
Container Allocation and Deallocation Traceability using Docker Swarm
with Consortium Hyperledger Blockchain

Marco A. Marques1 a, Charles C. Miers1 b and Marcos A. Simplicio Jr.2 c

1Graduate Program in Applied Computing (PPGCAP), Santa Catarina State University (UDESC), Brazil
2Laboratory of Computer Networks and Architecture (LARC), University of São Paulo (USP), Brazil

Keywords: Docker, Blockchain, Monitoring, Container, Traceability.

Abstract: Container-based virtualization enables the dynamic allocation of computational resources, thus address-
ing needs like scalability and fault tolerance. However, this added flexibility brought by containerization
comes with a drawback: it makes system monitoring more challenging due to the large flow of calls and
(de)allocations. In this article, we discuss how recording these operations in a blockchain-based data struc-
ture can facilitate auditing of employed resources, as well as analyses involving the chronology of performed
operations. In addition, the use of a blockchain distributes the credibility of record integrity among providers,
end-users, and developers of the container-based solution.

1 INTRODUCTION

A computing architecture based on microservices fa-
cilitates the construction of high performance and
scalable applications, since they can be fragmented
into independent parts for development, versioning,
and provisioning (Jamshidi et al., 2018). Contain-
ers are commonly considered the standard of mi-
croservices in the cloud, in particular, due to their
speed, ease of allocation, scalable management, and
resilience (Newman, 2015). Such benefits led to the
development of many container orchestration plat-
forms. Designed to manage the deployment of con-
tainerized applications in large-scale agglomerates,
such platforms can execute hundreds of thousands of
jobs on different machines (Rodriguez and Buyya,
2019). As such, they became a core technology for
enabling the on-demand offering of computing infras-
tructure, platforms, and applications by modern cloud
providers.

In this context, providing tools for monitoring and
auditing the execution of the virtual environment is
an important requirement. After all, such tools allow
all actors involved in the cloud’s operation to moni-
tor and optimize the execution of applications, track
failures, configure billing modules, manage changes,

a https://orcid.org/0000-0001-5800-8927
b https://orcid.org/0000-0002-1976-0478
c https://orcid.org/0000-0001-5227-7165

among other activities (Jiménez et al., 2015). In gen-
eral, cloud computing providers supply a monitoring
system for all participants. Nevertheless, each actor
can implement an independent monitoring service if
desired (Dawadi et al., 2017). This possibility brings
more autonomy to the actors, who can then customize
the monitoring tools to their needs and gain further in-
sight on the usage of resources by their applications.
However, multiple independent monitoring systems
can result in disagreements among actors regarding
the information collected by their tools, resulting in
different views for the same scenario and difficul-
ties in later attempts of mapping events from one log
into another. Centralized monitoring solutions, on the
other hand, limit customization, besides depending
directly on the trust placed on the system manager for
protecting the integrity of the collected data.

To address this issue, this work proposes and im-
plements a solution called event2ledger. This tool is
executed by each actor of the system for (1) collect-
ing container life cycle events using the Docker API,
(2) generating and signing the corresponding trans-
actions, and (3) sending them to a Hyperledger Fab-
ric consortium blockchain. The blockchain is main-
tained by the system actors, so any of them can val-
idate that transactions are issued by authorized par-
ties, that the application’s chaincode functions are sat-
isfied, and storing events after reaching a consensus
on their order. A proof-of-concept implementation is
described for enabling the monitoring of containers’

288
Marques, M., Miers, C. and Simplicio Jr., M.
Container Allocation and Deallocation Traceability using Docker Swarm with Consortium Hyperledger Blockchain.
DOI: 10.5220/0010493302880295
In Proceedings of the 11th International Conference on Cloud Computing and Services Science (CLOSER 2021), pages 288-295
ISBN: 978-989-758-510-4
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



execution time via their life cycle events. We em-
phasize, though, that the same tool can be used for
collecting other events available in the Docker envi-
ronment.

