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Abstract: Assuring safety of machine learning (ML) models in autonomous vehicles is a challenging task. This is be-
cause of the complex operational design domain (ODD) settings under which we need to validate ML models.
In particular, autonomous vehicles with level 5 of driving automation need to operate under any ODD condi-
tions, and should ensure safety of both road users and passengers. However, deploying common ML models
across a fleet of vehicles to operate in multiple regions can complicate the safety assurance process.Even when
an ML model is found to be causing a crash due to an ODD condition occurring in only one of the regions, we
still should update it across the fleets of all regions. If we can limit its update within that particular region, we
can reduce the complexity of safety assurance. In this paper, we propose the location-based machine learn-
ing models for level 5 automated vehicles to address this problem and how they will be helpful compared to
deploying instances of global ML models which are same across a company’s fleets of vehicles.

1 INTRODUCTION

Automated vehicles are one of the highly complex
systems that rely on machine learning (ML) models
to perform tasks such as perception and motion plan-
ning (Chen et al., 2015; Aradi, 2020; Pfeiffer et al.,
2017). The widely used machine learning algorithms
are deep neural networks (Grigorescu et al., 2020).
Some of the machine learning models generated us-
ing deep neural networks are object detection mod-
els (used to classify and locate objects), reinforcement
learning models (used to predict a potential next state
based on current state), and adversarial learning mod-
els (used to analyze robustness of other ML models).
While the current state-of-the-art autonomous vehi-
cles still rely on safety-drivers or remote operators
to ensure safety and prevent accidents or operate in
a limited geographical location, the ultimate goal is
to reach SAE level 5 of driving automation (Commit-
tee et al., 2018), where the vehicle can autonomously
travel to any place and ensure safety of passengers
and other road users (e.g., other vehicles, pedestrians)
without human feedback.

Performing safety assurance for autonomous ve-
hicles with level 5 of automation can be very chal-
lenging. This is because of the extensive operation
design domain (ODD) (BSI/PAS, 2020) that we need

to consider for such vehicles. ODD includes fac-
tors such as environmental conditions (e.g., snowy
weather), road users (e.g., pedestrian, bicyclists),
and scenery/road infrastructure (e.g., pavement, road
markings, road type, traffic signs). To ensure safety
of autonomous vehicles, they should comply with the
safety standards: ISO 26262 (ISO, 2018) and ISO
21448 (ISO/PAS, 2020). While ISO 26262 deals with
functional safety (FuSa), ISO 21448 deals with safety
of the intended functionality (SOTIF).

The ML models we use in an autonomous ve-
hicle also need to comply with the ISO 26262 and
ISO 21448 standards. In the case of an autonomous
vehicle with level 5 of driving automation, compli-
ance with ISO 26262 and ISO 21448 requires to suffi-
ciently demonstrate that the vehicle has an acceptable
or reasonable level of risk under all ODD settings. If
we assume that the autonomous vehicles of level 5
are being operated in different regions1 across United
States of America (USA), it implies we need to vali-
date safety of ML models in all these regions. Ensur-
ing safety across different regions requires thorough
representative data sets of all regions and correspond-
ing ODD elements. Moreover, we must perform a

1A region can be a city or a county or a state or a group of
states
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thorough error analysis of these ML models and un-
derstand the impact of outputs from ML models on
the behavior of the automated vehicle after sensor fu-
sion.

After the deployment, if we find a situation in
which one of the ML models being used in an auto-
mated vehicle results in a crash under some ODD set-
tings, we will need to update the ML model or mod-
ify software to ensure the risk is reduced. If we update
the ML model, then before deploying the updated ML
model into the automated vehicle, we should perform
change impact analysis (Kretsou et al., 2021) to com-
ply with ISO 26262 and ISO 21448. This process en-
sures that the updated ML model is not compromising
the FuSa or SOTIF of the automated vehicle.

Such an analysis, where we need to ensure safety
of an ML model and automated vehicle over multi-
ple locations/regions, can be highly time-consuming.
If the fleet of vehicles is operating in a limited zone,
the complexity of analysis may be reduced. However,
if the fleet of automated vehicles are heterogeneous,
i.e., there are different vehicle types that use differ-
ent technologies, the safety analysis can be even more
challenging. This complexity can add more difficul-
ties with maintaining global models whose instances
are deployed across a company’s fleet of vehicles.

When we analyze safety of ML models in au-
tomated vehicles, we need to consider the tempo-
ral nature of data, i.e., how data can change with
time, the amount of data being collected from each
vehicle and time taken to scrutinize it, and the co-
existence of vehicles which have no driving automa-
tion or partial driving automation (SAE level 3 or be-
low). These factors add further complications when
using instances of the same global models across the
fleet of cars of a company because data changes with
time and driving behaviors of vehicles with no or par-
tial driving automation can vary with locations.

