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Abstract: In this study, an image copy-move forgery detection approach using color features and hierarchical feature 
point matching is proposed. The proposed approach contains three main stages, namely, pre-processing and 
feature extraction, hierarchical feature point matching, and iterative forgery localization and post-processing. 
In the proposed approach, Gaussian-blurred images and difference of Gaussians (DoG) images are constructed. 
Hierarchical feature point matching is employed to find matched feature point pairs, in which two matching 
strategies, namely, group matching via scale clustering and group matching via overlapped gray level 
clustering, are used. Based on the experimental results obtained in this study, the performance of the proposed 
approach is better than those of three comparison approaches. 

1 INTRODUCTION 

Copy-move forgery, a common type of forged images, 
copies and pastes one or more regions onto the same 
image (Cozzolino, Poggi, and Verdoliva, 2015). Some 
image processing operations, such as transpose, 
rotation, scaling, and JPEG compression, will make 
images more convincing. To deal with copy-move 
forgery detection (CMFD), many CMFD approaches 
have been proposed, which can be roughly divided 
into three categories: block-based, feature point-
based, and deep neural network based. 

Cozzolino, Poggi, and Verdoliva (2015) used 
circular harmonic transform (CHT) to extract image 
block features. A fast approximate nearest-neighbor 
search approach (called patch match) is used to deal 
with invariant features efficiently. Fadl and Semary 
(2017) proposed a block-based CMFD approach using 
Fourier transform for feature extraction. Bi, Pun, and 
Yuan (2016) proposed a CMFD approach using 
hierarchical feature matching and multi-level dense 
descriptor (MLDD). 

Amerini, et al. (2011) proposed a feature point-
based CMFD approach using scale invariant feature 
transform (SIFT) (Lowe, 2004) for feature point 
extraction. Amerini, et al. (2013) developed a CMFD 
approach based on J-linkage, which can effectively 

solve the problem of geometric transformation. Pun, 
Yuan, and Bi (2015) proposed a CMFD approach 
using feature point matching and adaptive 
oversegmentation. Warif, et al. (2017) proposed a 
CMFD approach using symmetry-based SIFT feature 
point matching. Silva, et al. (2015) presented a CMFD 
approach using multi-scale analysis and voting 
processes. Jin and Wan (2017) proposed an improved 
SIFT-based CMFD approach. Li and Zhou (2019) 
developed a CMFD approach using hierarchical 
feature point matching. Huang and Ciou (2019) 
proposed a CMFD approach using superpixel 
segmentation, Helmert transformation, and SIFT 
feature point extraction (Lowe, 2004). Chen, Yang, 
and Lyu (2020) proposed an efficient CMFD approach 
via clustering SIFT keypoints and searching the 
similar neighborhoods to locate tampered regions. 

Zhong and Pun (2020) proposed a CMFD scheme 
using a Dense-InceptionNet. Dense-InceptionNet is 
an end-to-end multi-dimensional dense-feature 
connection deep neural network (DNN), which 
consists of pyramid feature extractor, feature 
correlation matching, and hierarchical post-processing 
modules. Zhu, et al. (2020) proposed a CMFD 
approach using an end-to-end neural network based on 
adaptive attention and residual refinement network 
(AR-Net). Islam, Long, Basharat, and Hoogs (2020) 
proposed a generative adversarial network with a 
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dual-order attention model to detect and locate copy-
move forgeries. In this study, an image copy-move 
forgery detection approach using color features and 
hierarchical feature point matching is proposed. 

This paper is organized as follows. The proposed 
image copy-move forgery detection approach is 
described in Section 2. Experimental results are 
addressed in Section 3, followed by concluding 
remarks. 

2 PROPOSED APPROACH 

2.1 System Architecture 

As shown in Figure 1, in this study, an image copy-
move forgery detection approach using color features 
and hierarchical feature point matching is proposed. 
The proposed approach contains three main stages, 
namely, pre-processing and feature extraction, 
hierarchical feature point matching, and iterative 
forgery localization and post-processing. 

 
Figure 1: Framework of the proposed approach. 