The main contributions of this paper are: (i) the
design of a solution that collects container events in
a non-intrusive manner, sending them to Hyperledger
Fabric blockchain through signed transactions; (ii) the
implementation of a Hyperledger Fabric blockchain
to verify authorizations, reach a consensus and store
the collected transactions in a distributed ledger; and
(iii) the construction of an environment that facilitates
auditing and tracking anomalous (possibly malicious)
behavior or disagreements about container events data
collected. We emphasize, however, that the proposed
solution is not intended to prevent the action of mali-
cious agents (e.g., who omit or provide bogus infor-
mation to the blockchain). Instead, the goal of us-
ing a blockchain in this scenario is to create a verifi-
able append-only log (Laurie, 2014), thus facilitating
the tracking of conflicts and discrepancies among data
collected by the event2ledger instances in the environ-
ment.

The rest of this work is organized as follows. Sec-
tion 2 delimits the problem to be addressed, as well
as the functional and non-functional requirements as-
sumed for the scenario. Section 3 details the proposed
solution, showing how it can address the problem of
traceability in containerized environments. Section 4
presents the related work. Section 5 describes a proof-
of-concept implementation of the solution. Section 6
presents the test performed and the results obtained,
which are then discussed in Section 6.1. Section 7
concludes the discussion and suggests ideas for future
works.

2 PROBLEM DEFINITION AND
REQUIREMENTS

In cloud computing systems, monitoring tools collect
data about the execution of the virtual environment
and then provide a set of relevant variables for anal-
ysis by administrators and/or automated mechanisms.
As discussed in Section 1, one issue in this scenario
is that the deployment of multiple monitoring tools
by different actors may result in conflicts between the
data collected, whereas centralized monitoring hin-
ders integrity checking in case of failures and limits
the customization capabilities. Addressing these con-
flicts efficiently and effectively is the main goal of this
work.

In this article, we are particularly interested in
a container-based virtualization environment, which

provides a higher degree of dynamism than regular
virtual machines. To build a testbed where such con-
flicts among monitoring tools are observable and a so-
lution can be deployed, one needs the following:

• A virtualization environment with a suitable con-
tainerization platform (e.g., Docker) and corre-
sponding orchestration tool (e.g., Docker Swarm).

• A multitude of nodes, each of which playing the
role of either provider, developer, or user, thus en-
suring decentralization of the monitoring tasks,

• Access to a repository for data storage, in which
the life cycle events collected by the solution will
be stored.

• Access to the orchestration API, with permission
to execute, suspend and terminate containers, to
generate the life cycle events, as well as collect
data on generated events.

In such an environment, developers deploy their ap-
plications in the form of multiple containers that are
instantiated on-demand, according to the user’s needs.
Monitoring the container’s execution is, thus, im-
portant to all involved actors: providers, develop-
ers, and users. Hence, any solution for this purpose
must be reliable and auditable, delivering optimiza-
tion and pricing capabilities in compliance with the
established service level agreement (SLA). To accom-
plish this goal, we define the following functional
(FR) and non-functional (NFR) requirements.

• FR1: Collect all creation, suspension, return, and
completion events related to containers in the vir-
tualization environment.

• FR2: Format and send the events according to the
storage repository;

• FR3: Promote consensus among the actors in-
volved in the process; and

• FR4: Store the validated records in a distributed
and tamper-protected repository accessible to all
actors involved in the process, thus allowing data
to be audited.

• NFR1: Adjust the volume available for storage of
collected events according to the size of the envi-
ronment and to the number of containers running;

• NFR2: Collect events of all containers in the en-
vironment; and

• NFR3: Limit the overhead introduced by the solu-
tion, so the environment’s performance is not no-
ticeably affected.

Container Allocation and Deallocation Traceability using Docker Swarm with Consortium Hyperledger Blockchain

289



3 PROPOSED SOLUTION

The details of container management may be quite
complex and depend on the specific orchestration
technology employed. Usually, the container life cy-
cle can be summarized as shown in Fig. 1.

Figure 1: Docker container life cycle.

