Improving Web Application Vulnerability Detection Leveraging

Keywords:

Abstract:

Ensemble Fuzzing

Jodo Caseirito and Ibéria Medeiros
LASIGE, Faculdade de Ciéncias,Universidade de Lisboa, Portugal

Fuzzing, Web Applications, Vulnerability Discovery.

The vast majority of online services we use nowadays provide their web application to the users. The correct-
ness of the source code of these applications is crucial to prevent attackers from exploiting its vulnerabilities,
leading to severe consequences like the disclosure of sensitive information or the degradation of the availability
of the application. Currently, multiple existent solutions analyse and detect vulnerabilities in the source code.
Attackers, however, do not usually have access to the source code and must work with the information that is
made public. Their goals are clear — exploit vulnerabilities without accessing the code —, and they resort of
black-box fuzzing tools to achieve such. In this paper, we propose an ensemble fuzzing approach to check the
correctness of the web applications from the point of view of an attacker and, in a posterior phase, analyse the
source code to correlate with the collected information. The approach focuses first on the quality of fuzzers’
crawlers and afterwards on fuzzers capabilities of exploiting the results of all crawlers between them, in order
to provide better coverage and precision in the detection of web vulnerabilities. Our preliminary results show
that the ensemble performs better than fuzzers individually.

1 INTRODUCTION

The Internet is currently part of our daily life, and so
web applications are built upon it. There are over 1.8
billion websites active in the wild, and every month
this number increases by hundreds of thousands as
new web services and applications emerge online'.
Companies are constantly faced with the deci-
sion to choose between functionality and security for
their web services, as the time for security assessment
may exceed the planned service launch time and of-
ten companies choose to release applications with in-
complete security testing. Sohoel et al. (Sohoel et al.,
2018) studied how startups consider software security
in their applications. The applications tested had sig-
nificant security breaches, and those who had the low-
est awareness about good practices and well-known
vulnerabilities had the most critical security holes.
Also, none of the companies had done prior security
testing and relied on secure code from third parties.
Web applications’ development is getting easier,
even for those who lack programming knowledge.
WordPress?> (WP) is a content management system

Uhttps://www.internetlivestats.com/total-number-of-
websites/
Zhttps://wordpress.com/

Caseirito, J. and Medeiros, I.
Improving Web Application Vulnerability Detection Leveraging Ensemble Fuzzing.
DOI: 10.5220/0010484904050412

(CMS) used to create blogs and web applications eas-
ily and intuitively, making it very appealing to inexpe-
rienced users. It is written in PHP, the server-side lan-
guage mainly used to manage back-end data in web
applications. Almost 80% of websites use PHP as
their server-side language, and almost 40% of them
use WP to manage their systems>. Despite their us-
age, PHP has not a specification language, turning it
poor and limited for data validation, requiring the pro-
grammers to use the right functions and have a stable
set of good practices. Pairing this lack of knowledge
and bad practices with the existing vulnerabilities and
limitations of the language, web applications are left
with security bugs that are in the wild, vulnerable and
open for anyone willing to explore their flaws.

Cross Site Scripting (XSS)* and SQL injection
(SQLi)5 are injection web vulnerabilities that con-
tinue to be very prevalent, specially in applications
with legacy code. In fact, they are in first place in the
OWASP (Open Web Application Security Project)®
Top 10 2017, a report of the top vulnerabilities found

3https://w3techs.com/

“https://owasp.org/www-community/attacks/xss/

Shttps://owasp.org/www-community/attacks/SQL_
Injection

Shttps://owasp.org/

405

In Proceedings of the 16th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2021), pages 405-412

ISBN: 978-989-758-508-1

Copyright (© 2021 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

in the wild (Williams and Wichers, 2017). Its im-
pact is huge and can result in information disclosure,
data loss, denial of service, between others. XSS vul-
nerabilities, despite having a more moderate impact,
were found in around two thirds of the applications
in the OWASP study, revealing their big prevalence.
Although this vulnerabilities are really well known,
there are recent cases with some of them in applica-
tions used by millions (Ryan, 2020).