2.2 Pre-processing and Feature 
Extraction 

Let 𝐴௙(𝑥, 𝑦) , 1 ≤ 𝑥 ≤ 𝑀 , 1 ≤ 𝑦 ≤ 𝑁 , be the input 
RGB color image with size 𝑀 × 𝑁. The input color 
image will be converted from RGB color space to HSI 
color space and the intensity component image (I) is 
enhanced by histogram equalization, which is 
converted from HSI color space back to RGB color 
space, denoted as 𝐴ோீ஻(𝑥, 𝑦), 1 ≤ 𝑥 ≤ 𝑀 , 1 ≤ 𝑦 ≤𝑁.  To extract enough feature points, in this study, 𝐴ோீ஻(𝑥, 𝑦) is enlarged by 2 × 2 linear interpolation, 
denoted as 𝐸ோீ஻(𝑥, 𝑦),  1 ≤ 𝑥 ≤ 2𝑀,  1 ≤ 𝑦 ≤ 2𝑁. 
Then, image 𝐸ோீ஻(𝑥, 𝑦) is converted into gray-level 
image 𝐸௚௥௔௬(𝑥, 𝑦), 1 ≤ 𝑥 ≤ 2𝑀, 1 ≤ 𝑦 ≤ 2𝑁, which 

is convolved with Gaussian filters of different scales. 
Gaussian-blurred image 𝐿(𝑥, 𝑦, 𝑚ఈ𝜎), 1 ≤ 𝑥 ≤ 2𝑀 , 1 ≤ 𝑦 ≤ 2𝑁, is computed as 
 𝐿(𝑥, 𝑦, 𝑚ఈ𝜎) = 𝐺(𝑥, 𝑦, 𝑚ఈ𝜎)⨂𝐸௚௥௔௬(𝑥, 𝑦),𝛼 = 0, 1, … , 4, (1)
 
where 𝐺(𝑥, 𝑦, 𝑚ఈ𝜎) denotes the Gaussian kernel, 𝑚 
is a constant (here, 𝑚 = √2),  ⨂  denotes the 
convolution operator, and 𝜎  denotes a prior 
smoothing value (here, 𝜎 = 1.6).  Difference of 
Gaussians (DoG) image 𝐷൫𝑥, 𝑦, 𝑚ఉ𝜎൯, 1 ≤ 𝑥 ≤2𝑀, 1 ≤ 𝑦 ≤ 2𝑁, is computed as 
 𝐷൫𝑥, 𝑦, 𝑚ఉ𝜎൯ = 𝐿൫𝑥, 𝑦, 𝑚ఉାଵ𝜎൯ − 𝐿൫𝑥, 𝑦, 𝑚ఉ𝜎൯, 𝛽 = 0, 1, 2, 3. (2)
 

As multiple octaves shown in Figure 2 (Lowe, 
2004), each octave contains five Gaussian-blurred 
images and four DoG images. The first scale value of 
the i-th octave is 𝑚ଶ(௜ିଵ)𝜎. The first octave size is 2𝑀 × 2𝑁, the second octave size with down-sampling 
is 𝑀 × 𝑁, …, etc. 

Within an octave, to detect the local maxima and 
minima of 𝐷൫𝑥, 𝑦, 𝑚ఉ𝜎൯, if the value of a pixel larger 
(or smaller) than those of its 8 neighbors in the same 
image and those of 2 × 9  neighbors in the two 
neithboring DoG images with different scales, this 
pixel is detected as a feature point. Note that the first 
and last DoG images in each octave do not have 
feature points. 

 
Figure 2: Illustrated schematic diagram of Gaussian-blurred 
images and DoG images (Lowe, 2004). 

Second, using edge and contrast thresholds, all 
candidate feature points will be refined so that 
unstable extrema in SIFT feature points can be filtered 
out. The extrema value is computed as 

 𝐷൫𝐹෠൯ = 𝐷 + 12 ൬𝜕𝐷𝜕𝐹൰் 𝐹෠, (3)

𝐹෠ = − 𝜕ଶ𝐷𝜕𝐹ଶ ିଵ × 𝜕𝐷𝜕𝐹, (4)
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where 𝐹 = (𝑥, 𝑦, 𝜎)்  and 𝑇  is a transpose. All 
extrema with |𝐷(𝑥ො)| being less than 𝑍௛ (set to 0.1) are 
discarded. 