Typically, the Docker container life cycle com-
prises four main states: stopped, running, paused, and
deleted. The transition between these states can be
triggered via a command-line interface or by an or-
chestrator. The Docker daemon is then responsible
for performing the action. Each object managed by
Docker (e.g., containers, volumes, networks, and im-
ages) has a set of events that can be collected and
stored. As the proposed solution aims to monitor the
container execution time, it focuses on events related
to state changes, namely: create, connect, start, kill,
die and destroy. However, it is possible to customize
the solution to collect other types of events, if needed.
Figure 2 provides a general overview of the proposed
solution, showing how it interacts with Docker and
the Hyperledger Fabric blockchain.

In Figure 2, the Provider hosts the container vir-
tualization environment. In this environment, de-
velopers implement and offer their applications to
Users, who execute them on demand, generating
events (1). Every time a container has its life cycle
state changed, event2ledger collects the correspond-
ing event via Docker API (2). Then, a digitally signed
transaction containing relevant information about the
event is generated and sent to the blockchain while
the action is performed (3). The Hyperledger Fab-
ric blockchain first verifies if the transaction is cor-
rectly signed by the collector. Then, the applicable
chaincode function is invoked and executed by the
endorsing nodes. After execution, the transaction is
signed and sent back to the client. When the client
has enough signatures, the transaction is added to the
blockchain via a Raft consensus algorithm, a Crash
Fault Tolerant (CFT) implementation that supports
failure in up to one-third of its nodes. Transactions
are ordered and delivered to all actors (4), each of
which validates the transaction and stores the results
in its own ledger (5). All transactions submitted to

Application

Docker

event2ledger
Events collector and transaction generator

Hyperledger Fabric blockchain

Docker Worker

Peer

Docker Worker

Peer

Docker Worker

Peer

Conteiner events generation

Docker Worker Docker Worker
Application

Docker Worker Docker Worker

Proposed solution

Provider Client Developer

1

2

3

1

Ledger

4 4

4

5

5 5

Created by Developer and stored on provider's cloud environment

Ledger Ledger

Figure 2: Proposed solution.

the blockchain are stored even if the validation phase
fails; in this latter case, the transaction is labeled as
failed and does not update the ledger’s global state.

4 RELATED WORKS

To identify related works, we used the expression
[(docker OR container) AND monitoring] in the fol-
lowing scientific search engines: Google Scholar,
ACM Digital Library, IEEE Xplore, and Springer
Link. Table 1 summarizes the inclusion and exclusion
criteria adopted for the articles found in this manner.

Table 1: Inclusion and exclusion criteria.
Inclusion criteria Exclusion criteria
Articles written in English ”Gray” literature
Articles, abstracts, book chapters, and technical reports Publication date prior to 2012
Container monitoring in Docker environment

When works that are extensions of another were
identified, only the most recent version was consid-
ered. We note that the “gray” literature exclusion cri-
teria refer to publications (e.g., blogs and magazines)
that are not peer-reviewed and, hence, usually lack
scientific rigor. Also, as a second exclusion criterion,
we used the date of publication of 2012 because the
Docker technology was first released into the public
domain in 2013 (Hykes, 2013), and since then be-
came one of the most successful container architec-
tures available.

After conducting the searches and applying the fil-

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

290



Table 2: Related papers vs. Functional requirements.

(Jo et al., 2018) (Dawadi et al., 2017) (Ciuffoletti, 2015) (Oliveira et al., 2017) (Pourmajidi and Mi-
ranskyy, 2018) (Collectd, 2020) (cAdvisor, 2020)

FR1 Yes Yes No No No Yes Yes
FR2 Yes Yes Yes Yes Yes Yes Yes
FR3 No No No No Yes No No
FR4 No No No Yes Yes Yes Yes

ters defined as inclusion and exclusion criteria, 20001
results were obtained. To identify the relevance to the
proposed theme, the resulting works were analyzed,
initially, by title and keywords. Those considered rel-
evant were then selected and their abstract was ana-
lyzed. After this stage, 10 papers were selected for
reading, in which 5 papers were related to the subject:

• Light-Weight Service Lifecycle Management For
Edge Devices In I-IoT Domain (Jo et al., 2018): a
solution for managing the lifecycle of containers
using the Docker framework.

• CoMMoN: The Real-Time Container and Mi-
gration Monitoring as a Service in the Cloud
(Dawadi et al., 2017): a tool for collecting and
storing metrics and events, in addition to migrat-
ing Docker containers.

