traffic type. When a forwarding rule is installed
on an SDN-enabled switch, a data link from and to
other node (-s) adjacent to the switch is created, i.e.,
a packet accepted from adjacent nodes is forwarded
to a (corresponding) set of ports that are connected to
appropriate ports of other nodes.

A host can generate packets that are forwarded to
a single switch connected with this host. A switch
can only forward packets; moreover, we assume that
a switch does not modify the packet header, i.e.,
the packet’s traffic type and payload are not changed
through the network. A switch can forward a packet
to several ports, and the set of ports depends on the
traffic type as well as on the input port from which
it arrives. Every node a of the graph G (a host or a
switch) has a set of ports which can be input as well as
output and each such port corresponds to some edge
at the node a and vice versa, each edge at the node a
is associated with a corresponding port. Thus, there is
one-to-one correspondence between edges at the node
a and the set of its ports, i.e., there is one-to-one cor-
respondence between the set of ports of a and the set
of neighbor nodes of a, since G has no multiple edges
nor node (self) loops. Therefore, without loss of gen-
erality, we can use a neighbor node instead of the port
number.

A path is a sequence of neighboring nodes of G,
i.e., a path is a sequence2 of nodes such that there is
an edge between neighboring sequence nodes. A path
π = x1 · . . . · xn starts at the node x1, is finished at the
node xn, has length n− 1, and passes via an arc (xi,
xi+1) for i ∈ {1, . . . ,n− 1}. The path is edge simple
if it passes via each arc at most one time; the path is
node simple if all its nodes are pairwise different. A
path is complete if its head and tail nodes are hosts
and there are no hosts as intermediate nodes.

An SDN application configures sets of paths
(through the controller) which should transport cor-
responding packets, i.e., those paths can have ap-
propriate parameters (which define their traffic type)

1They are directed, differently from the topology itself.
2We use ‘·’ for denoting the sequence concatenation.

according to which the packets are then forwarded
(OpenNetworkingFoundation, 2015). The flow rules
of a switch can be written as a mapping of input ports
into subsets of output ports. If the subset of output
ports is empty then the switch will ‘drop’ a packet
that arrived at a corresponding input port.

We assume that an SDN application configures the
switch tables in such a way that each rule determines
the set of output ports depending on the traffic type
and an input port. As G has no multiple edges it
implies that a rule determines the set of neighboring
nodes where a packet has to be forwarded. We also
assume that all the switches have in their tables only
the information sent by the controller, i.e., no default
rules or external interfaces are considered. For the
sake of simplicity and in fact, without loss of general-
ity for our purpose, we assume that all the rules have
the same priority. For packets belonging to the same
traffic type, we can consider every rule as a triple (a,
s,b) ∈ V × S×V where a and b are neighbors of s.
This rule says that getting a packet with the corre-
sponding traffic type from neighbor a, switch s should
send it to the neighbor b. If there are several rules
which differ only in the neighbor b, then switch s per-
forms cloning, i.e., the incoming packet is transmitted
to several neighbors. The set of rules of all switches
is called configuration (for the given traffic type).

3 IMPLEMENTING THE GIVEN
SET OF COMPLETE PATHS

The set of complete paths that should be implemented
on the data plane is based on a user request or prede-
fined configuration (by a given application). Corre-
spondingly, before setting a switch configuration ac-
cording to a set of paths, it would be useful to verify
whether a given set of paths can be eventually imple-
mented. Note that hereafter we assume that the re-
quested set of paths P does not contradict the RNCT
G. A trivial check that P forms a sub-graph of G can
be performed beforehand, if necessary.

When implementing a set of paths P, three options
are possible. 1) P can be implemented as it is and in
this case, the edge simplicity should be verified for
the set P. 2) P cannot be implemented without im-
plementing unintended paths, i.e., a superset of P is
implemented. In this case, the condition of the edge
simplicity should be checked for this superset. If the
minimal superset of P that can exist on the data plane
has cycling paths, then the set P cannot be imple-
mented (packet loops may flood the network) in the
given data plane. 3) P cannot be implemented but the
minimal superset of P that can be implemented satis-
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fies the edge simplicity property. We further discuss
how given a set P of paths, a corresponding switch
configuration is specified and given a switch configu-
ration, which paths are induced by this configuration.

