
WesterParse: A Transition-based Dependency Parser for Tonal Species
Counterpoint

Robert Snarrenberga

Department of Music, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, U.S.A.

Keywords: Music Analysis, Melodic Parsing, Tonal Syntax, Algorithmic Analysis, Westergaard.

Abstract: This article describes the syntax parser that is a principalcomponent of WesterParse, a software program
designed to evaluate tonal species counterpoint in the version developed by Peter Westergaard (1975). The
parser produces interpretations of the pitch-syntactic structure of simple tonal lines. The parser is written
in Python and relies on themusic21 toolkit. Given a simple tonal line of the sort found in Westergaardian
counterpoint, the parser can evaluate its structure and report whether the line is valid. To do so, the parser
compiles a set of possible syntactic interpretations. If asked, the program can display the interpretations in
a notation program such as MuseScore. (A separate componentof WesterParse is a voice-leading evaluator
that can test the counterpoint of both simple and combined species for compliance with Westergaard’s rules
of voice leading.) After providing a synopsis of Westergaard’s definition of simple tonal lines, the article
describes the architecture of the software parser, the scanning process, and the central concept of dependency
relations. The parsing operation is then illustrated usingFux’s Dorian cantus firmus, and a closer look is taken
at the process for parsing transitions.

1 INTRODUCTION

I have been teaching Peter Westergaard’s species
counterpoint in a class on tonal theory for 25 years.
As in traditional lessons, students compose exercises
and bring them to class for evaluation and feedback.
There is often a time lag of several days between the
act of composition and the reception of feedback, and
days or even weeks may elapse between receipt of
feedback and work on revising the composition. To
give students more frequent and more timely feed-
back, I thought it would be useful if evaluation and
feedback could be built into a software program and
made available at the click of a button, while students
are still in the flow of composing. So I decided to cre-
ate a web-based application to supplement the in-class
experience.

The application consists of a web page where stu-
dent users can compose species counterpoint exer-
cises and a server-based backend that can interpret
data sent from the web page. Stephen Pentecost, from
the Humanities Digital Workshop at Washington Uni-
versity, created the web interface. I wrote the backend
in Python.

a https://orcid.org/0000-0001-6705-188X

The user begins by deciding how many measures
of counterpoint to write, how many parts, and what
key signature to use. The webpage then presents the
user with a blank set of staves. The user enters notes
as desired, and a separate edit mode allows the user
to go back and change notes and add or delete mea-
sures. When the exercise is complete, the user can ask
the machine to evaluate the lines or evaluate the voice
leading. Clicking “Evaluate Lines” sends a represen-
tation of the line in MusicXML to a parser, which then
evaluates the construction of the lines and returns a
report that is displayed on the web page. The report
indicates whether the lines are generable according to
Westergaard’s rules and, if not, where errors were en-
countered. A similar report is issued when the user
clicks “Evaluate Voice Leading.”

This article describes the backend software
component that evaluates individual lines, the
so-called parser. Readers interested in testing
the parser and counterpoint evaluator may visit
talus.artsci.wustl.edu/westerparse/. The full code for
WesterParse is freely available on github.com/snar-
renberg/westerparse. Documentation of the software
is available at westerparse.readthedocs.io.

Snarrenberg, R.
WesterParse: A Transition-based Dependency Parser for Tonal Species Counterpoint.
DOI: 10.5220/0010482606690679
In Proceedings of the 13th International Conference on Computer Supported Education (CSEDU 2021) - Volume 1, pages 669-679
ISBN: 978-989-758-502-9
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

669



2 WESTERGAARDIAN LINES

In the early 1970s Westergaard developed an ap-
proach to teaching tonal music theory centered on
the cognition of linear syntax and counterpoint rather
than chords and harmony. The goal was to give the
student “the ability to understand the complex and
varied voice-leading patterns of actual eighteenth-
and nineteenth-century music in terms of the simpler
patterns available under the artificial constraints of
species counterpoint” (Westergaard, 1975, vii).

One thing that distinguishes Westergaard’s ap-
proach to species counterpoint from traditional forms
is the rigorous fashion in which the individual line is
regarded as (and constructed to be) “an entity with
its own structure, unfolding in time” (Westergaard,
1975, 29). In Westergaard’s formulation, the simple
tonal lines of species counterpoint are constructed by
applying rules that generate notes with certain order-
dependent functions (see Appendix). These genera-
tive rules constitute a syntax for simple tonal lines.1

The forms of simple linear structure are based on
those that Schenker posited as the components of the
Ursatz: a primary upper line and a bass line. The ker-
nel structure of a primary upper line consists of three
functions: a tonic pitch that acts as the final element of
the structure (rule A1); a tonic-triad pitch that lies in
the register above the tonic pitch and acts as the initial
structural element (A2); and pitches in the scale that
fill the span between the initial and final elements with
a complete stepwise motion (A3). Bass lines have a
kernel structure consisting of an arpeggiation from the
tonic degree (A2) to the dominant (A3) and on to an-
other tonic degree (A1). (Westergaard adds a third,
less constrained type of line that begins and ends on a
tonic-triad pitch; I call this a generic line.)