Static analysis examines the source code and
identifies vulnerabilities without executing the code
(Chess and McGraw, 2004; Jovanovic et al., 20006;
Medeiros et al., 2014). Although it finds a big per-
centage of the vulnerabilities, it has a considerable
amount of false positives. Fuzzing, on the other
hand, is an (semi)automatic software testing tech-
nique to find vulnerabilities without having access to
the source code, which involves providing invalid and
unexpected inputs to the application and monitoring
for exceptions (Sutton et al., 2007). It has an inferior
false positives’ rate and is able to detect issues caused
by the code’s interactions with other components and
vulnerabilities that may be too complicated to static
analysis to find (Duchene et al., 2014). However, one
of the biggest challenges in black-box fuzzing tools
is to determine the interactions that can change the
application’s state. For example, sending the same
requests in a different order or with different inputs
can result in different paths explored. Without tak-
ing this into account, a big portion of the applica-
tion code could be missed and multiple vulnerabilities
overlooked (Doupé et al., 2012).

This paper presents an ensemble fuzzing approach
for discovering vulnerabilities in web applications
written in PHP, and, in a posterior phase, to iden-
tify the code that contain the vulnerabilities exploited.
To the best of our knowledge, it is the first ensemble
approach of fuzzing for web applications. The ap-
proach focuses first on the quality of fuzzers’ crawlers
and then on fuzzers’ capabilities to exploit the re-
sults of all crawlers between them, in order to pro-
vide better code coverage and precision in detecting
vulnerabilities. The ensemble fuzzing is composed
of three open-source fuzzers, namely, OWASP ZAP,
w3af8, and Wapiti9, and aims to address the issue
stated above. In a second phase, the approach will be
extended to identify the vulnerabilities in the applica-
tions’ code by correlating information on how to char-
acterize and exploit vulnerabilities with data provided
by fuzzers’ attacks and the monitoring of target appli-
cations. Our preliminary results show that it performs

Thttps://www.zaproxy.org/

8http://w3af.org/
9https://wapiti.sourceforge.io/

406

better than fuzzers individually and the fuzzers’ per-
formance vary with the complexity of applications.
The contributions of the paper are: (1) an ensem-
ble fuzzing approach to find flaws in web applica-
tions, with better code coverage and accuracy; (2) an
implementation of the approach with three fuzzers;
(3) an experimental evaluation providing distinct re-
sults with fuzzers in the ensemble and individually.

2 WEB APPLICATION
VULNERABILITIES

The difficulty of protecting the code of web appli-
cation relies on treating the user inputs unduly (e.g.,
$_GET), leaving applications vulnerable and an easy
target for attackers. Attackers inject malicious data
through the application attack surface and check if
they exploit some bug existent in the target appli-
cation. Vulnerabilities associated with user inputs
are called input validation vulnerabilities, because
user inputs are improperly validated or sanitized, or
surface vulnerabilities, because they are exploited
through the attack surface of the application.

SQLi and reflected XSS are two vulnerability
classes of this kind. SQLi is associated with mal-
crafted user inputs (e.g., ’, OR) used in SQL state-
ments without any sanitization, and then executed
over the database through an appropriated function
(e.g., mysqli_query in PHP). XSS injects malicious
scripts (e.g., JavaScript) which are used in output
functions (e.g., echo), allowing the exploitation of
vulnerabilities that reflect data from the browser’s vic-
tim to the attacker. Another type of XSS is the stored
XSS, which is made in two steps. First, the malicious
script is stored in some place in the target application
(e.g., database, blog file), and later it is loaded and
used in an output function.

3 RELATED WORK

Black-box fuzzing is a software testing technique that,
without accessing the source code of the program, in-
jects random inputs to find bugs in it (Miller et al.,
1990), which involves monitoring for exceptions,
such as crashes, memory leaks, and information dis-
closure (Sutton et al., 2007). The injected inputs are
generated based on two approaches: generation and
mutation. In the former, the fuzzer generates inputs
without relying on previous inputs or existing seeds,
usually learning input models and generating new in-
puts based on the learned models. In the latter, the

Improving Web Application Vulnerability Detection Leveraging Ensemble Fuzzing

fuzzer modifies inputs based on defined patterns and
existing seeds (Sutton et al., 2007).