• Automated deployment of a microservice-based
monitoring infrastructure (Ciuffoletti, 2015): a
microservice monitoring structure ”as a service”.

• A Cloud-native Monitoring and Analytics Frame-
work (Oliveira et al., 2017): a structure for col-
lecting and storing container metrics in a dis-
tributed repository.

• Logchain: Blockchain-assisted Log Storage
(Pourmajidi and Miranskyy, 2018): uses a
blockchain-based logging system, aiming to en-
sure data immutability.

Table 2 presents a comparison between the functional
requirements of the proposed solution and the re-
lated papers identified. FR1 is attended by (Jo et al.,
2018) and (Dawadi et al., 2017), and by the Col-
lectd and cAdvisor tools, enabling the container life
cycle events to be collected in a non-intrusive way.
FR2, in turn, is fulfilled by all identified papers. FR3
requires verification if there is a consensus among
the actors involved in the process or if conflicts ex-
ist. The solution proposed in (Pourmajidi and Miran-
skyy, 2018) is the only one, among identified pro-
posals, that tackles this requirement. Specifically,
that work assumes that data blocks are inserted into
a Blockchain using a consensus mechanism based on
Proof of Work (PoW), so different participants can
check data consistency before registration takes place.
Finally, FR4 specifies that the collected data must be
stored in a distributed repository. The works proposed
by (Jo et al., 2018; ?) rely on centralized storage

of collected data and, thus, do not meet this require-
ment. Meanwhile, the scope of the proposal submit-
ted by (Ciuffoletti, 2015) does not cover the storage
of collected data. In contrast, the work presented
in (Oliveira et al., 2017) uses a distributed database,
whereas (Pourmajidi and Miranskyy, 2018) employs
a blockchain-based model, meeting the requirement.
Finally, CollectD and cAdvisor natively support data
exportation to various repository models, including
distributed ones, besides allowing the development of
new integration plugins.

In summary, the analysis of related works indi-
cates that none of them fully satisfies our FRs. Ac-
tually, the solution presented in (Pourmajidi and Mi-
ranskyy, 2018) is the one that comes closest, but it was
designed for the monitoring of computational clouds
in general, so it does not take care of the fine granu-
larity and high dynamism involved in the monitoring
of container events. The open-source tools cAdvisor
and Collectd, on the other hand, are particularly inter-
esting for their capability of storing data in distributed
repositories, but none of them give on-the-fly visibil-
ity to conflicts in the collected events (e.g., via a con-
sensus mechanism).

5 IMPLEMENTATION

The proposed solution has two components: (1)
event2ledger, responsible for collecting events and
generating transactions, and (2) a blockchain Hyper-
ledger Fabric, whose nodes belong to the actors in-
volved in the microservices ecosystem. Both com-
ponents are implemented in a Docker container envi-
ronment, over a GNU/Linux Ubuntu desktop 20.04
distribution, running on a virtual machine with 4
vCPU and 8Gb RAM. The event2ledger module is
then built as a containerized application, using a script
file (Dockerfile) to ensure that all dependencies are al-
ready installed. The Hyperledger Fabric blockchain,
in turn, demands the installation of a set of prereq-
uisites detailed in the official documentation (Hy-
perledger.Docs, 2021). Subsections 5.1 and 5.2 de-
scribe the event2ledger and the Hyperledger Fabric
blockchain, respectively.

Container Allocation and Deallocation Traceability using Docker Swarm with Consortium Hyperledger Blockchain

291



5.1 Event2ledger

The event2ledger is a containerized application devel-
oped in node.js, that can be implemented as a service
in the Docker Swarm, and have three functions: it
collects all the container lifecycle events in a non-
intrusive way, generates the transactions containing
the event collected, and send them to the blockchain
API. It can also be implemented directly on Docker,
through the docker run command. The app.js file con-
tains the code necessary to connects to the Docker
API, receive the events, generate and send the trans-
actions to Hyperledger Fabric API. To perform these
functions, it is necessary to provide the IP addresses
of Docker API and Hyperledger API and also the
JSON Web Token (JWT) used to connect to the Hy-
perledger API and send the transactions.