Complete paths induce switch rules. When im-
plementing rules for a complete path (for the given
traffic type) α · a · b · c ·β where a,b,c ∈ V,α,β ∈ V ∗,
we need a rule (a,b,c), i.e., a switch b once getting a
packet belonging to this traffic type from the neighbor
a has to send it to the neighbor c. Formally, the set P
of paths induces the set P↓ of rules:
∀a ∈V,b ∈ S,c ∈V,α ∈V ∗,β ∈V ∗

α · a · b · c ·β ∈ P implies that there is a rule (a,b,
c) ∈ P↓.

Switch rules induce paths. The rule (a,b,c) in-
duces a path a · b · c of length 2. If there is a path
α · x · y and there is a rule (x,y,z) then there is a path
α ·x ·y ·z. Formally, a switch configuration P↓ induces
the set of complete paths, written P↓↑:
∀b j ∈V
(a1,b1,b2),(b1,b2,b3), . . . ,(bn−1,bn,a2) ∈ P ↓

where a1 and a2 are the only hosts, there is a path
a1 ·b1 ·b2 . . . ·bn−1 ·bn ·a2 in P↓↑.

By definition, the set P↓↑ has only complete paths
and the following statement holds.

Proposition 1. Given a switch b, for each rule (a,b,
c) ∈ P↓ of this switch, there is a path α · a · b · c ·β ∈
P↓↑ for some α and β.

We now establish the conditions when two paths
α ·x ·y ·β and α′ ·x ·y ·β′ in the set P↓↑ induce another
two paths in this set.

Proposition 2. Given a switch configuration P↓, P↓
induces the set of complete paths P↓↑ with the follow-
ing features:
∀α,α′,β,β′ ∈V ∗

α · x · y ·β ∈ P↓↑ & α′ · x · y ·β′ ∈ P↓↑ =⇒ α · x ·
y ·β′ ∈ P↓↑.

According to Proposition 2, the set of data paths
on the data plane induced by the given set P is exactly
P↓↑, and in fact, it is the actual set of paths that gets
implemented when requesting to implement the set P.

The set P of complete paths is closed with respect
to a given arc (x,y) if for each two paths α · x · y · β
and α′ ·x ·y ·β′ of the set P which have a common arc
(x,y), paths α · x · y · β′ and α′ · x · y · β are also in P.
The set P of paths is arc closed if P is closed w.r.t.
each arc over the set E. Given a set P of complete
paths, the arc closure of P is the smallest arc closed
set of complete paths that contains P. According to
the definition of an arc closed set and Proposition 2,
the following statement can be established.

Proposition 3. Given a set P of complete paths, the
set P↓↑ is the arc closure of P.

Corollary 1. The set P↓↑ coincides with P if and only
if P is arc closed.

The above corollary establishes necessary and suf-
ficient conditions for the precise implementation of
set P on the data plane (without additional ‘undesired’
paths).
Corollary 2. If P has only edge simple paths and is
arc closed then P↓↑ has only edge simple paths.

If P is not arc closed then P cannot be imple-
mented on the data plane up to the equality relation.
Moreover, sometimes P cannot be implemented on
the data plane at all as its arc closure has some cy-
cling paths. Figure 1 shows an example when the set
P has two edge simple paths α and β from initial host
h0 to the final host h1 (left of the figure), the set of
rules induced by this set is shown at the bottom and
an induced path γ of the set P↓↑ is illustrated at the
right. The path is not edge simple, and this example
illustrates that cycles can occur even when paths of
the set P are edge simple.

Similar to P, all the paths of the set P↓↑ are com-
plete paths. However, if P↓↑ is a proper superset of P
then we have to check whether all the paths of the set
P↓↑ are edge simple. If it is the case then the set P can
be implemented on the data plane up to the set P↓↑
(i.e., with additional unspecified paths from P↓↑ \P).
If it is not the case then the set P should be modified
and this issue is discussed in Section 5.

From a practical point of view, perhaps the most
interesting application is when some set P↓↑ of paths
is already implemented on the data plane and a new
request arrives; either a request A to add new paths
(P∪A) or a request R to remove paths (P\R) to / from
the original set. In this case, the same check should
be performed on ((P∪A)\R)↓↑ before implementing
/ removing paths, guaranteeing the implementability
of the augmented set of paths. Algorithm 1 sum-
marizes the necessary verification steps (Section 4)
and returns the corresponding verdict about the im-
plementability of a given set of paths.