The kernel structures may be elaborated by the
addition of syntactically dependent elements: tonic-
triad pitches may be repeated (B1), new tonic triad
pitches may be inserted (B3), and stepwise transi-
tions may be created between consecutions of iden-
tical pitches (neighboring motions, B2) or different
pitches (passing motions, B4).

Figure 1 shows how a melody familiar to countless
generations of species counterpoint students might be
constructed as a bass line using Westergaard’s rules,
starting with the A-rules at the top and proceeding
level by level until all the notes of the line have been
generated.

1Simple lines are rhythmically uniform and relatively
brief. The syntactic system for complex, rhythmically dif-
ferentiated lines involves rhythmically and contrapuntally
sensitive rules. Parsing the syntax of such lines lies outside
the scope of this project.

G

G

G

G

G

G

G

G

G

2

2

2

2

2

2

2

2

2

¯ ¯ ¯ ¯ ¯ ¯ ¯ ︷ ︸︸ ︷¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯ ¯

¯ ¯ ¯ ¯

¯ ¯ ¯

¯ ¯

¯

Figure 1: Constructing Fux’s Dorian cantus firmus as a
Westergaardian bass line.

3 THE PARSER

The interpretation of Fux’s Dorian cantus firmus
shown in Figure 1 builds the line, as it were, note by
note, from the root node at the end of the line to the
most deeply embedded, dependent notes in the mid-
dle. The top-down structure resembles a syntax tree.
To arrive at such an interpretation, however, the soft-
ware parser (or the human interpreter) has to begin
with the given line of notes (the utterance) and then
derive an interpretation, determining what rule is used
to generate each note. And if there is more than one
way to parse the syntax of the line, the parser ought
to generate multiple interpretations.

The parser is designed to model the cognitive pro-
cess of auditive interpretation, which occurs in time
as the melody unfolds note by note. It is not a simple
process. In fact, a listener cannot begin to attribute
syntactic structure reliably to a melody without also
determining what triad and scale to use as frames of
reference. In the case of Fux’s melody, it takes a few
notes before a listener can grasp the mode and triad.
The process might run something like this. A listener

CSME 2021 - 2nd International Special Session on Computer Supported Music Education

670



assumes that the first note at the very least belongs
to the tonic triad, unless evidence accumulates to the
contrary. But which scale degree is it?1̂, 3̂, or 5̂? Af-
ter hearing the second note, the number of possibili-
ties is reduced, for the only plausible interpretations
of the two notes arê1 3̂ and3̂ 5̂. And after hearing the
third note, there is no doubt: this is a line in the mi-
nor mode that starts witĥ1 3̂ 2̂. A preliminary stage
of parsing, then, involves the selection of such frames
of reference as a plausible context for the syntactic
interpretation.

The parser must also keep track of notes and
all their contextually derived properties and syntac-
tic functions. From a software standpoint, this re-
quires an object-oriented programming language. I
built the parser in Python in order to take advantage
of themusic21 toolkit developed at MIT by Michael
Cuthbert and his colleagues.2 A significant advan-
tage ofmusic21 is that its already robust collection
of musical objects and relations is easily extensible.
The parser accepts input in the form of a MusicXML
source file, which is then converted by themusic21
toolkit. After conversion, the program can access the
content in the source file in a variety of ways: parts,
measures, notes, simultaneities, and so forth. Thanks
to the design ofmusic21, it is a relatively simple mat-
ter to extract the line of notes in each part of a contra-
puntal exercise for parsing.

The basic architecture of the parser is borrowed
from computational linguistics. It is modeled on soft-
ware that processes a sentence word by word and out-
puts a syntactic model, a so-called “transition-based
dependency parser.” In simple terms, this kind of
parser examines the transitions from word to word in
a sentence and decides at each point whether two ad-
jacent words are syntactically related as head and de-
pendent (or, vice versa, as dependent and head), or
whether to keep looking for such connections. Since
dependency relations are rather different in music, I
wrote all the interpretive routines from scratch3.

Figure 2 shows the basic architecture of the parser.
The process begins with an input buffer, loaded with
all of the notes in the line, and a stack, which is
empty. A simple scanning function shifts notes from
the buffer onto the stack, one at a time, until the buffer
is exhausted. At each step, the transition parser exam-
ines the top element of the stack and the next element
in the buffer and selects an action based on examina-

2(Cuthbert and Ariza, 2010); see http://web.mit.edu
/music21/doc/index.html.