Chen et al. (Chen et al., 2019) proposed an en-
semble fuzzing approach to increase the performance
in bug discovery. First, they selected fuzzers based
on their input generation strategies, seed selection and
mutation processes, and the diversity of coverage in-
formation granularity. Secondly, they implemented
a system global asynchronous and local synchronous
that periodically synchronizes fuzzers attacking the
same application, sharing between these fuzzers in-
teresting seeds that cover new paths or generate new
crashes. WAF-A-Mole (Demetrio et al., 2020) is a
tool that models the presence of an adversary based on
a guided mutation fuzz approach. The tool explores
failing tests, which are repeatedly mutated with muta-
tion operators. Sargsyan et al (Sargsyan et al., 2019)
and Araujo et al (Aradjo et al., 2020) presented a di-
rected fuzzing approach with the goal of executing in-
teresting code fragments as fast as possible. All these
approaches are for C/C++ code, and not applicable
for web applications. Our approach aims to explore
the latter’s flaws and uses the ensemble fuzzing con-
cept by sharing all the different requests between the
ensemble and then using each fuzzer’s capability to
explore those requests.

KameleonFuzz (Duchene et al., 2014) is an exten-
sion of LigRE (Doupé et al., 2012; Duchene et al.,
2013), a fuzzer that performs control flow analysis to
detect reflected and stored XSS vulnerabilities. Lang-
Fuzz (Holler et al., 2012) is a blackbox fuzzing tool
for script interpreters. Vimpari et al (Vimpari, 2015)
presented a study of open-source fuzzers, analysing
the differences between them from the perspective
of someone with basic knowledge in software test-
ing and their usability. They ended up selecting 6
fuzzers: Radamsa, MiniFuzz, Burp Suite, JBroFuzz,
w3af and OWASP ZAP, being the last four web ap-
plication fuzzers. However, they did not explored the
fuzzers’ ability to exercise the results of the different
crawlers between them, which is what we make.

4 ENSEMBLE FUZZING
APPROACH

The ensemble fuzzing aims to improve the detection
of web vulnerabilities and increase the code cover-
age. Also, it intents to minimize the problem of in-
teractions that can change the application’s state, pre-
sented previously (Doupé et al., 2012), by increasing
the probability of exploiting a vulnerability by using
several fuzzers that will exercise the same requests.
Web application fuzzers before attacking the ap-

plication under test, need to inspect its attack surface
to extract the URLs (web requests) they need to per-
form the attacks. These fuzzers contain two compo-
nents — crawler and scanner'® — to perform, respec-
tively, the inspection of the attack surface and the at-
tacks. In addition, the latter depends on the results
from the former. However, there is no guarantee that
the crawler extracts all entry points from the attack
surface and compose with them all valid URLs the
application contains. On the other hand, there is also
no guarantee that the scanner has the ability to exer-
cise the URLs with the correct injected code, capable
of exploiting the existing vulnerabilities in the appli-
cation through these URLs.

Therefore, we propose an approach that combines
different fuzzers and resorts from the best they have
in order to improve the resolution of these issues. The
approach comprises two phases — Crawling and Scan-
ning — and their interactions are illustrated in Figure
1, respectively, by the orange and the black arrows.

Fuzzers

crawler scanner

Web application

Vulns.
exploited

Request Request
extractor uniformizer
Distributor

Figure 1: Overview of the ensemble fuzzing approach.

Crawling Phase. This phase starts with the initial
URL of the target application. Based on this URL,
the crawlers explore recursively the attack surface of
the web application in order to discover all requests
that the application receives. The Request extractor
module extracts the requests they made, analyses the
content of their responses and collects the entry points
they contain, i.e., the application points that receive
user inputs. Next, the Request Uniformizer module
compares the requests in order to remove the dupli-
cated ones, and then converts the distinct ones into an
uniform format that will allow to be used by different
fuzzers in the attack phase. At the end of this phase, a
list of distinct requests (uniformized) is obtained, in-
dicating for each one which fuzzers found it. Despite

10We denominate scanner instead fuzzer to distinguish it
from the fuzzer as a whole.

407

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

the duplicated requests being eliminated, the list con-
tains all fuzzers that found them. Also, in order to get
the best results of each crawler and to ensure that the
results obtained from a crawler are not being influ-
enced by other crawler’s execution, the application’s
data is reset after each execution.