Third, to achieve rotational invariance, a gradient 
magnitude 𝜇൫𝑥, 𝑦, 𝑚ఉ𝜎൯  and a guiding direction 𝜃൫𝑥, 𝑦, 𝑚ఉ𝜎൯ defined as 
 𝜇൫𝑥, 𝑦, 𝑚ఉ𝜎൯ = ට𝑑௫𝟐 + 𝑑௬𝟐, (5)𝜃൫𝑥, 𝑦, 𝑚ఉ𝜎൯ = tanିଵ(𝑑௬/𝑑௫), (6)𝑑௫ = 𝐷൫𝑥 + 1,  𝑦,  𝑚ఉ𝜎൯ − 𝐷൫𝑥 − 1, 𝑦, 𝑚ఉ𝜎൯, (7)𝑑௬ = 𝐷൫𝑥, 𝑦 + 1, 𝑚ఉ𝜎൯ − 𝐷൫𝑥, 𝑦 − 1, 𝑚ఉ𝜎൯, (8)
 
are allocated to each subsisted feature point. A generic 
SIFT feature point 𝑃௞  can be described as a four-
dimensional vector, i.e., 
 𝑷𝒌 = (𝒙𝒌, 𝒚𝒌, 𝒎𝒔𝝈, 𝜽𝒌),  𝒌 = 𝟏,  𝟐,  … , 𝒏, (9)
 
where (𝑥௞, 𝑦௞)  denotes feature point coordinate, 𝑛 
denotes the total number of feature points, and 𝑚௦𝜎 
and 𝜃௞  denote the scale and guiding direction of 𝑃௞, 
reprectively. 

  
(a) (b) 

 
(c) (d) 

 Feature point 

Figure 3: Schematic diagram of feature point descriptor 
(Lowe, 2004): (a) gradient magnitudes and guiding 
directions in a 8×8 region around a central feature point, (b) 
a 2×2 descriptor, (c) a 16×16 region around a central feature 
point, (d) a 128-dimensional descriptor. 

As shown in Figure 3, an eight-direction histogram 
is formed from gradient magnitudes and guiding 
directions of feature points within a 4 × 4  region, 
which has 8 quantized histogram entries covering 360° 
with the length of each arrow denoting its gradient 

magnitude. In a 16 × 16  region around a central 
feature point, 16 eight-direction histograms are 
generated, resulting in 128-dimensional (16 × 8) row 
vector descriptors 𝜔௞ = ൫𝜔௞,ଵ,  𝜔௞,ଶ, … , 𝜔௞,ଵଶ଼൯,   𝑘 =1,  2,  . . . ,  𝑛.  For 𝑃௞,  let 𝐸𝐷௞, 𝑘 = 1, 2, . . . , 𝑛 − 1 
denote the Euclidean distances between descriptor 𝜔௞ 
and other (𝑛 − 1) descriptors. Let ratio R be defined as 
 𝑹 = 𝑬𝑫𝟏/𝑬𝑫𝟐, (10)
 
where 𝐸𝐷ଵ and 𝐸𝐷ଶ denote the smallest and second-
smallest Euclidean distances, respectively. If ratio 𝑅 
is less than threshold 𝑍௧ (𝑍௧ = 0.6), feature point 𝑃ଵ 
having the smallest Euclidean distance 𝐸𝐷ଵ  is a 
matching feature point of 𝑃௞.  𝑃௞,  𝑘 = 1, 2, . . . , 𝑛 
having a matching feature point as well as its matching 
feature point, i.e., a matching feature point pair, will 
be kept; otherwise, it is discarded. 

2.3 Hierarchical Feature Point 
Matching 

In this study, a modified version of hierarchical 
feature point matching (Li and Zhou, 2019) is 
employed, in which two matching strategies, namely, 
group matching via scale clustering and group 
matching via overlapped gray level clustering, are 
used. 

Because Gaussian-blurred images are grouped by 
octave, feature points detected in different scales will 
be clustered closely, which can be separately 
processed. In this study, matching procedures are 
performed separately in each single high-resolution 
octave and jointly in multiple low-resolution octaves. 
Note that feature points in high-resolution octaves are 
much sparse than feature points in low-resolution 
octaves. In addition, feature points in low-resolution 
octaves having higher recognition capabilities can 
strongly resist large-scale resizing attack. 

Based on the scale values, remaining feature points 
are divided into three categories:  𝐶ଵ = {𝑃௞| 𝛾ଵ ≤𝑚௦𝜎 < 𝛾ଶ},  𝐶ଶ = {𝑃௞| 𝛾ଶ ≤ 𝑚௦𝜎 < 𝛾ଷ},  𝐶ଷ ={𝑃௞| 𝑚௦𝜎 ≥ 𝛾ଷ}, where 𝛾௜  denotes the scale value of 
the second DoG image in the i-th octave. Note that 𝐶ଵ 
contains the first octave, 𝐶ଶ  contains the second 
octave, and 𝐶ଷ  contains the other octaves. Feature 
point matching schemes are performed separately on 𝐶ଵ, 𝐶ଶ, and 𝐶ଷ.  