3While many linguistics parsers now use machine learn-
ing methods and a set of training data, WesterParse takes an
algorithmic approach, based on a set of rules for generating
lines and a set of preferences for interpreting lines.

b0 b1 b2 …

transition 

parser

parse

input bufferstack

open heads

open transitions

dynamic lists

… s2 s1 s0

dependency 

relations

Figure 2: The architecture of WesterParse’s line parser.

tion of the current interpretive state.4

In addition to the stack and the input buffer, the
parser maintains a set of dynamic lists (open heads,
open transitions) and a partial parse of the line. The
dynamic lists keep track of open syntactic relations.
They change in content during the course of interpret-
ing the line. On the list of open heads are all the notes
that can currently initiate a new step motion or get
repeated. The list of open transitions contains notes
that are in yet-to-be-completed step motions. Think
of the opening notes of Fux’s cantus firmus, D F E.
At this point, the parser has placed D and F on the list
of notes of available heads and has decided that E is
an open transition, on its way somewhere. The parser
has also decided that E is stepping away from F, which
is to say, E depends on F. As the line transitions from
one note to the next, the parser is beginning to figure
out dependency relations among the notes, hence the
name of transition-based dependency parser.

The dependency relations make up the content of
the interpretation, the so-called parse. So, what is
meant by dependency relations? Take a consecutive
pair of notes, X and Y. We will say that Y is syntacti-
cally dependent upon X if X is mentioned in the syn-
tactic description of Y. We will also say that X stands
“to the left” of Y. If we find that Y repeats X, then Y is
dependent on X. Repetitions are always dependent on
a lefthand note, a so-called lefthead. Passing tones,
by contrast, are dependent upon notes to the left and
the right. They have a lefthead and a righthead.5 Take
the succession [F E D]. One possible syntactic inter-

4By contrast, the linguistics parsers described in (Juraf-
sky and Martin, 2008, Chapter 13, “Syntactic Parsing”) ex-
amine the top two elements of the stack. In the linguistics
parsers, the syntactic category of each element has already
been assigned prior to parsing, whereas WesterParse assigns
and revises syntactic classifications during the parsing pro-
cess itself.

5This is a significant point of difference between lan-
guage and music. In language, each word other than the
root note has but a single head, and so linguistic dependency
can be represented in strictly binary trees or graphs. In mu-

WesterParse: A Transition-based Dependency Parser for Tonal Species Counterpoint

671



lefthead righthead

dependents

simple passing and 

   neighboring motions

longer passing motions

repetitions

incomplete neighbors 

   and anticipations

Figure 3: Four types of arc.

pretation of the succession is this: “E passes between
F and D.” Under this interpretation, F and D are men-
tioned in the description of E. F is the lefthead of E.
D is the righthead of E. And E is a dependent of both
F and D.

A set of notes interconnected by dependency re-
lations forms an arc. Arcs are of several types (see
Fig. 3): some arcs, like passing and neighboring mo-
tions, have heads to the left and the right with depen-
dents in between. Others have only a lefthead (e.g.,
repetition), and some notes (e.g., insertions) do not
have a head, per se. In more complex tonal lines, it is
possible that an arc might have only a righthead (e.g.,
incomplete neighbor or anticipation). As the parser
works its way through the line, then, it sets depen-
dency attributes for each note, storing the informa-
tion in a custom Dependency object that is attached
to each note in the parse. As completed arcs accumu-
late, they are stored in a Parse object.

The parser also needs to keep track of other vari-
ables and properties of notes (see Fig. 1). At the out-
set, it needs to set some global variables: the name of
the keynote and the mode, from which the tonic triad
and scale can be inferred. This is currently handled
by a separate software component that infers the key
of the source input using a set of custom algorithms.
(The web application also allows the user to input a
key and thus override the keyfinding algorithm.)

Keyfinding is a crucial first step, since the parser
also needs to know the scale degree function of each
pitch. This is stored in another custom object called
Concrete Scale Degree (CSD). We are used to think-
ing of scale degrees as scale-degree classes, assigning
all tonic degrees to the class “scale degree one,” but
it has proven helpful to have a more concrete scale
degree function, one that distinguishes between, say,

sic, however, some notes are clearly transitional between an
earlier and a later note. Restricting theory to binary rela-
tions leads to false dependency choices, as can be seen, for
example, in Lerdahl and Jackendoff’s account of neighbor-
ing motions (see (Lerdahl and Jackendoff, 1983, 113–14,
185–87)).

Table 1: A partial ontology of WesterParse.

Object Classes Attributes Values
Context parts Part

key Key
Key keynote Pitch

mode major, minor
Part notes Note

id 0, . . . ,n
Note pitch A, . . . , G

index 0, . . . ,n
Concrete value . . . , –1, 0, 1, . . .

Scale degree . . . ,1̂, 2̂, . . .
Degree direction ascending,

descending,
bidirectional

Dependency lefthead None, or Note index
righthead None, or Note index
dependents None, or Note inidices

Rule name A1, . . . , B1, . . .
level 0, . . . ,n

Parse linetype primary, bass, generic
arcs lists of Note indices
open heads Note indices
open transitions Note indices

1̂ and8̂; this distinction allows the parser to hear7̂
as adjacent tô8 but not to1̂. The CSD stores a value
representing the distance of a particular pitch from the
core tonic degree. Scale degrees also have have direc-
tionality: in the minor mode, some degrees are bidi-
rectional, some are ascending, and some descending.
The parser will need to know, for example, that raised
6̂ is bidirectional but diatoniĉ6 is strictly descending.