After the container creation and execution, the
event2ledger application connects to Docker API end-
point ”/events”, which streams in real-time the con-
tainer events generated. Then, for every event, it cre-
ates an array containing the received data and sends
it to the blockchain in JSON format, through a POST
request to Hyperledger Fabric API. The request head
must contain a valid JSON Web Token (JWT) token,
previously generated and associated with one of the
actors’ private keys, to be allowed to send the trans-
action. Its body, in turn, contains the chaincode func-
tion to be called, the endorsing peers’ addresses, the
chaincode name, and the event data.

5.2 Hyperledger Fabric Blockchain

The Hyperledger Fabric blockchain implemented in
this paper is a consortium model, composed of three
participants. Each participant has one peer, that is
responsible for endorsing, validate, and store the re-
ceived transactions. The blockchain has, also, three
orderer peers, responsible for the transaction order-
ing and distribution, and for reaching the consensus
through the Raft mechanism.

The Hyperledger Fabric transaction flow has three
steps: execute, order, and validate. The process starts
with a transaction proposal that triggers a specific
chaincode function. In this model, the proposal is sent
to some peers, and the client needs to collect a given
number of endorsements before sending the transac-
tion to the orderer nodes. The endorsing process con-
sists of the execute phase, when the transactions are
executed, signed, and sent back to the client. When
the proposal has enough signatures to satisfy the en-
dorsement policy, it is submitted to the orderer node,
which orders the transactions and sends them to all
blockchain nodes. In the last step of the process, all

the peers validate the transactions, labeling them as
valid or invalid, and update the ledger world state.
Figure 3 presents a general overview of the Hyper-
ledger Fabric blockchain implemented and the trans-
action flow.

DeveloperProvider Orderer nodes

Peer

CouchDB

API

Peer

CouchDB

Peer

CouchDB

11
1

2

2

2

3

4
4

4

User

Figure 3: Proposed Hyperledger Blockchain model.

The Hyperledger Fabric API (Figure 3) receives
the transaction sent by the event2ledger and sends it
to the endorsing peers (1). The endorsing peers ex-
ecute the transaction received, sign, and send it back
to the API (2). The API collects the endorsed trans-
actions until the endorsement policy is met. Then, it
sends the endorsed transaction to the ordering nodes
(3), which will order the transactions and broadcast
them to all nodes of the blockchain (4). These nodes
will validate the transaction and store its results on the
ledger (CouchDB).

All the nodes that compound the Fabric
blockchain, as the organization nodes, ordering
nodes, and CouchDB instances are implemented as
Docker containers. The proposed blockchain has
three ordering nodes, three endorsing and commit-
ting peers responsible for endorse and validate the
transactions, and three CouchDB instances, to store
the world state, one for each committing peer. The
implementation process creates a channel and joins
the blockchain nodes to it. Then, the chaincode
is installed on all endorsing nodes, containing a
set of functions that allow to create and verify the
events stored on the blockchain. The proposed
solution uses a Hyperledger Fabric API to receive
the transactions submitted by event2ledger. This API
grants the endpoint security through a JWT token,
that must be included on all calls. The API can
also be implemented as a container, improving the
solution scalability. The Table 3 presents the main
configuration parameters applied to the blockchain.

Although it is possible for a node to belong to
more than one channel, this model includes the in-
stallation of only one channel on each node. The

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

292



Table 3: Blockchain configuration parameters.

Parameter Value

Number of channels 1
Chaincode language Go
Ledger Couchdb
Endorsement policy Major Endorsement
Transactions per block 20
Block timeout 3s

chaincode used was developed in go, and has a set
of functions used to register the event, retrieve data
from all events and from a specific event. Other func-
tions can be added as needed, through chaincode up-
dates. The proposed solution uses CouchDB as the
blockchain ledger, allowing the elaboration of com-
plex queries. The endorsement policy adopted re-
quires that the transactions be validated by the ma-
jority of participants. As for block configurations, the
implemented model adopts blocks containing up to 20
transactions, with a timeout of 3 seconds (i.e., after 3
seconds, the block is sent even if it does not contain
20 transactions).