Attack Phase. This phase aims to attack the web
application to exploit existing vulnerabilities in its
source code, using the requests resulting from the pre-
vious phase. The Distributor module receives the list
of request and distributes it to the fuzzers. However,
as each fuzzer has a different format to store the re-
quests found by its crawler in its database, the dis-
tributor, before distributing the requests, must prepare
each one according to the format of each fuzzer. Next,
each fuzzer delivers the requests to its scanner for this
latter to exercise them with malcraft inputs and ex-
ploit some vulnerability. At the end, for each fuzzer,
a list of the vulnerabilities found is provided, as well
as the request that exploited them.

Assessment. We evaluated the fuzzers based on the
coverage and precision of their crawler and scanner.
We compared the crawlers through the number of
URL’s (requests) and the type of endpoints explored.
The scanners were assessed for their ability to ex-
ploit vulnerabilities, given the same list of requests
for all fuzzers and their unique vulnerability findings.
Note that, since all scanners use the same requests,
we are able to detect limitations in the capability of
exploring vulnerabilities by comparing the results of
each fuzzer, as the results are not crawling dependent.
Also, for the results found by each scanner, we manu-
ally inspected them to verify what vulnerability each
scanner (fuzzer) found (see Section 6).

S IMPLEMENTATION AND
CONFIGURATION

The proposed approach was implemented with three
fuzzers, namely the Wapiti 3.0.3, with the Web _Spider
plugin for crawling, the w3af 2019.1.2, with the
Web_Spider plugin for crawling, and the OWASP
ZAP 2.9.0 (ZAP for short) with the Spider tool for
crawling and the active-scan tool for attacking. For
attacking, all tools were configured for sqli and xss.
ZAP was also configured with xss_persistent and
xss_reflected modules. The plugin xss of the first two
fuzzers also allows the discovery of persistent XSS.
Fuzzers must be correctly configured to achieve
a better performing and vulnerability exploitation.

408

One important configuration they contain, besides the
URL of the target application, is the user authenti-
cation way on the application, as nowadays several
web applications have a user authentication process
for preventing unauthorized users from gaining ac-
cess to sensitive information. Hence, next we describe
the authentication forms each fuzzer offers, which we
opted and how we configured it. In addition, to avoid
bias analysis conclusions, the crawlers’ depth level
was set to the same level and they were run only once.

Wapiti authentication is based on session cookies.
The utility wapiti-getcookie, given the login URL, can
fetch the session cookies from the application that are
later imported to the wapiti scanner. However, this
utility, in some cases, does not detect the hidden val-
ues that are sent in the authentication process. To cir-
cumvent this issue, we created a script that generates
the cookie with the mandatory values.

w3af offers two authentication modes: autocom-
plete and cookie-based. For the former, the user pro-
vides the login URL, the authentication parameters
and some information about a successful login. It
works well most of times, however, when it does not,
we use the second mode which its configuration is
very similar to Wapiti and where the cookie needs to
be converted to the w3af-readable format.

ZAP has multiple ways of dealing with authenti-
cation. We explored two of them: form-based and
script-based. In both, we must supply some applica-
tion context, such as the login and logout regex, and
the username and password. The form-based mode
automatically detects the data and format required for
authentication, given the login page, and anti-CSRF
tokens if the name of the tokens used by the website
is in the ZAP Anti-CSREF list. Although this automa-
tion seems useful, in some cases it is unable to find the
correct data format, resulting in failed authentication
attempts. The script-based mode resolves this issue.
In this mode, the authentication data is provided in a
script that, when executed, will perform the actions
required for authentication. This mode achieves bet-
ter results than the first, and so we opted by it.

6 EXPERIMENTS AND
EVALUATION

The objective of the experimental evaluation was to
answer the following questions: (1) Can the ensem-
ble fuzzing lead to the discovery of vulnerabilities that
would be missed if the fuzzers used only the requests
found by their crawler? (2) Can the ensemble fuzzing
improve the overall coverage and precision of the vul-
nerability detection?