When the parse is finished, the parser assigns a
Rule object to each note in the line. This object stores
the name of the note’s syntactic function and its struc-
tural level.

4 THE PARSING PROCEDURE

Let us look at how the parser works its way through
Fux’s Dorian cantus firmus. The first half of the pro-
cess is illustrated in Figure 4. To initialize the parser,
the first note D is moved onto the stack and is also
added to the list of open heads; at this stage there
are no open transitions and no completed arcs. From
this initial state, the parser scans forward, listens to F
(state 1), and adds F to the list of open heads. The
parser scans forward again (state 2), listens to E, and
adds it to the list of open transitions.

Several things happen after the parser hears the
fourth note, D (state 3). The parser connects E to this
D as a righthead and then listens back through the list
of open heads, searching for a lefthead. The parser
is biased toward finding a lefthead in proximity, so it
looks no further than F. The parser then creates an arc,

CSME 2021 - 2nd International Special Session on Computer Supported Music Education

672



G2 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

G2

G2 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

G2 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

G2 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

G2 ¯ ¯ ‰ ¯

G2 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

G2 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

G2 ¯ ¯ ‰ ¯ ¯” ¯
Figure 4: Parsing Fux’s Dorian cantus firmus, states 0–5.

[F E D], which is added to the parse.6 Meanwhile, E
is removed from the list of open transitions and the
most recent D is added to the list of open heads.

The parser listens to G (state 4). Realizing that
the only available precursor to G is the F, it removes
the intervening D from the list of open heads. The
list is pruned, we might say. The parser also adds G
to the open transitions. When it listens to F (state 5),
it makes an arc [F G F], adds this arc to the parse,
and then prunes back the list of open transitions. In
general, when the parser finds an arc, it prunes interior
elements from the list of open transitions and prunes
embedded heads from the list of open heads.

In subsequent stages, shown in Figure 5, the parser
hears A and adds it to the list of open heads, then hears
G and adds it to the list of open transitions. Upon
hearing F (state 8), the parser uses it as the righthead
of a new arc, [A G F], adding F to the open heads, and

6In the musical representations of the parses, notes of
the basic structure are identified by rule number, ties con-
nect repetitions to their heads, slurs connect the notes of a
stepwise motion, and parentheses enclose insertions.

removing G from the list of open transitions. Upon
hearing E (state 9), the parser adds it to the list of
open transitions. When the parser hears the final D
(state 10), it creates an arc, [F E D], adds the final D
to the open heads, and removes E from the list of open
transitions.

The parse, at this stage, is nevertheless incom-
plete. The parser has compiled a list of line segments
(arcs), but at least one note (the first) does not be-
long to any arc, and the arcs are not yet integrated into
an overarching structure. To integrate the arcs into a
complete interpretation, the parser has to decide what
type of line it wants to hear.

Suppose that the parser is told to see whether the
line makes sense as a bass line. If so, the line will
have to end and begin on a tonic pitch, and in be-
tween the beginning and the end it will have to touch
on 5̂. The rules imply that these three notes are con-
ceptually prior to all other notes in the line. Which is
to say, they are not dependent upon any other notes.
In the way that the rules are framed, A1 is something
like a root node. A2 is partially dependent on A1 (at
least in terms of order), and A3 is dependent upon A1.

WesterParse: A Transition-based Dependency Parser for Tonal Species Counterpoint

673



G2 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

G2 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

G2 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

G2 ¯ ¯ ‰ ¯ ¯” ¯ ¯ ¯ ‰ ¯

G2 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

G2 ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

G2 ¯ ¯ ‰ ¯ ¯” ¯ ¯ ¯ ‰ ¯ ¯ ‰ ¯
Figure 5: Parsing Fux’s Dorian cantus firmus, states 6–10.

Ideally, the parser would look for this structure as
it proceeds through the notes of the line. And a fu-
ture version of the parser may incorporate simultane-
ous parsing of basic structure, but for now the proce-
dure has been relegated to what we might think of as
a retroauditive parse.

Once the buffer is empty, the parser scans the line
again, looking for notes that could function in a basic
structure, assuming that the line is of a certain type
(bass, primary, generic). The parser is somewhat in-
telligent. It knows that it only needs to look at notes
that are not dependents of others, so at this stage it
uses just the list of open heads that remained in play
at the end of the initial parse. The parser examines
these open heads and assembles lists of candidates for
each of the structural components (A1, A2, A3) and
then tries to generate an interpretation for each list.

The parser now has something to say about the
function of the first note in Fux’s cantus firmus: it
functions as “the initial pitch of the bass arpeggia-
tion,” rule A2. Looking for A1 in a bass line is only
a matter of confirming that the last note is a tonic de-
gree. The only remaining question is whether there
are any candidates for A3. What the parser discovers
in this particular case is that there is only one candi-
date: the A in the middle of the line. Hence the parser
generates a single parse of the cantus firmus as a bass
line (see Fig. 6).