To overcome these limitations and to reduce the
complexity, we propose the idea of location-based
ML models for automated vehicles. The location-
based ML models will limit the ODD and thereby re-
duce the time taken for change impact analysis and
safety assessment. By using location-based mod-
els, safety assessments can be done per each model,
thereby approving releases along with certifications
per region. Safety assessment per region can also aid
companies in limiting the recalls of vehicles to a par-
ticular region when an issue is found only within that
region. We detail the engineering aspects we need
to take into account when we use location-based ML
models for automated vehicles to achieve level 5 of
driving automation. Under the assumption that all
regions have respective location-based models, note

that using location-based models does not make an
automated vehicle belong to SAE level 4. The auto-
mated vehicle will still belong to SAE level 5 as it
can still operate anywhere without relying on human
intervention.

The rest of the paper is organized as follows.
Section2 discusses ISO 26262 and ISO 21448, and
what aspects we need to consider for ML safety anal-
ysis according to these standards. Section 3 details the
concept of change impact analysis and its application
to ML models to comply with ISO 26262 and ISO
21448. Section 4 describes location-based ML mod-
els and how they aid the companies from both engi-
neering and safety point of views. Section 5 provides
insights and potential future directions and finally, we
conclude in Section 6.

2 ISO STANDARDS AND ML
MODELS

Automated vehicles should be compliant with two
ISO safety standards: ISO 26262 (ISO, 2018) and
ISO 21448 (ISO/PAS, 2020). ISO 26262 is the func-
tional safety (FuSa) standard for automotive vehicles
and ISO 21448 is the standard for safety of the in-
tended functionality (SOTIF). FuSa aims at reducing
risks to an acceptable level, which can occur due to
malfunctions of hardware and software in a vehicle.
SOTIF, on the other hand, aims at reducing unknown
risks to a reasonable level and identifies gaps in re-
quirements. SOTIF is performed under the assump-
tion that the system follows its requirements as stated.
The violation of the expected behavior from require-
ments due to hardware and software malfunctions fall
under FuSa.

In the case of an ML model, as part of ISO 26262,
we need to ensure the hardware on which the ML
model is deployed and software which the ML model
uses are not susceptible to malfunctions. ISO 26262
also requires the safety analysts to ensure a change in
ML hardware, ML software, or an ML model does not
compromise the functional safety of the system. The
standard also requires to ensure the configurations of
ML hardware, ML software, and an ML model are
compatible even after updates.

On the other hand, ISO 21448 requires to analyze
an ML model considering all possible scenarios that
are possible in the ODD in which its predictions can
result in safety issues. This includes ODD conditions
under which an ML model cannot perform well, in-
correct predictions by an ML model, and limitations
of an ML model because of the data used, the ML
training process followed, and an ML model’s depen-
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dencies on other ML models if it is relying on their
input to take a decision. ISO 21448 is done in con-
junction with ISO 26262. Hence, an update in an ML
model should be done through change impact anal-
ysis considering both the standards. As a result, an
updated ML model to be compliant with ISO 21448
requires a thorough analysis with respect to its predic-
tions, ODD conditions, as well as its impact on any
dependent ML components.

Note that a given ODD can have many operating
environments, and within each operating environment
many scenarios are possible. Also note that, a sce-
nario in ISO 21448 is defined as a combination of
scenes, events, and actions with a defined set of goals
and values including vehicle maneuvers. According
to ISO 21448, we can define every scenario as a tem-
poral sequence of situations that can occur within an
operating environment. An ML model makes a deci-
sion based on each situation. For example, if we con-
sider a sequence of frames from a camera, the entire
sequence can be considered a scenario, each frame
can be considered a situation. Hence, validation of
ML models will need to be done at a situation-level to
gain enough confidence for possible scenarios across
the ODD. Thus, analyzing safety of an ML model
even within a limited ODD can be a time-consuming
task. For automated vehicles with level 5 of driving
automation, which need to be able to travel anywhere
without human feedback, performing SOTIF analysis
to ensure compliance with ISO 21448 will require to
analyze a large number of scenarios and correspond-
ing possible situations for them. Also note that in or-
der to have compliance with ISO 21448, we should
also demonstrate that the automated vehicle has a very
low possibility to face unknown hazardous scenarios
by exploring scenarios in the real world or by us-
ing probabilistic modeling and functional decompo-
sition (ISO/PAS, 2020). Hence, performing a change
impact analysis when an ML model is updated can
require a significant amount of effort.