Improving Web Application Vulnerability Detection Leveraging Ensemble Fuzzing

6.1 Tested Web Application

The ensemble fuzzing was evaluated with three
known vulnerable open-source web applications.

DVWA. Damn Vulnerable Web App (DVWA!!) is a
PHP/MySQL web application designed to be vulner-
able to SQL injections, XSS and other vulnerability
classes. The application requires user authentication,
few pages can be accessed without an active session,
and the different pages can be accessed via simple hy-
perlink tags inside of list items. It has also the option
of changing the level of security used. For our testing
purposes we used the level “low” (no security).

Mutillidae. Mutillidae'? is a deliberately vulnera-
ble web application that contains at least one vulner-
ability type belonging to OWASP Top 10 (Williams
and Wichers, 2017). To access its different pages,
nested HTML unordered lists, that change with *“on-
mouseover” events, are used. There is a base URL
and most of the pages are accessible by changing the
value of a variable in the query string.

bWAPP. Buggy Web Application (bWAPP!3) is a
vulnerable web application with over one hundred
vulnerabilities, including those described in OWASP
Top 10. Such as DVWA, it also requires authentica-
tion and the pages accessible without it are limited
and vulnerability free.

6.2 Crawlers Evaluation

This section has the goal of assessing the capabilities
of the crawlers and understanding their discrepancies.

Before crawling the web applications, a man-
val analysis was made to identify how is performed
the authentication process, and the entry points that
would modify the application’s state in an unwanted
way, as for example the logout endpoint. Although
this last identification requires some manual work, it
leads to more constant results, and so to a more fair
and complete crawler comparison.

The evaluation of the crawlers was based on the
results provided by the Request Uniformizer module,
where we compared the requests executed by each
crawler pursuing the following criteria: (i) requests
with the same method (eg., GET); (ii) requests with
the same base URL; (iii) requests with the same vari-
ables and same values in the query string, despite

Uhttp://www.dvwa.co.uk/
Zhttps://github.com/webpwnized/mutillidae
Bhttp://www.itsecgames.com/

order. Initially we considered similar requests that
had the same variables in the query string, despite it’s
value. Although the majority of the requests with the
same variables lead to the same page, in some cases
the value determined the page to be presented. To
avoid missing this endpoints, we compared the values
as well. (iv) requests with the same post data. This
criteria was defined for simplistic reasons, as com-
paring the data parameters with all the types that are
possible to send is not trivial.

Based on these four criteria, we were able to auto-
matically compare the requests made by all crawlers
and verify which ones represent the unique and sim-
ilar requests between crawlers. Figure 2 presents the
results of this comparison for each web application.

As we can observe, there is no crawler that is the
best. All crawlers had different results. The rate of
common requests discovered by all crawlers was 28%
(29) in DVWA, 20% (90) in Multilidae, and 13% (52)
in bWAPP. However, the number of equal requests
outputted by two crawlers was grater compared with
the previous rate. For example, for Multilidae and
bWAPP it was, respectively, 35% (161 out of 461)
and 45% (182 out of 405). Almost or even more than
50% of the requests found by each crawler were only
discovered by it (called the unique requests).

Some interesting unique requests were found in
DVWA and Mutillidae. For DVWA, ZAP unique
URL’s are related to the login page and pages that
are accessible from there, in which w3af and Wapiti
excluded from their results. Of the few unique re-
quests found by Wapiti, one has an entry point only
accessible through a redirect Javascript function. ZAP
misses this completely and w3af reaches the function
but excludes the URL due to an erroneous redirect. As
we will see in Section 6.3 this request will allow the
exploitation of vulnerabilities. w3af unique requests
are mainly images that are missed or ignored by the
other fuzzers. For Multilidae, the unique URLs for
ZAP and Wapiti are related to a public phpmyadmin
service that they were able to detect, while for w3af
are related to folders that have common names, such
as “/javascript” or “‘/webservices”.

These results denote the existing discrepancy in
what crawlers can discover. Also, in the first instance,
we can say that there are advantages in crawling appli-
cations with an ensemble fuzzing, because there are
requests that are missed by some crawlers that may
contain vulnerabilities and that would not be found
by the fuzzers whose crawlers have lost.