6 TESTS AND RESULTS

The purpose of the test plan developed for this work
is to verify that the events generated in the Docker en-
vironment are being properly collected and stored in
the Hyperledger Fabric blockchain. The proposed test
plan foresees the generation of a predefined number
of container events, through a bash script. This script
has a loop that is executed five times and creates and
stops 20 containers, based on the hello-world Docker
image. These containers are created with a specific
name pattern, composed by ”IMG”+ n, in which n
is a number between 1 and 20. Each container cre-
ated generates three events: create, connect and start.
When the container is finalized, three events are also
created: die, disconnect and destroy. So, the execu-
tion of the script must result in 600 container events
that have to be collected by the event2ledger instance
in execution. Each event collected must be equiva-
lent to a transaction to be endorsed, ordered, and val-
idated using the Raft consensus mechanism, and its
result must be stored in the ledger. Thus, to validate
the proposed test plan, it is necessary to identify the
generated events in the blockchain.

To store the collected events on the blockchain,
event2ledger uses a chaincode function named cre-
ateEvent. This function, when executed, adds the
event data onto the blockchain and creates a registry
ID. This ID is a key composed of EVENT + i, where
i is a sequential number. The ID aims to be useful

to retrieve the events stored. Using a chaincode func-
tion named getAllEvents for this ID, it is possible to
obtain all the events stored on the blockchain. The
execution of this function should return 600 records,
one for each event collected. In addition, transactions
must have the signature of the nodes that endorsed
them, and their validation code. Considering the en-
dorsement policy applied in this work, the transac-
tions need to be endorsed by the majority of the nodes,
so it needs to have at least two endorser signatures.
Also, it is possible to verify the event’s origin using
the transaction sender’s key.

The script execution generated 600 events, of
which 300 during the start phase, and 300 during the
stop phase. The first point to be verified is if all the
generated events were properly collected. To get ac-
cess to blocks and transactions data, this work used
Blockchain Explorer, a Hyperledger component that
has a friendly interface and is useful to navigate on
the blockchain and check blocks, transactions, met-
rics, and other information. The component dash-
board shows that 51 blocks were created after the
script execution, and the blockchain has 609 transac-
tions, of which 9 transactions were generated during
channel creation, node integration, and chaincode de-
ployment. Using the getAllEvents chaincode func-
tion it was also possible to retrieve the events stored
on the CouchDB ledger. This execution returned 600
events (EVENT0 - EVENT599), as expected previ-
ously. Then, the events were analyzed, to verify
if their contents were collected and stored correctly.
Code 1 brings an example of a collected event, stored
on the ledger.

Code 1: Collected event.
1 { ”KEY”: ”EVENT135”,
2 ”RECORD”: {
3 ”Action”: ”create”,
4 ”ActorID”: ”d06ee64bf817b7f8d0d40f93b1cc”,
5 ”EventID”: ”d06ee64bf817b7f8d0d40f93b1cc”,
6 ”Image”: ”hello-world”,
7 ”Type”: ”container”,
8 ”From”: ”hello-world”,
9 ”Name”: ”img4”,

10 ”Scope”: ”local”,
11 ”Status”: ”create”,
12 ”Time”: ”1610736410”,
13 ”TimeNano”: ”1610736410370693000”,
14 }}

Code 1 allows to view the details of a collected
event. The events are generated, collected, and stored
in JSON format. Its contents show the event key, the
action performed, actor and event identifiers, the im-
age used, type of event, the container name, and other
details as the timestamp. The analysis of the ledger

Container Allocation and Deallocation Traceability using Docker Swarm with Consortium Hyperledger Blockchain

293



Table 4: Functional Requirements vs Solution Proposed.

Functional Requirement Proposed solution Details
FR1 Uses Docker API Collect events using the Docker API endpoint /events
FR2 Uses JSON format The collected events are sent in JSON format, via POST call, to the Hyperledger Fabric API
FR3 Meets via blockchain Uses Raft mechanism to obtain consensus
FR4 Meets via blockchain Each blockchain node has its own CouchDB node for storing records

content shows a total of 600 records for the generated
events.