What if we ask the parser to see whether the can-
tus firmus makes sense as an upper line? Like bass

G2 ¯ ˜¯ ¯ ‰ ¯ ¯” ¨¯ ¯ ¯ ¯ ¯Ś́5

¯
Figure 6: Parsing Fux’s Dorian cantus firmus as a bass line.

lines, primary upper lines must end on the tonic de-
gree. But while bass lines must start on the tonic
degree, primary upper lines can begin on other tonic
triad pitches. And the initial note of the line need not
be the note that functions as A2. The rule specifies
that at some point, the upper line has to reach a tonic-
triad pitch (̂3, 5̂, or 8̂) that lies above A1. Rule A3
specifies that A2 has to then be connected to A1 via
a continuous, descending step motion. In effect, there
are three options, corresponding to the three forms of
the Urlinie posited by Schenker. As with the bass line,
the notes that function as A2, A3, and A1 must be
conceptually prior to all other notes in the line.

The task for our parser, then, is to figure out
whether there are any candidates for A2 and then to
find out which of these candidates, if any, can be con-
nected to A1 via a step motion. It turns out that Fux’s
Dorian cantus firmus is structurally ambiguous when
taken as a primary upper line. There are several can-
didates for A2: any of the Fs and also the A. Our
parser considers it more plausible to take the first of
the Fs as a candidate. Which is to say, our parser has
a preference for interpreting later instances of a pitch
as repetitions, operating on the principle that it is eas-
ier to interpret the future in terms of the past than vice

CSME 2021 - 2nd International Special Session on Computer Supported Music Education

674



versa. Figure 7 shows the parse that results when F is
the candidate for A2.

G2 ˜ ¨¯ ¯ ¯ ‰ ¯ ¯” ¯ ¯ ¯ ‰T ¯ ¯ ¯
Figure 7: Parsing Fux’s Dorian cantus firmus as a primary
upper line from3̂.

Our parser has other preferences built into it. The
reader may have noticed in the initial run of the parser
that the span after the high A was interpreted as an arc
from A down to F followed by an arc from F down to
D. Our parser, however, considers it simpler to hear
this span not as two arcs but as a single arc, a single
step motion from A down to D, and will do so if it
can. Of course, if F is functioning as A2, then it has
priority, and our parser hears the line as returning to
F instead of passing through it. But if the parser tries
out the A as a candidate for A2, it will fuse that span
into a single arc, as shown in Figure 8.

G2 ˜ ¨¯ ˜¯ ¯ ‰ ¯ ¯” ¨¯ ¯ ︷ ︸︸ ︷¯ ¯ ¯ ¯
Figure 8: Parsing Fux’s Dorian cantus firmus as a primary
upper line from5̂.

5 PARSING TRANSITIONS

The parser is principally concerned with evaluating
transitions from one note to the next. So let us look
a little closer at how the parser goes about this work.
Let us call the notes I and J. The parser asks a series
of questions having to do with I and J: their relation
to the tonic triad, their intervallic relation, and the dy-
namic lists of open heads and transitions. Based on
the answers, the parser assigns dependency relations,
creates arcs where warranted, or returns error mes-
sages if the line is syntactically malformed.

The first questions asked of I and J are simple: Is
I a tonic-triad pitch? Is J a tonic-triad pitch? If both
are triad pitches, then the parser looks to see whether
J can be the terminus of any open transitions; if I and
J are identical in pitch, then J is interpreted as a repe-
tition of I, else J is added to the list of open heads.

If either I or J is not a triad pitch, the parser
looks to see whether the interval between I and J is
a diatonic step or a consonant skip. (The parser is
trained to think that simple tonal lines have no dis-
sonant skips, so if it encounters a dissonant skip be-
tween I and J, it decides that the line is syntactically
malformed and returns an error message to that ef-
fect.) The parser then considers whether there are any
open transitions or open heads.

If neither I nor J is a triad pitch, the parser looks
at their intervallic relation. If they form a skip of any
kind or a repetition, the parser rejects the line as syn-
tactically malformed, since the rules do not permit a
skip or repetition between non-triad pitches.7 If they
form a step, the parser tries to interpret them as part
of a single step motion.

In melodic minor, the parser has to pay special
attention to the directionality of scale degrees. The
parser is designed to hear raised7̂ as either the lower
neighbor tô8 or an ascending passing tone, so when it
listens to the line in Figure 9a, it resists thinking that
the F♯ is part of a descending passing motion. The
parser instead honors the upward directionality of F♯
by keeping it on the list of open transitions until G
returns. But it must decide how to interpret the E♮.

I22 ¯ 4¯ 6¯ ¯ ¯

I22 ¯ ¯ ¯ ¯ ¯

I22 ¯ ¯ ¯, ¯
Ś́2¯

I22 ¯ 4¯ 6¯ Ÿ ¯” ¯
Figure 9: Some special cases in melodic minor.