409

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

W3af
Wapiti
1 Wapiti

7

BS)
42

29

11
28

ZAP

(a) DVWA

ZAP

90

(b) Mutillidae

Wapiti
= w3af

W3af 2

53

52

154 26

149

2k

101

ZAP

(c) bWAPP

Figure 2: Number of URLSs found by crawlers of each fuzzer when inspect each web application.

Table 1: Number of successfully explored vulnerabilities in the tested web applications.

| Web App [Vulnerability | Wapiti | Wapiti-EF | W3af | W3af-EF [ZAP | ZAP-EF | False Positives |

SQLi 2 2 3 3 3 3 1

DVWA Reflected XSS 5 5 1 5 7 8 1
Stored XSS 0 0 0 2 2 2 0

SQLi 17 17 4 12 9 9 0

Mutillidae | Reflected XSS 52 54 26 43 22 24 1
Stored XSS 17 17 1 11 3 3 1

SQLi 1 1 0 1 0 0 0
bWAPP Reflected XSS 9 21 1 13 19 20 11
Stored XSS 1 4 0 2 1 1 0

6.3 Scanners Evaluation

In this section it is assessed the capabilities of the
fuzzers’ scanners, individually and in the ensemble.
Also, the section intents to find out if scanners have
the ability to explore requests found by other crawlers
than their own fuzzer and, hence, exploit vulnerabili-
ties from them.

For the individual evaluation, each scanner was
run as standalone with the requests that its crawler
discovered. On the other hand, in the ensemble, each
scanner run with the requests found by the ensemble
fuzzing and provided by the distributor, after they be-
ing formatted according to the fuzzer format. Hence,
having a list of requests gotten by the three fuzzers’
crawlers, each fuzzer was fed with the list, and each
fuzzer’s scanner used the requests, exercised them
with diverse inputs and carried out attacks on the web
applications to try to exploit SQLi and XSS.

Table 1 summarize the results obtained from the
scanners on both evaluations, where columns 3, 5 and
7 regard individual fuzzers and columns 4, 6, and
8 to fuzzers in the ensemble (EF). The results vary
with the complexity of each web application. Again,
there is no scanner that is the best. It is visible that
fuzzers within the ensemble improves their precision
on discovering vulnerabilities, denoting thus that they
are able to explore request that were found by other

410

crawlers. Also, w3af-EF was the fuzzer that had its
precision more increased. ZAP-EF exploited more
vulnerabilities in DVWA, while in the Mutillidae and
bWAPP applications, Wapiti-EF had better results.

In order to assess the quality of the scanners, we
compared the reported vulnerabilities between each
other, identifying the unique and common findings.
Figure 3 displays the vulnerability distribution for
each application. The common findings ranges 27%
—50% between all scanners, and 14% — 49% between
two scanners. The unique findings in average are
39%. Wapiti-EF and ZAP-EF had a greater number
of unique findings, varying according to the applica-
tion tested. w3af-EF, on the other hand, had a low rate
of unique findings (1 or 0).

During the analysis we found interesting cases
when we compared the results of the scanners and the
requests of the crawlers. Also, we tried all outputted
results on the tested web applications (i.e., we per-
formed the attacks manually) and we found that some
of them were false positives. The next two sections
we present some of these cases.

6.3.1 Identifying Interesting Cases

We considered an attack interesting if it fits in one of
the following cases: (i) the crawler of the fuzzer F;
missed the URL; and the remaining crawlers found it

Improving Web Application Vulnerability Detection Leveraging Ensemble Fuzzing

Wapiti W3af Wapiti

ZAP
(a) DVWA

(b) Mutillidae

W3af Wapiti W3af

10

11

ZAP
(c) bWAPP

Figure 3: Vulnerability distribution by each fuzzer when attacking each web application.

but were unable to explore it. In the ensemble, only
F, was able to explore the URL; and found the vulner-
ability; (ii) only the crawler of the fuzzer F, was able
to find the URL; and explored it. In the ensemble, all
fuzzers were able to explore URL; and found the vul-
nerability. (iii) both fuzzers Fy and F, found the same
base URL, however Fy, was not able to retrieve a valid
request from it because F, missed a variable or sent
an erroneous value. F, discovered the correct request
(URL;) and was able to explore it. In the ensemble, F,
also was able to explore URL,.