The second step of the test plan consists of check-
ing the validity of the transactions. As described
on 5.2, the valid transactions receives the validation
code 0, and are labeled as ”valid” at the end of the Hy-
perledger Fabric transaction flow. To review the val-
idation status, it is necessary to verify the validation
code field, in transaction details, as shown in Code 2.

Code 2: Transaction Details.
1 Transaction ID: 7de3eab67b3e9dad4d4a9c27c91ebe9b2c
2 Validation Code: 0 - VALID
3 Payload Proposal Hash:

5e48bb6283965c2141561b46ae8535ef9e4
4 Creator MSP: ProviderMSP
5 Endoser: ”ProviderMSP”,”DeveloperMSP”,”UserMSP”
6 Chaincode Name: eventdb
7 Type: ENDORSER TRANSACTION
8 Time: 2021-01-15T18:42:31.871Z
9 Reads:

10 Writes:

The Code 2 shows details about a valid transac-
tion, collected by Provider’s event2ledger instance, as
shown on Creator’s MSP field. The Endorser field
contains the signature of the transaction endorsers,
which are all the blockchain participants (Provider,
Developer, and User). Checking the validation code
of the transactions on the ledger was possible to con-
firm that all was considered valid and had its results
stored on the CouchDB ledger. Thus, the proposed
solution meets the defined functional requirements
(Table 4).

The FR1 is serviced using the Docker API, which
streams the events in JSON format in real-time, en-
suring a non-intrusive collection method. To send the
collected event to the blockchain, the event2ledger
uses a POST call that contains the JWT token in
the head and the formatted transaction data in the
body. To meet the FR3, the proposed solution adopts
the Raft consensus mechanism, which not only han-
dles consensus but also provides fault tolerance. To
store the collected events, the proposed solution uses
a CouchDB distributed ledger implementation.

6.1 Discussion

The event2ledger has been configured to collect
events directly from the Docker Swarm master node,
allowing the collection of all events generated by ser-
vices, even if executed at other nodes. It was imple-
mented as a single container to test its functionality
but is also possible to implement the solution as a ser-
vice, ensuring its scalability and fault tolerance. In
the testing scenario implemented, the collection was
performed by only one of the actors (in this case, the
provider). To allow other actors to perform the col-
lection, additional JWT tokens associated with each
actor’s private keys must be generated and inserted
into the respective instances of the event2ledger. The
test results showed that the events generated on the
Docker environment were all collected and stored on
the blockchain. However, it is possible to implement
filters in the event2ledger so that only specific events
are collected and sent to the blockchain, improving
the application performance by focusing on the col-
lection and validation process only on desired events.
Despite the definition of the endorsement policy as
”Majority endorsement”, where validation is possible
with 2/3 of the total nodes, the transactions were en-
dorsed by all three nodes.

Although using the Hyperledger Fabric API fa-
cilitates integration, this layer adds complexity with
JWT use and increases the solution latency. An al-
ternative solution is to send the transaction using the
Hyperledger Fabric peer binary. In this way, it would
be possible to connect and send transactions directly
to the blockchain, using the event2ledger private key,
avoiding the need to create the JWT authentication to-
ken, and future improvement to the solution.

The number of orderer nodes defined is related to
the Raft fault tolerance, given by 2f + 1, where f rep-
resents the number of failed nodes. In this way, the
adoption of 3 orderer nodes allows the fault tolerance
of one node, without impacting the blockchain execu-
tion. The increase in the number of orderer nodes has
the benefit of greater fault tolerance. However, it im-
pacts an increase in network traffic, which may result
in a reduction in performance.

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

294



7 CONSIDERATIONS & FUTURE
WORK

The solution proposed was successful in collect and
store the events generated and, with minor adjust-
ments, can be implemented in environments that use
other orchestrators, like Kubernetes. The storage of
events on a blockchain made it possible to identify
the event collector through the private key used in
the transaction generation. Also, the distributed stor-
age and cryptographic chaining characteristics ensure
data availability and integrity.

It is important to note that the number of events
generated in container virtualization environments
can be high. Some blockchain configurations have a
direct impact on its performance (e.g., channel com-
position, endorsement policy, block size, and block
timeout) and must be adjusted according to the envi-
ronment to be monitored. Benchmark tools like Hy-
perledger Caliper can be useful to verify the ideal
blockchain configuration in terms of performance
through transaction latency and throughput.