3 CHANGE IMPACT ANALYSIS

In this section, we describe the change impact anal-
ysis and what should be considered to perform a
change impact analysis when an ML model is up-
dated/modified in autonomous vehicles.

Change impact analysis (Kretsou et al., 2021)
is the process of identifying the effect of a change
in a system, typically a change in software. To
date, many researchers proposed various mechanisms
for performing change impact analysis of require-
ments (Goknil et al., 2014), UML models (Briand

et al., 2003), object-oriented programs (Ren et al.,
2004), and aspected oriented programs (Zhao, 2002).
For example, Zhao (Zhao, 2002) proposed a program
slicing based technique for performing change im-
pact analysis of aspect oriented programs. The ma-
jor underlying goal of these change impact analysis
approaches is to identify if the new change added
to a system can affect the prior verified functional-
ity. ISO 26262 also requires change impact analy-
sis when a component or sub-system in a vehicle is
modified (ISO, 2018). While there are some existing
approaches on performing change impact analysis in
automotive systems (Cui et al., 2018; Käßmeyer et al.,
2015; Durisic et al., 2013), none of them have consid-
ered ML models.

The change impact analysis of ML models needs
to identify the effect of the updated ML models on
the FuSa and SOTIF of the automated vehicles. This
implies that we need mechanisms to identify if the up-
dated model might result in any new kinds of incorrect
predictions that the previous version of the ML model
did not, and if the updated model is compatible with
ML software and ML hardware. To better understand
the change impact analysis of an ML model, let us
consider an example of a wrong-way detection sys-
tem in an automated vehicle as shown in Figure 1. As
the figure shows the wrong way detection system is an
ML model which classifies whether a vehicle is go-
ing in a wrong way based on the predictions received
from the traffic sign identification system and road
marking identification system, which are the other set
of ML models.

Cameras 
of the 
vehicle

Road 
marking 

identification 
system

Traffic sign 
identification 

system

Wrong way 
detection 

system

Motion planning 
and movement 
control system

Images

Images
Images with 
traffic signs detected 

Images with 
road markings detected 

Figure 1: Example of a wrong way detection system of an
automated vehicle, which uses inputs from traffic sign de-
tection system and road marking detection system.

Let us assume that to detect a new sign, the traf-
fic sign identification system’s ML model is updated
and deployed. In this case, as a part of change im-
pact analysis, we should ensure the update in this ML
model not only identifies the new sign but should also
have acceptable performance for the other signs that
are detected previously. We also need to ensure that
the update in this model does not result in any incor-
rect predictions by a wrong way detection model, and
that the updated model is compatible with the hard-
ware and software on which it is deployed. We need
to perform these steps to ensure the addition of the
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updated model does not lead to new hazards. If the
updated model leads to new hazards, we should en-
sure they have a reasonable and acceptable level of
risk. We can observe from these steps that the change
impact analysis for an ML model even in a limited
ODD can be a tedious and time-consuming process.

4 LOCATION-BASED MODELS

An autonomous vehicle can collect a large amount of
data (in the order of terabytes) in one hour of oper-
ation. This data can also contain information related
to inputs that resulted in crash sequences. Often such
recently collected data including the crash sequence
data are analyzed to propose the solutions to mitigate
the crashes occurred. Such solutions can include re-
training ML models by adding new data, using other
sensor modalities in the car to mitigate the issues, and
modifying the algorithms (e.g., sensor fusion related
information). Hence, updating ML models can be
commonly performed to reduce crashes or to improve
performance and efficiency (Yang et al., 2018; Baylor
et al., 2017).

Whenever an ML model is updated, as mentioned
in the previous section, a change impact analysis
should be performed to ensure that the changes in the
ML model do not compromise safety. For safety as-
sessment teams, in order to certify an autonomous
vehicle, they need sufficient evidence, which can
demonstrate that the updated model will not result
in new safety issues that did not exist before. If we
assume the fleet of vehicles to be operating in mul-
tiple regions in a country, then before deploying the
same model across all fleets of vehicles and updating
the models in all vehicles simultaneously, we have to
make sure that the updated model does not result in
crashes in all regions. If the vehicle company decides
to recall the vehicles or shift to autonomous operation
under remote monitoring, the car owners will suffer a
great deal of inconvenience due to the absence or lim-
ited availability of these vehicles during such a ser-
vice period, thereby damaging the company’s repu-
tations. To reduce the effort for performing change
impact analysis, and restriction of operation to spe-
cific regions in the case of accidents, we propose to
use location-based models.