Consider first how the parser would handle the
line if the notes were F♮ and E♭ (Fig. 9b). In this case,
the line steps down twice, and those descents match
the directionality of the two scale degrees. F was al-
ready interpreted as a dependent of G and has G as its
lefthead, so when the parser hears E♭, it connects it to
F, because it has the same directionality, and adds all
of F’s dependencies to E♭; it also adds E♭ to F’s list of
dependents and vice versa. The parser then removes F
from the list of open transitions. F has been displaced.
When it hears D, it makes D the righthead of E♭ and,
by extension, F, as shown in Figure 9c.

In the original case, the descending step from F♯
to E♮ contradicts the directionality of F♯. So the parser
makes E♮ dependent on F♯, but that is as far as it goes;
F♯ is assigned as the lefthead of E but remains on the
list of open transitions. In other words, E♮ is not in-
tegrated into a step motion with F♯ because the line
is not going in the right direction for that: F♯’s arc
must go up by step. The resulting parse is shown in

7In the version of third species that I teach, consonant
skips between non-tonic-triad pitches are permitted within
the measure, so the parser has been built to allow for this
possibility.

WesterParse: A Transition-based Dependency Parser for Tonal Species Counterpoint

675



Figure 9d.
A version of the line shown in Figure 10a was sub-

mitted by a student, and the parser initially rejected
it, saying that the A was not generable in the key of
C major (Fig. 10b). This is because the parser has a
built-in bias for resolving transitions as soon as possi-
ble. So when the parser heard the second C, it de-
cided that B was a lower neighbor and removed B
from the list of open transitions. And then, when it
subsequently heard A, it did not know what to make
of it: there was no B on the list of open transitions
that could link to A, and there was no G on the list of
open heads that could link to A.

G ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

G ¯ ¯ ¯ ˚ ¯ ¯

G ¯ ¯ ¯ ˜ ¨¯ ¯Ś́4¯ ¯ ¯
Figure 10: A case of retrospective reinterpretation.

The parsing algorithm thus had to be revised. Now,
upon hearing A, the parser takes an extra moment
to forget the partial parse it has constructed. First it
clears the dependency relations. Then it selectively
forgets the second C and starts over, loading all of
the notes back into the buffer, with the exception of
C, and listening again. Now it can hear the step con-
nection between B and A. Later on it figures out that
the intervening C was an independent insertion, an in-
terjection, as it were, resulting in the parse shown in
Figure 10c. In this respect, the parser’s activity mim-
ics the phenomenology of acts of listening, in which
interpretations are developed and then revised as new
information becomes available in audition.

As already mentioned, the parser is biased toward
simpler interpretations. So one of the things it will
do is look to see whether there are two passing mo-
tions that share an inner node and direction. If so, it
will merge them into a single arc and revise the de-
pendency relations accordingly (Fig. 11a).
Likewise, if a neighbor motion is linked to a passing
motion, the parser will embed the neighbor structure
within the passing, making them both share the same
lefthead (Fig. 11b).

Finally, consider the line fragment shown in Fig-
ure 12a. If this sequence of notes is embedded in a
line that is in the key of D major, the parser needs
to know how to handle the change of direction af-
ter B, which implies that there are two transitions in

G4444 ¯ ¯ ¯, ¯ ¯ ‰ ¯

G4444 ¯ ¯ ¯ ¯ ¯
ąF

¯

G2 ¯ ¯ ˘ ¯ ¯  ¯

G2 ¯ ¯ ˘ ¯ ¯Ś̂D¯
Figure 11: Two examples of bias toward simplicity.

progress, one of which attaches the B to an A, either
as a left head or right head.

G44 ¯ ¯ ¯ ¯ ¯

G44 ¯ ¯ ˜¯ ¯ ‰ ¯ ¯
ąD̄

¯ ¯

G44 ¯ ¯ ¯ ¯ ¯ ¯ ‰ ¨
Ǟ!̄̄

Figure 12: Handling a change of direction in mid-transition.

The parser therefore needs to consider whether there
is an A already on the list of open heads, in which
case it will interpret the B as a passing tone rising up
to the second D (Fig. 12b); failing that, it will need to
wait and see whether there is an A later in the line that
can serve as a right head, making the B a descending
passing tone from the first D (Fig. 12c). In each case,
the B also serves as the head of a subordinate transi-
tion to or from an inserted D.

6 IMPLEMENTATIONS OF
WESTERPARSE

The main implementation of WesterParse is the web-
based pedagogical application for composing and
evaluating exercises in species counterpoint. This ap-
plication provides the student user with reports on the
syntactic validity of the individual lines and on con-
formity with the voice leading rules. If the parser
finds that a line is syntactically invalid, it reports that
fact and gives a few hints as to the nature of the syn-
tactic problem, which the student must then solve on
their own. If it finds a line is valid, it simply re-

CSME 2021 - 2nd International Special Session on Computer Supported Music Education

676



ports that fact without providing any details on how
the line can be constructed using Westergaard’s rules;
the student must then download the composition as
a MusicXML file, open it in a music notation edi-
tor, and add annotations to indicate how the line is
constructed; this ensures that the student has internal-
ized the syntax rules. Voice leading reports detail all
infractions, but it is left to the student to figure out
how rectify matters. The student can also compose
offline in music notation editor and then upload a Mu-
sicXML file to the WesterParse site for testing.