The Raft consensus mechanism allows an ad-
equate security level combined with good perfor-
mance, fitting most of the use cases where the partici-
pants are reliable. However, some environments may
require a Byzantine fault-tolerant consensus mecha-
nism. The Hyperledger Fabric has a modular architec-
ture that allows replacement and customization of the
consensus mechanism but does not yet have a Byzan-
tine fault-tolerant consensus mechanism available.

As future works, we intend to develop a compo-
nent that will allow fast log conflict identification be-
tween the actors regarding the collected events. To
verify the throughput of the proposed solution we
plan to execute a blockchain benchmark with Caliper,
that can be useful to optimize the blockchain config-
uration. We also intend to implement some of the
Byzantine fault-tolerant consensus mechanisms un-
der development, such as SMaRt-BFT (Bessani et al.,
2014), to verify the viability of the proposed solution
in environments where actors are not reliable.

ACKNOWLEDGMENTS

The authors thank the support of FAPESC, and
LabP2D / UDESC.
This work was supported by Ripple’s University
Blockchain Research Initiative (UBRI) and in part
by the Brazilian National Council for Scientific
and Technological Development (CNPq - grant
304643/2020-3).

REFERENCES

Bessani, A., Sousa, J., and Alchieri, E. (2014). State ma-
chine replication for the masses with BFT-SMART.
In 44th Annual IEEE/IFIP Int. Conf. on Dependable
Systems and Networks, pages 355–362.

cAdvisor (2020). cadvisor docs.
https://github.com/google/cadvisor/.

Ciuffoletti, A. (2015). Automated deployment of a
microservice-based monitoring infrastructure. Proce-
dia Computer Science, 68:163–172. 1st Int. Conf. on
Cloud Forward: From Distributed to Complete Com-
puting.

Collectd (2020). Collectd docs.
https://collectd.org/documentation.shtml.

Dawadi, B., Shakya, S., and Paudyal, R. (2017). Common:
The real-time container and migration monitoring as a
service in the cloud. Journal of the Institute of Engi-
neering, 12:51.

Hykes, S. (2013). The future of Linux containers. Pycon
US 2013. https://youtu.be/wW9CAH9nSLs.

Hyperledger.Docs (2021). Hyperledger fabric of-
ficial documentation. https://hyperledger-
fabric.readthedocs.io/en/release-2.2/prereqs.html.

Jamshidi, P., Pahl, C., Mendonça, N., Lewis, J., and Tilkov,
S. (2018). Microservices: The journey so far and chal-
lenges ahead. IEEE Software, 35(3):24–35.

Jiménez, L., Simón, M., Schelén, O., Kristiansson, J.,
Synnes, K., and Åhlund, C. (2015). Coma: Resource
monitoring of docker containers. In CLOSER, pages
145–154.

Jo, H., Ha, J., and Jeong, M. (2018). Light-weight ser-
vice lifecycle management for edge devices in I-IoT
domain. In Int. Conf. on Information and Communi-
cation Technology Convergence (ICTC), pages 1380–
1382.

Laurie, B. (2014). Certificate transparency: Public, verifi-
able, append-only logs. Queue, 12(8):10—-19.

Newman, S. (2015). Building Microservices. OReilly, 1
edition.

Oliveira, F., Suneja, S., Nadgowda, S., Nagpurkar, P., and
Isci, C. (2017). A cloud-native monitoring and ana-
lytics framework. Technical report, Technical Report
RC25669, IBM Research.

Pourmajidi, W. and Miranskyy, A. (2018). Logchain:
Blockchain-assisted log storage. In IEEE 11th Int.
Conf. on Cloud Computing (CLOUD), pages 978–
982.

Rodriguez, M. A. and Buyya, R. (2019). Container-based
cluster orchestration systems: A taxonomy and fu-
ture directions. Software: Practice and Experience,
49(5):698–719.

Container Allocation and Deallocation Traceability using Docker Swarm with Consortium Hyperledger Blockchain

295