Practical / Experimental Motivation. In order to
verify if our (fundamental) findings can occur in real
SDN framework implementations, an experimental
evaluation was performed. Experiments were carried
in a virtual machine running GNU/Linux CentOS 7.6
with 8 vCPUs and 16GB of RAM. The Onos (Berde
et al., 2014) SDN controller (version 4.2.8) was in-
stalled via a Docker (Merkel, 2014) container. To em-
ulate the SDN data plane, the Containernet (Peuster
et al., 2018) was also installed through a Docker con-
tainer.

The paths shown in Figure 1 were configured in-
dependently and successful communication from h0
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s1 s2 s3 h1

h0 s4 s5 s6

Paths to be
implemented:

α

β

An induced
path:

γ

s1 s2 s3 h1

h0 s4 s5 s6

P ={α = h0 · s1 · s2 · s3 · s4 · s5 · s6 ·h1,β = h0 · s1 · s4 · s5 · s2 · s3 · s6 ·h1}
P↓={(h0,s1,s2),(s1,s2,s3),(s2,s3,s4),(s3,s4,s5),(s4,s5,s6),(s5,s6,h1),

(h0,s1,s4),(s1,s4,s5),(s4,s5,s2),(s5,s2,s3),(s2,s3,s6),(s3,s6,h1)}
γ =h0 · s1 · s2 · s3 · s4 · s5 · s2 · s3 · s4 · s5 · . . . · s2 · s3 · s4 · s5 · s6 ·h1 ∈ P↓↑

Figure 1: Induced (cyclic) paths’ occurrence.

to h1 was discovered, i.e., there was no problem while
configuring both paths independently. When both
paths were configured simultaneously, the loop was
effectively produced. A single packet sent from h0
to h1 produced infinitely many of them. In Figure 2,
we show the packet dump (using the well-known util-
ity tcpdump) as seen by h1. Note that, the packet
sent is an ICMP echo request (using the ping utility),
and the sequence ID is always 1, as the single packet
gets copied infinitely many times. When continuously
sending the packets the network rapidly degraded un-
til the whole infrastructure became unusable. These
experiments confirm the importance of our findings.
Indeed, it is important to provide SDN frameworks
with verification tools before rules are pushed to the
switches. One of the procedures for such verification
is given in Algorithm 1.

4 CHECKING THE ARC
CLOSURE

In this section, we propose an algorithm for checking
if a given set of paths P induces unintended paths, i.e.,
a superset of P is implemented (when P is intended);
likewise, we discuss how to detect potential cycles
induced by the implementation of P. Algorithm 1
shows the verification steps necessary to check the arc
closure of a given set of paths. Note that the algo-
rithm always terminates due to the finite calculations
in nested loops, independently if P↓↑ contains a path
with a loop or not.

Proposition 4. Algorithm 1 returns the verdict True
if and only if P is arc closed.

Consider the example in Figure 1; the graph D(P)
is shown in Figure 3. By direct inspection one can as-
sure that there is a cycle (s2,s3),(s3,s4),(s4,s5),(s5,
s2) in the graph and thus, the number of paths from
the vertex source to the vertex sink is infinite, and
therefore, the set P is not arc closed.

Algorithm 1: Verifying if the set of paths P is arc closed.

Input : A set P of edge simple complete paths
Output: A verdict whether the set P is arc closed
Derive a subset Q = {q1, . . . ,qk} of P that contains

all the paths of length greater than two; we
denote as k j the length of a path q j,
j ∈ {1, . . . ,k};

Derive a graph D(P) =< D,E > for the set Q
where the vertices of D(P) are pairs of vertices of
the paths in Q;

D = {source,sink}; E = /0;
j = 0;
while j < k do

j++; D = D∪{(q j(1),q j(2)),(q j(k j),
q j(k j +1))};

E = E ∪{(source,(q j(1),q j(2)),(q j(k j),
q j(k j +1)),sink)};

m = 2;
while m < k j +1 do

D = D∪{(q j(m),q j(m+1))};
E = E ∪{((q j(m−1),q j(m)),(q j(m),

q j(m+1)))};

m++;

if the number of paths in D(P) from source to sink
is greater than k then

return False;

return True;

Proposition 5. The complexity of checking the ab-
sence of cycles for a given set of paths P is O(L+
|V |3) where |V | is the number of nodes in G and L is
the sum of the lengths of the paths in P.