WesterParse can also be deployed offline in a
Python environment. In this implementation, in-
tended for music theorists, the user inputs a Music-
XML file and has the option of sending the full set
of legitimate parses to be displayed in a notation pro-
gram. (I use the freeware program MuseScore, but
just about any program that accepts MusicXML files
could be used.) Having the option to display the full
set of final-state interpretations allows the user to as-
sess the reliability of the algorithms. The parser in
this implementation also logs every step of the pro-
cess, thus allowing the user to access all of the inter-
mediate states, like those shown in Figures 4 and 5.

7 THE WESTERPARSE CORPUS

A corpus of examples drawn from Westergaard’s text
was compiled in order to test the validity of the
WesterParse algorithms: 48 single lines and 29 com-
plete examples of species counterpoint. WesterParse
produces some minor deviations from Westergaard’s
analyses, attributable to minor differences in handling
ambiguity. Westergaard, for example, allows rule A1
to attach to a nonfinal pitch, whereas WesterParse
does not. On the whole, however, WesterParse re-
produces Westergaard’s analyses, where they are pro-
vided. The corpus also includes an additional col-
lection of 27 lines and 41 counterpoint compositions,
some of my own invention and others written by stu-
dents. Further testing was performed by a group of 11
students in my Fall 2020 music theory class.

Three samples from the corpus are shown in Fig-
ure 13. The first of these is taken from Westergaard’s
text, where it is intended to illustrate various issues
involving similar motion to a perfect fifth. The upper
line is interesting for the way in which the arrival of
B♭ in bar 7 requires the parser to reinterpret the arcs;
having previously decided that the E in bar 2 passed
to the F in bar 6, it must then reject that arc in order
to connect B♭ to the A in bar 3, effectively postponing
the resolution of E until the line arrives on F in bar 11.
The bass line is notable for the long descent from D to

A, interrupted by a number of secondary structures.
The bass line of the second example also requires

the parser to revise its interpretation in midstream.
The B in bar 4 initially seems to resolve the pass-
ing C in bar 2, but the low D♯ puts that into ques-
tion, requiring that the preceding B be demoted to an
insertion, and restoring the C to the list of open transi-
tions where it will remain until the arrival of B in bar
6. Shown here is one of the two interpretations that
WesterParse generates for the upper line; the other
takes the initial G as A2.

The upper line of the third example illustrates
some of the complexities of third species, where the
rules allow for the elaboration of local harmonies, as
can be seen in bars 5 and 7.

8 EXTENDING WESTERPARSE

Plans for further development of the WesterParse ped-
agogical environment include allowing the student
user to add a syntax interpretation to a line and having
the parser determine whether it is legitimate.

A longer-range goal is to incorporate Wester-
gaard’s analysis of the rhythm of linear elaborations
(chapters 3 and 7), and thus give the parser the abil-
ity to analyze rhythmically differentiated lines. In
order to handle longer lines, the contextualizer will
need to incorporate some form of grouping structure
constraints. Some of the computational challenges of
implementing this sort of analysis are addressed in
(Marsden, 2010).

Developing WesterParse into a program that can
parse more complex lines that unfold in a contrapun-
tal texture will require additional components. One
such component must be a stream segregator that is
able to sort simultaneous notes into different lines. If
the input source is a MusicXML file that is already
divided into single-line parts, as it is in the web ap-
plication, stream segregation is relatively simple. For
more complex contexts, the segregator needs to have
additional abilities. It needs to be able to split simulta-
neously sounding notes into separate streams.8 It may
also need to monitor the texture, deciding when an ad-
ditional simultaneous note is supplemental and when
it is the inauguration of an additional stream. The seg-
regator also needs to be able to determine whether a
stream is a compound line; if so, it will need to ex-
tract the pitches of the compound line and re-assign

8For a review of relevant literature on computational
stream segregation and a discussion of a neural network
model for automatic voice separation, see (Weyde and
de Valk, 2015). Also see (Temperley, 2009).

WesterParse: A Transition-based Dependency Parser for Tonal Species Counterpoint

677



ŽIG2

2

1
1

1
1

¯
¯

4¯
¯
˙ ¯

˜¯
˜ ¨¯
˜ ¯

¯
¯

˜¯
şĄ”̄̈

¯
¯

˜ ¨¯

fl ¨¯
¨Ś́3¯
˜ ¨¯

¯

¯
˜ ¨¯

áŤ s̄

ôŽ ā

¯

¯

¯

đ
I

G

4

4

1
1

1
1

˘ ˘
˜¯

˘ ˘
¯

Ů

¨ ˘ ˜˘

D ¯
˜¨˘ 4˘

¯

B
˘ ˘

Ác¨¯

ŚĄE

¨˘
á̂t˘

¯
4˘ 4̆
¯

ò̧r

, ˘ ˜˘
¯

˘" ˘
¯

¯
¯

ŽIG2

2

1
1

1
1

¯
> ˜ˇ ˇ ˇ

¯

’ ˇ ˇ
Ş ¨ ˇ
¨ ˇ

¯
6̌ 4ˇ ˇ ˇ

ÃĄ”̄

Ś̃2ˇ ˜¨ ˇ ˜¨ ˇ ˜ˇ
¯
ˇ ˇ ˇ
:
« ˇ

* ¯

˛ ˇ ˇ
Ş ¨ˇ

ff ˇ

¯
ˇ ˇ
Ş

¨4̈̌ ˇ

¯

¯

Figure 13: WesterParse’s final-state interpretation of three sample exercises.

them to new notes with new timespans. The segre-
gated streams are then sent on to individual parsers.