Because any feature point 𝑃௞  and its matching 
feature point 𝑃ଵ  have similiar pixel values, feature 
points in cluster 𝐶௜,  𝑖 = 1,2,3, can divided into several 
overlapped ranges by pixel (gray) values. In this study, 
the range [0,   1,  … ,   255] of pixel (gray) values is 
split into 𝑈 overlapped ranges, 
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𝑈 = ൤255 − 𝑐ଵ𝑐ଵ − 𝑐ଶ ൨ + 1, (11)
 
where 𝑐ଵ  denotes a range size and 𝑐ଶ  denotes an 
overlapped size (𝑐ଵ > 𝑐ଶ). Let 
 𝐶௜,௝ = {𝑃௞| 𝑎௜ ≤ 𝐺௥(𝑃௞) < 𝑏௜, 𝑃௞ ∈ 𝐶௜},  𝑗 = 1,2, … , 𝑈, (12)𝑎௜ = (𝑗 − 1) × (𝑐ଵ − 𝑐ଶ), (13)𝑏௜ = 𝑚𝑖𝑛(𝑎௜ + 𝑐ଵ,  255), (14)
 
where 𝐺௥(𝑃௞)  denotes the average gray value of 9 
pixels in a 3 × 3 region centered at 𝑃௞. Then, feature 
point matching schemes are performed separately in 𝐶௜,௝,  𝑖 = 1,2,3,   𝑗 = 1,2, … , 𝑈. Let 
 𝑄 = ራ 𝑄௜,௝ ,  𝑖 ∈ {1,  2, 3},  𝑗 = 1,  2,  … , 𝑈, (15)
 
where 𝑄௜,௝  denotes the set containing the matched 
feature point pairs of 𝐶௜,௝. 

2.4 Iterative Forgery Localization and 
Post-processing 

For feature point-based copy-move forgery detection, 
we face two problems. First, when multiple 
replications are performed, the homography is usually 
not unique and the number of repeated areas is 
uncertain. Second, all matched feature point pairs 
usually have no matching orders, and the original and 
forged points are usually not distinguished by feature 
point matching. In this study, a modified version of 
iterative localization (Li and Zhou, 2019) without 
segmentation and clustering processes is employed, 
which contains four steps: elimination of isolated 
matched feature point pairs, estimation of local 
homography, homography verification and inlier 
selection, and forgery localization using color 
information and scale. 

Because copy-move forgery is usually performed 
in a continuous shape, isolated matched feature point 
pairs can be detected. For each matched feature point 
pair (𝑃௞, 𝑃௞ᇲ) ∈ 𝑄, if 𝑁௞ and 𝑁௞ᇲ denote the numbers 
of neighboring matched feature points for 𝑃௞ and 𝑃௞ᇲ 
with distances being smaller than a threshold 𝑍௢ (here, 𝑍௢ = 100), the matched feature point pair (𝑃௞, 𝑃௞ᇲ) 
will be discarded if max{𝑁௞, 𝑁௞ᇲ} < 2. If ℳ denotes 
the set containing the remaining matched feature point 
pairs ∈ 𝑄, in this study, a portion of matched pairs for 
two consecutive local regions will be used to appraise 
an affine matrix. First, a matched feature point pair (𝑃௞, 𝑃௞ᇲ) ∈ ℳ  is randomly selected, then all the 

neighboring matched feature points closed to 𝑃௞ and 𝑃௞ᇲ are recorded as 𝐸௞ and 𝐸௞ᇲ, respectively, i.e., 
 𝐸௞ = ൛𝑃௤ห∀𝑃௤ ∈ ℳ, 𝐸𝐷൫𝑃௤, 𝑃௞൯ < 𝑍௪ൟ, (16)𝐸௞ᇲ = ൛𝑃௤ห∀𝑃௤ ∈ ℳ, 𝐸𝐷൫𝑃௤, 𝑃௞ᇲ൯ < 𝑍௪ൟ, (17)
 
where 𝑍௪ denotes a hyper-parameter (𝑍௪ = 100) and 𝐸𝐷(∙) returns the Euclidean distance. Let ℳ௞ denote 
the set containing all the matched feature point pairs 
close to (𝑃௞, 𝑃௞ᇲ) ∈ ℳ . Then, RANSAC algorithm 
(Gonzalez and Woods, 2018) is employed to estimate 
homography 𝐻௞  between the correspondences of 
matched feature point pairs in ℳ௞. 