We found 18 interesting cases, namely 6 from the
first case, 11 from the second and 1 from the last.
Table 2 presents an interesting XSS vulnerability we
found of each case. We used a binary representation
to identify if the vulnerability was explored or not.
The ”-EF” columns represent the attacks performed
in the ensemble, and the others columns represent the
attacks performed by the fuzzer individually.

Table 2: An example of XSS of each case.

URL Wapiti | Wapiti-EF | W3af | W3af-EF | ZAP | ZAP-EF
/bWAPP/csrf_3.php 0 1 0 0 0 0
/DVWA/vulnerabilities/ 1 1 0 1 0 1
csrf/test_credentials.php
/bWAPP/xss_php_self.php 0 1 0 1 1 1

In the first row, it is represented a vulnerability where
the request was missed by the Wapiti’s crawler but
caught by other one’s crawlers, in which these were
unable to exploit that vulnerability. Observing the
application code, there is a submit button that sends
some values, including one that is in a hidden input
Wapiti was able to manage this hidden input, unlike
the other fuzzers.

The second row is the case mentioned in Section
6.2. Wapiti’s crawler is the only one that found the
URL, being able to explore it. When the URL is
shared between all fuzzers, all of them exploited the
vulnerability too.

In the last row, the w3af’s crawler missed the
URL, unlike the other crawlers. But, ZAP and Wapiti

returned different parameters for this URL. Wapiti
only found the parameters from a form that is used
to update information, missing a parameter that is
needed to send the request; hence, its exploration
failed. ZAP found the correct URL and explored it
successfully. When the correct URL (from ZAP) was
explored by all fuzzers, they all were able to explore
the vulnerability. The code that validates this request
is presented in Listing 1. The vulnerable code can
only be accessible if all the parameters form, first-
name and lastname are set, making the parameter
form, discovered by ZAP, crucial in the vulnerability
exploitation.

Listing 1: Source code that validates the requests sent to
/bWAPP/xss_php_self.php.

if (isset ($S_GET["form"]) && isset (S_GET["firstname"
]) && isset ($_GET["lastname"])) {

$firstname = $_GET["firstname"];
Slastname = $_GET["lastname"];
if($firstname == "" or $lastname == "")

echo "<font_color=\"red\">Please _enter both_
fields...";
else
echo "Welcome ".xss($firstname)."_".xss(

$lastname) ;

6.3.2 Identifying False Positives

By manually performing all the attacks reported by
each fuzzer’s scanner, we confirmed a total of 15 false
positives: 13 from ZAP and 2 from w3af. The last
column of the Table 1 presents them on the three
applications. Most of the ZAP false positives were
XSS attacks in the application bPWAPP, as the val-
ues of the variables instantiated by ZAP were not
used, since it was only checked if the variable was
set. One example of a w3af false positive was in
DVWA, as it reported a SQLi attack in ‘/DVWA/in-
structions.php?doc=", where the attacked parameter

411

ENASE 2021 - 16th International Conference on Evaluation of Novel Approaches to Software Engineering

was “doc”. Listing 2 presents a fragment of code that
deals with this parameter. Here, the value of the vari-
able is only used to compare with values of an existing
array, and if it does not match any of it’s values, a de-
fault one is used. The value is not used anywhere else
in the application, and so no SQLi attack is possible.

Listing 2: Source code of the page attacked by the w3af
fuzzer that resulted in a false positive.

$docs = array(
"readme’=> array(’file’ => 'README.md’),
"PDF’=> array(’'file’ => ’docs/pdf.html’),
)i

$selectedDocId = isset (S_GET[’'doc’]) ? S$_GET[’doc’
I
if(larray_key_exists ($selectedDocId, $docs)) {
$selectedDocId = ’readme’;

}
SreadFile = S$docs([$selectedDocId] [’ file’];

7 CONCLUSIONS

The paper presented an ensemble fuzzing approach
for web applications to improve the detection of vul-
nerabilities by exploring all returned requests of all
fuzzers’ crawlers and increase the code coverage of
such applications. The approach was implemented
with three open-source web fuzzers and evaluated
with three well known vulnerable applications. The
preliminary results are promising and showed that
there are advantages to have such ensemble, specially
in those cases where it is able to detect vulnerabilities
that would be missed if the fuzzers would run indi-
vidually. As a further step, we want to identify in the
code of the applications the vulnerabilities exploited
by inspecting the code traces resulting from fuzzers.