A contextualizer needs to gather information from
the parsers, store relevant information about the con-
text, and then share that information among the
parsers. For example, the parsers need to provide in-
formation that can be used to determine the tonality
of the passage. The contextualizer collects and ana-
lyzes information at the outset to determine a likely
candidate for the tonic triad and the mode of the pas-
sage. This is information that belongs to the global
context. Each parser uses this information to deter-
mine the structure of its line.

If the input is a musical passage of harmonically
rich counterpoint, the contextualizer also needs to
maintain a list of local contexts. We might know that
a particular span, for example, unfolds within a tonic
triad, while the next span unfolds within a dominant
triad, and so forth. The parsers need to know this in
order to determine whether a pitch is to be generated
as triad pitch (rules B1 and B3) or as a transition (rules
B2 and B4). The same pitch might be generated by
one or the other category of rule, depending upon the
context. The parsers will also have to maintain local
lists. As long as a parser is interpreting a line solely in
terms of the global tonic triad, it only needs to main-
tain one list of open heads and one list of open tran-
sitions. But if local contexts are engaged, it needs to
maintain similar lists for each context, in addition to
the global lists. It needs to be able to tell, for exam-

ple, whether a note during the dominant span is part
of a local transition or whether it belongs to a global
transition.

The contextualizer should also handle negotia-
tions among parsers in cases where one or more lines
is structurally ambiguous (as is the case with the Fux’s
Dorian cantus firmus). The contextualizer would also
be responsible for deciding when a passage modulates
into a new key, gathering input from the individual
parsers as they encounter interpretive anomalies in the
current key and then negotiating a new state of agree-
ment. And the contextualizer must be responsible for
inferring the meter and any changes to the metrical
system.9

REFERENCES

Cuthbert, M. S. and Ariza, C. (2010).music21: A toolkit
for computer-aided musicology and symbolic music
data. In Downie, J. S. and Veltkamp, R. C., editors,
11th International Society for Music Information Re-
trieval Conference (ISMIR 2010), pages 637–42.

Jurafsky, D. and Martin, J. H. (2008).Speech and Language
Processing. Pearson Prentice Hall, 2nd ed. edition.

Lerdahl, F. and Jackendoff, R. (1983).A Generative Theory
of Tonal Music. MIT Press.

9See (Temperley, 2007) for a review of literature on
parsing meter and modulations as well as proposed solu-
tions.

CSME 2021 - 2nd International Special Session on Computer Supported Music Education

678



Marsden, A. (2010). Schenkerian analysis by computer: A
proof of concept. Journal of New Music Research,
39(3):269–89.

Temperley, D. (2007).Music and Probability. MIT Press.
Temperley, D. (2009). A unified probabilistic model for

polyphonic music analysis.Journal of New Music Re-
search, 38(1):3–18.

Westergaard, P. (1975).An Introduction to Tonal Theory.
Norton.

Weyde, T. and de Valk, R. (2015). Chord- and note-based
approaches to voice separation. In Meredith, D., ed-
itor, Computational Music Analysis, pages 137–54.
Springer.

APPENDIX

Westergaard’s rules for the construction of simple,
monotriadic lines. A-rules construct the basic struc-
ture. B-rules add secondary structures.

Primary upper lines: the basic step motion
A1. The final pitch in the basic step motion must be a tonic.
A2. The first pitch in the basic step motion must be a tonic
triad member a third, fifth, or an octave above the final pitch.
A3 These two pitches must be joined by inserting the
pitches of intervening diatonic degrees to form a descending
step motion.

Bass lines: the basic arpeggiation
A1. The final pitch of the basic arpeggiation must be a tonic.
A2. The first pitch of the basic step arpeggiation must be a
tonic.
A3. The middle pitch of the basic step arpeggiation must be
a dominant either a fifth above or a fourth below the final
tonic.

Secondary structures
B1. Any triad pitch may be repeated.
B2. A neighbor may be inserted between consecutive notes
with the same pitch.
B3. Any triad pitch may precede the first pitch [of the basic
step motion] or may be inserted between any two consecu-
tive pitches so long as no dissonant skip and no skip larger
than an octave is created.
B4. Any two consecutive notes forming a skip may be
joined by a step motion.

WesterParse: A Transition-based Dependency Parser for Tonal Species Counterpoint

679