To delete incorrect homography estimations, a 
homography verification and inlier selection approach 
using guiding direction 𝜃௞  obtained in SIFT feature 
point extraction is employed. The guiding direction 
difference 𝜃௞ᇲ − 𝜃௞  should be consistent with the 
estimated affine homography 𝐻௞  for each proper 
matched feature point pair (𝑃௞, 𝑃௞ᇲ) . The matched 
feature point pair (𝑃௞, 𝑃௞ᇲ) should be discarded, if 
 𝑔(𝑃௞, 𝑃௞ᇲ, 𝐻௞) = |𝜃௞ᇲ − 𝜃௞ − 𝜃ு| ≤ 𝑍ఏ, (18)
 
where 𝜃ு is the estimated rotation calculated from 𝐻௞ 
and 𝑍ఏ denotes a threshold (here, 𝑍ఏ = 15). Let ℳ෡௞ 
denotes the set containing the remaining matched 
feature point pairs in ℳ௞ after RANSAC homography 
verification. A matched feature point pair 𝑃௞(𝑥௞, 𝑦௞) 
and 𝑃௞ᇲ(𝑥௞ᇲ, 𝑦௞ᇲ), will be related by 
 ቌ𝑥௞ᇱ𝑦௞ᇱ1 ቍ ≈ 𝐻௞ ൭𝑥௞𝑦௞1 ൱. (19)

 
Using guiding information, set ℳு is defined as 

 ℳு = {〈𝑃௞, 𝑃௞ᇲ〉|‖𝐻௞𝑃௞ − 𝑃௞ᇲ‖ଶଶ< 𝜖, 𝑔(𝑃௞, 𝑃௞ᇲ, 𝐻௞) ≤ 𝑍ఏ}. (20)
 

The improved homography 𝐻෡௞ is defined as 
 𝐻෡௞ = argminுೖ෢ ෍ ฮ𝐻෡௞𝑃௞ − 𝑃௞ᇲฮଶଶ〈௉ೖ,௉ೖᇲ〉 . (21)

 
In this study, a dense field forgery location 

algorithm (Li and Zhou, 2019) is employed. For each 
feature point in ℳு , local circular dubious field is 
defined as 𝑟௞ = 𝜏𝜎௞, (22)
 
where 𝜏  denotes a paremeter (here, 𝜏 = 16 ). Two 
dubious regions 𝑆 and 𝑆ᇱ are established for matched 
feature point pairs in ℳு. Dubious regions are refined 
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by color information, and each feature point in 𝑆 is 
defined as 
 𝑃∗ = 𝐻෡௞𝑃௞, 𝑃௞ ∈ 𝑆. (23)
 

In Equation (23), if the color vectors of 𝑃௞ and 𝑃∗ 
are close, they might be copy-move feature points, i.e., 𝑃௞ is the original feature point and 𝑃∗ is a copy-move 
forgery feature point. Let 𝒬ଵ be the set containing all 
the matched feature points in 𝑆, i.e., 
 𝒬ଵ = {𝑃௞, 𝑃∗|max(|𝑅(𝑃௞) − 𝑅(𝑃∗)തതതതതതത|, ห𝐺(𝑃௞) − 𝐺(𝑃∗)തതതതതതതห, ห𝐵(𝑃௞) − 𝐵(𝑃∗)തതതതതതതห) < 𝑍௥௚௕}, 𝑃௞ ∈ 𝑆, (24)

𝑊(𝑃∗)തതതതതതതത = ෍ 𝑊(𝑃௞)/𝑉௉ೖ∈𝜴(௉ೖ) ,  𝑊 ∈ {𝑅, 𝐺, 𝐵}, (25)

 
where 𝑅(𝑃௞) , 𝐺(𝑃௞) , and 𝐵(𝑃௞)  denote the RGB 
values of feature point 𝑃௞, 𝑉 denotes a normalization 
factor, Ω(𝑃௞)  denotes a 3 × 3  patch centered at 𝑃௞ , 
and 𝑍௥௚௕ denotes a parameter (here, 𝑍௥௚௕ = 10).  