The complexity of constructing the graph D(P) is
O(L) where L is the sum of the lengths of the paths
from P. In order to check for (infinite) loops, the ab-
sence of oriented cycles in the graph D(P) needs to
be checked, which is done through a topological sort
(e.g., using depth first search (DFS) (Cormen et al.,
2009)). DFS-algorithm can also be used for comput-
ing the number of paths from the source to the sink
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Figure 2: Packet capture showing an infinite loop in the experimental infrastructure.

source

(h0,s1) (s1,s2) (s2,s3)

(s1,s4)

(s3,s4)

(s3,s6)

(s5,s2)

(s4,s5) (s6,h1)

sink

(s5,s6)

Figure 3: Graph D(P) for verifying the set of paths P.

node when there are no cycles. The running time of
the depth first search algorithm on the graph D(P) is
evaluated as O(m), where m is the number of arcs of
the graph D(P), m≤ |V |3.

5 DEBUGGING AND REPAIRING
A SET OF PATHS

We discuss some possibilities of correcting / modi-
fying the set of paths P whenever this set is not arc
closed. One first needs to identify the reason, i.e., a
subset of paths that destroy the corresponding prop-
erty, and the set of paths P should be either augmented
with new paths or on the contrary, certain paths should
be deleted from the set P. In both ways, the result-
ing subset becomes arc closed and thus, can be im-
plemented on the data plane without any additional
links. We refer to this process as automatic P debug-
ging and repairing. Such repairing process can have
various objectives, such as for example: minimization
of the number of paths to be excluded / included from
/ to P, maximization of a host to host connectivity in
the resulting set of paths, minimization of the num-
ber of changes in the paths of the set, minimization of
virtual links on the data plane, etc. We furthermore
discuss some of the possibilities listed above and pro-
pose various debugging and repairing strategies.

For the following subsections, we use the follow-
ing notations. Given a set P of complete paths, let
P = {p1, . . . , pk}, i.e., k = |P|, and ki = |pi|− 1, i.e.,
ki is the length of pi for all i ∈ {1, . . . ,k}.

5.1 Minimizing the Set of Paths to be
Excluded / Included from / to P

The problems we address in this subsection are the
following: how to delete / add a minimal number of
paths from / to the set P, such that the resulting subset
/ superset becomes arc closed.

We say that two different paths pi and p j of P are
incompatible if there exists a common arc, i.e., there
exist u ∈ {1, . . . ,ki− 1} and v ∈ {1, . . . ,k j− 1} such
that pi(u) = p j(v) & pi(u+ 1) = p j(v+ 1) while a
path pi(1) · . . . · pi(u) · p j(v+ 1) · . . . · p j(k j + 1) or a
path p j(1) · . . . · p j(v) · pi(u+1) · . . . · pi(ki +1) is not
in P. In this case, one can also say that pi and p j are
incompatible w.r.t. the common arc (a,b) = (pi(u),
pi(u+ 1)). If pi and p j of P are not incompatible,
then they are compatible.

The problem of deleting a minimal number of
paths can be reduced to the well known maximum in-
dependent set problem. For that matter, we propose
to derive an undirected graph G(P) in the following
way: the nodes of the graph correspond to the paths
of the set P. There is an arc between pi and p j, i 6= j,
in the graph G(P) if the paths pi and p j are incom-
patible. Given an undirected graph G(P), a subset of
nodes which are not pairwise connected is an inde-
pendent subset of nodes.

Proposition 6. An independent subset of nodes of
graph G(P) is an arc closed set.

Corollary 3. A subset of P is arc closed if and only if
it is an independent subset of the graph G(P).

Therefore, the problem of minimizing the set of
paths to be excluded from P is reduced to the deriva-
tion of a maximal independent subset of nodes in
G(P). Note that this problem is known to be NP-hard,
and thus the repairing approach can be more complex
than that one presented for the verification itself (Sec-
tion 4).

As an example, consider again the paths of the set
P in Figure 1. Note that the paths from P possess the
necessary feature, i.e., they have a common arc (s2,
s3) with the above property and the set P has no path
h0 ·s1 ·s2 ·s3 ·s4 ·s5 ·s2 ·s3 ·s4 ·s5 ·s6 ·h1. Therefore, the
corresponding vertices in G(P) are connected, i.e., P
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is not arc closed and only the singletons {α} or {β}
are arc closed.

For deriving a minimal superset of P that is arc
closed, the graph D(P) derived in the previous section
can be used. If the graph returned by Algorithm 1 has
no cycles then the set of all paths from the source node
to the sink node is the smallest superset of P that is arc
closed.

Proposition 7. 1. If all the paths from the source
node to the sink node in D(P) are edge simple then
the set of all paths is the smallest superset of P that is
arc closed. 2. If there is a path from the source node
to the sink node in D(P) that is not edge simple then
there is no finite superset of P that is arc closed.