ACKNOWLEDGMENTS

This work was partially supported by the na-
tional funds through FCT with reference to
SEAL project (PTDC/CCI-INF/29058/2017) and
LASIGE Research Unit (UIDB/00408/2020 and
UIDP/00408/2020).

REFERENCES

Aragjo, F., Medeiros, 1., and Neves, N. (2020). Generat-
ing tests for the discovery of security flaws in prod-
uct variants. In Proceedings of the IEEE International
Conference on Software Testing, Verification and Val-
idation Workshops, pages 133-142.

412

Chen, Y., Jiang, Y., Ma, F., Liang, J., Wang, M., Zhou, C.,
Jiao, X., and Su, Z. (2019). Enfuzz: Ensemble fuzzing
with seed synchronization among diverse fuzzers. In
Proceedings of the 28th USENIX Security Symposium,
pages 1967-1983.

Chess, B. and McGraw, G. (2004). Static analysis for secu-
rity. IEEE Security & Privacy, 2(6):76-79.

Demetrio, L., Valenza, A., Costa, G., and Lagorio, G.
(2020). WAF-A-MoLE. Proceedings of the 35th An-
nual ACM Symposium on Applied Computing.

Doupé, A., Cavedon, L., Kruegel, C., and Vigna, G. (2012).
Enemy of the state: A state-aware black-box web vul-
nerability scanner. In Proceedings of the USENIX
Conference on Security Symposium, pages 26-26.

Duchene, F., Rawat, S., Richier, J., and Groz, R. (2013).
Ligre: Reverse-engineering of control and data flow
models for black-box XSS detection. In Proceedings
of the Working Conference on Reverse Engineering,
pages 252-261.

Duchene, F., Rawat, S., Richier, J.-L., and Groz, R. (2014).
Kameleonfuzz: evolutionary fuzzing for black-box
xss detection. In Proceedings of the ACM Conference
on Data and Application Security and Privacy, pages
37-48.

Holler, C., Herzig, K., and Zeller, A. (2012). Fuzzing with
code fragments. In Proceedings of the 21st USENIX
Security Symposium, pages 445—458.

Jovanovic, N., Kruegel, C., and Kirda, E. (2006). Pre-
cise alias analysis for static detection of web appli-
cation vulnerabilities. In Proceedings of the workshop
on Programming languages and analysis for security,
pages 27-36.

Medeiros, 1., Neves, N. F., and Correia, M. (2014). Au-
tomatic detection and correction of web application
vulnerabilities using data mining to predict false posi-
tives. In Proceedings of the International Conference
on World Wide Web, pages 63-74.

Miller, B. P., Fredriksen, L., and So, B. (1990). An empiri-
cal study of the reliability of UNIX utilities. Commu-
nications of the ACM, 33(12):32-44.

Ryan, K. (2020). Patched zoom exploit: Altering camera
settings via remote sql injection.

Sargsyan, S., Kurmangaleev, S., Hakobyan, J., Mehrabyan,
M., Asryan, S., and Movsisyan, H. (2019). Directed
fuzzing based on program dynamic instrumentation.
In Proceedings of the International Conference on En-
gineering Technologies and Computer Science, pages
30-33.

Sohoel, H., Jaatun, M., and Boyd, C. (2018). Owasp top 10
- do startups care? pages 1-8.

Sutton, M., Greene, A., and Amini, P. (2007). Fuzzing:
brute force vulnerability discovery. Addison-Wesley.

Vimpari, M. (2015). An evaluation of free fuzzing tools.

Wassermann, G. and Su, Z. (2008). Static detection of
cross-site scripting vulnerabilities. In Proceedings of
the International Conference on Software Engineer-
ing, pages 171-180.

Williams, J. and Wichers, D. (2017). OWASP Top 10 -
2017 rcl - the ten most critical web application secu-
rity risks. Technical report, OWASP Foundation.