On the other hand, each point in 𝑆ᇱ is defined as 
 𝑃∗ᇱ = 𝐻෡௞ି ଵ𝑃௞ᇲ, 𝑃௞ᇲ ∈ 𝑆ᇱ. (26)
 

Similarly, let 𝒬ଶ  be the set containing all the 
matched feature points in 𝑆ᇱ . If a feature point 
belonging to 𝒬ଵ ∪ 𝒬ଶ , this feature point will be 
marked as forgery feature point 𝐴௙௢௥௚௘௥௬(𝑥, 𝑦). The 
above procedure is iterated (here, 15 iterations) to find 
all the forgery feature points. Then, all the forgery 
feature points are grouped as forgery regions. To make 
forgery regions more accurately, morphological close 
operator is used to obtain the final forgery regions 𝐴௙௜௡௔௟(𝑥, 𝑦) in the image. 

3 EXPERIMENTAL RESULTS 

The proposed approach has been implemented on an 
Intel Core i7-7700K 4.20 GHz CPU with 32GB main 
memory for Windows 10 64-bit platform using 
MATLAB 9.4 (R2018a). To evaluate the 
effectiveness of the comparison and proposed 
approaches, FAU dataset (Christlein, et al., 2012) and 
CMH1 dataset (Silva, et al., 2015) are employed. FAU 
dataset consists of 48 high-resolution uncompressed 
PNG color images, whereas CMH1 consists of 23 
copy-move forged images. 

In this study, based on the final detected forgery 
region map and the ground truth map 𝐺𝑇, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
and 𝑟𝑒𝑐𝑎𝑙𝑙 are employed as two performance metrics. 
Additionally, based on 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  and 𝑟𝑒𝑐𝑎𝑙𝑙,  𝑓ଵ 
score computed as 

𝑓ଵ = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙, (27)
 
is employed as the third performance metric. 

To evaluate the performance of the proposed 
approach, three comparison approaches, namely, 
Amerini, et al. (2013), Pun, et al. (2015), and Li, et al. 
(2019) are employed. The final detected forgery 
region maps of three comparison approaches and the 
proposed approach for two images of FAU dataset are 
shown in Figures 4 and 5. In terms of average 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛,  𝑟𝑒𝑐𝑎𝑙𝑙,  and 𝑓ଵ  score, performance 
comparisons of the three comparison approaches and 
the proposed approach for FAU and CMH1 datasets 
are listed in Tables 1 and 2, respectively. 

Table 1: In terms of average 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛,  𝑟𝑒𝑐𝑎𝑙𝑙,  and 𝑓1 
score, performance comparisons of three comparison 
approaches and the proposed approach on FAU dataset. 

Approaches 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑟𝑒𝑐𝑎𝑙𝑙 𝑓ଵ score
Amerini, et al. 

(2013) 0.359 0.887 0.455 

Pun, et al. (2015) 0.966 0.655 0.753
Li, et al. (2019) 0.921 0.773 0.842

Proposed 0.938 0.815 0.859

Table 2: In terms of 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛,  𝑟𝑒𝑐𝑎𝑙𝑙,  and 𝑓1  score, 
performance comparisons of three comparison approaches 
and the proposed approach on CMH1 dataset. 

Approaches 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑟𝑒𝑐𝑎𝑙𝑙 𝑓ଵ score
Amerini, et al. 

(2013) 0.942 0.935 0.940 

Pun, et al. (2015) 0.929 0.920 0.924
Li, et al. (2019) 0.985 0.960 0.972

Proposed 0.978 0.972 0.975
 

Based on the experimental results listed in Tables 
1 and 2, the proposed approach has good balances 
between precision and recall as well as larger 𝑓ଵ 
scores, as compared with three comparison 
approaches. Based on the experimental results shown 
in Figures 4 and 5, the final detected forgery region 
maps of the proposed approach are better than those 
of three comparison approaches. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 4: Final detected forgery region maps of 
“red_tower_copy” in FAU dataset: (a) original image; (b) 
ground truth, (c)-(f) the detected forgery region maps by 
Amerini, et al.’s approach (2013), Pun, et al.’s approach 
(2015), Li, et al.’s approach (2019), and the proposed 
approach. 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 5: Final detected forgery region maps of 
“noise_pattern_copy” in FAU dataset: (a) original image; 
(b) ground truth, (c)-(f) the detected forgery region maps by 
Amerini, et al.’s approach (2013), Pun, et al.’s approach 
(2015), Li, et al.’s approach (2019), and the proposed 
approach. 

4 CONCLUDING REMARKS 

In this study, an image copy-move forgery detection 
approach using color features and hierarchical feature 
point matching is proposed. Based on the 
experimental results obtained in this study, the 
performance of the proposed approach is better than 
those of three comparison approaches. 
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