Note that in case 2, it is not possible to add paths
to the given set P; the set P can be only reduced as it is
discussed at the beginning of the subsection. Indeed,
it is exactly the case for the set P in Figure 1.

5.2 Minimizing the Number of Arc
Changes in the Set P

Consider a set P of edge simple complete paths that is
not arc closed, the question arises: can the paths of the
set be minimally corrected (w.r.t. the number of arcs)
in order to get an arc closed set preserving the head
and tail hosts of each path? We propose a simple way
for modifying a single edge or a sub-path of a path
using edges of the RNCT graph G which were not
utilized in the paths of P (the set N in Algorithm 2).

Proposition 8. Given a set P of edge-simple complete
paths, if Algorithm 2 returns a set Q = {p1, p′2, . . . ,
p′k} then this set is arc closed and for each j ∈ {1,
. . . ,k}, the head and tail vertices of p′j coincide with
those of p j.

Note that the set of repaired paths returned by
Algorithm 2 has only edge simple paths and is arc
closed, since every time only unused links are utilized
for the replacement. In this paper, we consider only
simple heuristics for repairing a path and the result
significantly depends on the order of the paths in P.
Additional research is needed to propose more rig-
orous conditions for repairing a set of initial paths.
Those conditions can be related to the link load dis-
tribution and thus, could re-direct some packets, for
example, for traffic optimization.

As an example, consider again the paths in Fig-
ure 1, assuming that each pair of switches is con-
nected in the RNCT G. These paths have a common
arc (s4,s5) that can be replaced by a path s4 · s6 · s5.
After this modification the paths have a common arc
(s2,s3) that can be replaced by a path s2 · s4 · s3. Thus,

Algorithm 2: Repairing via modifying an edge or a
sub-path preserving the head and tail hosts of the path.

Input : A set P of edge-simple complete paths
that is not arc closed, a non-empty set N
of edges between switches of the RNCT
graph G which are not used in the paths
of the set P

Output: A verdict False if paths cannot be
modified, or a modified arc closed set P
where the head and tail vertices of each
modified path p′j coincide with those of
the initial path p j of P

Q = {p1};
j = 2;
while j ≤ |P| do

p′j = p j;
l = 1;
while l ≤ |Q| do

p = ql ;
if paths p and p′j are incompatible w.r.t. P

then
if N = /0 then

return False;

else
while the paths p and p′j are

incompatible w.r.t. the common
arc (s1,s2) do

if the paths p and p′j have a
common sub-path
s3 ·α · s1 · s2 ·β · s4 and
(s3,s4) is in N then

Derive p′j by replacing a
sub-path
s3 ·α · s1 · s2 ·β · s4 in p′j
by a sub-path s3 · s4;

Delete (s3,s4) from the
set N;

else if there is a switch s3
such that
(s1,s3),(s3,s2) ∈ N then

Derive p′j by replacing a
sub-path s1 · s2 in p by
a sub-path s1 · s3 · s2;

Delete (s1,s3) and
(s3,s2) from the set N;

else
return False;

l ++;

Add p′j to the set Q;
j++;

return an arc closed set Q = {p1, p′2, . . . , p′k}

we obtain an arc closed set of paths P′ = {h0 · s1 · s2 ·
s3 · s4 · s5 · s6 ·h1,h0 · s1 · s4 · s6 · s5 · s2 · s4 · s3 · s6 ·h1}.
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6 CONCLUSION

In this paper, we discussed implementability issues
for a given set of paths on an SDN data plane. We
showed that for a fixed traffic type, whenever the re-
quested set contains only edge simple paths, more
(unintended) paths can still be implemented on the
data plane, and some of those can create cycles, i.e.,
infinite packet loops, and we established the neces-
sary and sufficient conditions for a set of requested
paths to be implemented without any undesired con-
nections. Our preventive verification approach is use-
ful for guaranteeing that new (requested) and pre-
existing paths form valid configurations. The esti-
mated (polynomial w.r.t. the total paths’ length) com-
plexity of the proposed approach makes possible its
applicability for large scale virtual networks. For a
set of paths that cannot be implemented directly on
the data plane, we proposed debugging and repairing
approaches for correcting the initial request, such that
the resulting set becomes arc closed. As future work,
we plan to extend the proposed approaches abstract-
ing from a given traffic type as well as considering
other kinds of specifications for user requests.
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