Figure 2 illustrates the approach that uses
location-based models and how it is different from the
approach that uses a global ML model across multi-
ple regions. In this illustration, we considered three
regions where fleets of vehicles are deployed. As de-
scribed earlier, a global ML model approach (shown
in Figure 2a) deploys the same model across differ-

ent fleets in different regions. On the other hand,
location-based models have region-specific ML mod-
els. If one of the vehicles is moving from one region
to another, the vehicle should replace the previously
used model with the new region’s model. This will
require a component that fetches the model relevant
to the region (represented as “Model fetcher” in Fig-
ure 2a.

As shown in Figure 2, let us assume that fleets
of vehicles are deployed across three regions such
that region 1 has snowfall between October and April
(e.g., St. Cloud in Minnesota), region 2 has no snow-
fall (e.g., Phoenix in Arizona), and region 3 has snow-
fall only between December and February (e.g., Bal-
timore in Maryland). Let us also assume multiple
crashes were observed in March during snow in re-
gion 1 due to incorrect outputs from the ML model. In
this case, for global ML model deployment as shown
in Figure 2b, when we deploy the updated model af-
ter retraining into fleets of vehicles, it will need to be
deployed across fleets in all three regions. As a result,
we need to ensure the updated model will not compro-
mise safety for any vehicle in the fleets of all three re-
gions. This will require a comprehensive change im-
pact analysis, simulation, verification, and sufficient
evidence to show the new model will not increase the
number of safety issues.

On the other hand, for location-based model de-
ployment, if the regional model 1 in region 1 is result-
ing in safety issues due to snowfall in March, the other
regional models need not be updated because 1) the
regional model 1 is trained for ODD corresponding to
region 1, and 2) regions 2 and 3 are not susceptible
to snowfall in March. Hence, the fleets of vehicles in
regions 2 and 3 can continue to operate without updat-
ing their ML models. Since we are only updating the
ML model corresponding to region 1, we should suffi-
ciently demonstrate safety by only considering region
1’s ODD. The fleets in other regions do not need to
wait for the updated model to be deployed across all
regions to continue operation without compromising
safety. This also helps in performing regional anal-
yses of crashes, which makes it easier for analysts
to perform error analysis and ablation studies of ML
models. It also helps us to have a better understanding
about how data changes in each region and thereby to
consider modification at both local and global levels
as needed. If such an understanding of how change
of data with time needs to be analyzed at a global
model level, it can be a very difficult task as currently
only limited automation support is available to ana-
lyze such changes. Note that by using location-based
model deployment, if a global model is intended to
be released across all regions, it can be done region
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(b) The effect of update in global ML model deployment.
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(c) The effect of update in location-based ML model deployment.

Figure 2: Illustration of global ML model deployment and location-based ML model deployment, and the effect of updating
a problematic ML model in both the approaches.
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by region (e.g., the updated model can be released in
region 1 initially and released eventually in regions 2
and 3 which do not have possibility for snowfall dur-
ing March), thereby making the global model deploy-
ment convert to location-based model deployment.

Preliminary Analysis: To examine whether it is
possible to have conditions that can be specific to
a certain region, we conducted a preliminary analy-
sis by considering 50 images picked randomly from
nuScenes dataset (Caesar et al., 2020), and 50 im-
ages from Berkeley Deep Drive (BDD) dataset (Yu
et al., 2020). The nuScenes dataset contains images
collected from the front and rear cameras in Singa-
pore and Boston, where as the BDD dataset has im-
ages collected from the front camera in New York,
San Francisco, Berkeley, and Bay area. We used
Yolo v4 (Bochkovskiy et al., 2020; Wang et al., 2020)
pretrained model on the 100 images with the focus
on identifying pedestrians, trucks, cars, and traffic
lights. In nuScenes data, we found that for the im-
age shown in Figure 3, pedestrians were not detected
due to low visibility of people walking on a sheltered
sidewalk. From BDD dataset, we did not find any im-
ages with a sheltered sidewalk similar to the one we
found in nuScenes dataset. This implies that the pres-
ence of the sheltered sidewalk is found in Singapore
or Boston, but not in other locations from which BDD
dataset is collected. From this observation, we can in-
fer that there can be ODD conditions that are specific
to the regions. While we analyzed very few images,
we believe that analyzing multiple datasets and model
predictions from them might uncover ODD condi-
tions that are available in one dataset but not other
dataset, thereby indicating that location-based mod-
els can be beneficial. If we update the Yolov4 model
to detect the pedestrians under sheltered pathways, we
should reanalyze the conditions under which Yolov4
is unable to predict objects correctly. If such an up-
dated model is used in an automated vehicle, we need
to demonstrate if the updated model is going to result
in any new hazards or not. If the error analysis of the
updated model shows new patterns among incorrect
predictions, we will need to verify the ML model for
various possible scenarios that can occur within the
ODD.

5 DISCUSSION

From the preliminary analysis, we can observe that
location-based models can aid in moving towards
SAE level 5 of driving automation. Both global ML
model and location-based ML model deployment ap-
proaches have their own pros and cons as shown in Ta-

ble 1. For diverse ODD settings, heterogeneous fleets
of vehicles, change of data with time, consideration
of behavior of other road vehicles with no automation
and partial automation, and V2X communications, it
would be better to use a location-based ML models
as it can reduce the effort and time for analysis when
updates are performed to ML models in automated
vehicles. It would also help in performing a thorough
error analysis and in gaining a sufficient confidence
that the automated vehicle is safe enough to be certi-
fied.

Open Questions and Future Directions: While
location-based ML model deployment is helpful,
there are also some open questions and directions we
should investigate.
1. Mechanisms to Change the ML Model with

Regions: When using location-based deployment,
if one vehicle currently operating on one region
needs to travel to another region, the vehicle will
need to replace its ML model once it reaches an-
other region. However, when should the vehicle
request for the model from the other region? What
if there is no service available to remotely down-
load the model at the entrance to another region?
We need techniques and look-a-head scheduling
strategies to figure out when we need to replace
the model from previous region with the model
from the region we are entering without affect-
ing the continuous flow of driving. Should we
use combination of the models during the transi-
tion from one region to another, or should mod-
els be trained by having some common boundary
space than a strict line of separation between re-
gions? We should investigate to find answers to
these questions. We also need to consider means
to ensure a vehicle’s safety if the current model
in the region is not available or redacted due to
some compliance reasons. In such a case, we
need to decide if we continue to use the previ-
ous model or shift to an emergency global safety
model, which operates with a vehicle traveling by
choosing lower speed roads and areas.

2. Mechanisms to Ensure Compatibility of ML
Models Across Regions with ML Hardware and
Software: When an automated vehicle enters a
new region and the ML model from the region is
downloaded to be used, the updated ML model
should have compatibility with ML hardware and
software in the car. If we are not able to ensure
this function automatically, the safety of the au-
tomated vehicle can be compromised. Hence, re-
search efforts in this direction should be consid-
ered.

3. Granularity of Locations: One of the open-end
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(a) Original image with pedestrians under sheltered side-
walk highlighted.

(b) Predictions after applying the pre-trained Yolo v4
model to the original image.

Figure 3: Example of image where pedestrians are not detected due to a location-based ODD condition.

Table 1: Pros and cons of global ML model deployment and location-based ML model deployment.

Global ML model deployment Location-based ML model deployment

Pros • No need to replace the ML model as the
vehicle moves from one region to an-
other.

• Once deployed the ML model can be
used anywhere within the ODD.

• Global model might be able to adapt to
new ODD elements in a region, if they
already exist in other regions.

• A problematic ML model within a loca-
tion/region can be updated without affect-
ing the operation of fleets in other re-
gions/locations and without updating ML
models in other regions.

• It reduces the effort and time required for
change impact analyses and paves the way
for a thorough error analysis and gaining
sufficient evidence for safety certification.

Cons • Significantly a large amount of effort re-
quired for change impact analysis, error
analysis, and data selection.

• A failure of an ML model at one region if
resulted in halting of vehicles may result
in decreased reliability for the use of a
company’s service by users.

• Requires a mechanism to replace an ML
model based on locations/regions.

• Lessons learned from error analysis of one
region may not be transferred to other re-
gions.

questions for location-based models is “what level
of granularity should we have for a location or
a region in location-based models?”. Should we
consider a location to be an area within a zipcode
or a city/town/village or a county or a state or a
group of states. We believe that having models
based on the zones in the large cities and hav-
ing models for the entire place for the small city,
town, or village will be a good starting point.
However, more research and studies should be
conducted to identify the suitable and beneficial
level of granularity.

6 CONCLUSIONS

In this paper, we proposed and discussed the location-
based ML model approach in order to achieve safe de-
ployment for automated vehicles with SAE level 5 of
driving automation. We discussed its pros and cons
compared to deploying the same set of ML models
across fleets of vehicles operating in different loca-
tions.

As discussed in the previous section, there are
many research directions with this topic. As part of
future work, we plan to conduct a thorough empirical
study on how location-based model and global ML
model deployment processes affect the change impact
analysis, system engineering process, and availability
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of vehicles. We also plan to explore what factors we
need to consider for self-learning ML models to as-
sure safety of the vehicle.
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