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Abstract: In recent years, microservice-based architectures have become the de-facto standard for cloud-native applica-
tions and enable modular and scalable systems. The lack of communication standards however complicates
reliable information exchange. While syntactic checks like datatypes or ranges are mostly solved nowadays,
semantic mismatches (e.g., different units) are still problematic. Semantic Web Services and their derivatives
tackle this challenge but are mostly too ambitious for practical use. In this paper, we propose Lightweight
Semantic Web Services for Units (LISSU) to support Semantic Web experts in their collaboration with do-
main experts. LISSU allows developers specify semantics for their services via URI ontology references, and
automatically validates these before initiating communication. It automatically corrects unit mismatches via
conversions whenever possible. A real-world demonstrator setup in the manufacturing domain proves that
LISSU leads to a more predictable communication.

1 INTRODUCTION

In the last decades, the Semantic Web (Berners-Lee
et al., 2001) has gained much popularity. Its extension
called Semantic Web Services (McIlraith et al., 2001),
or SWS in short, captures many types of information
for services, such as data, metadata, properties, ca-
pabilities, interface, and pre- or post-conditions. Re-
searchers proposed a variety of challenges and so-
lutions related to these goals especially during its
golden age starting around 2007. Most of the solu-
tions were never properly used in practice because
other challenges had to be solved there first. Service-
oriented architectures (SOA) and its sub-field remote
procedure calls (RPC) are promising application areas
for SWS, but had to tackle issues with connectivity,
data availability, and syntax validation at interfaces
during that time. We argue on the one hand that the
SOA research community has overcome most of these
basic challenges and needs semantic information now.
On the other hand, the design of SWS is too complex
and needs to be simplified to be used in practice.
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We see our work in the area of SWS but have a
smaller scope, because we aim for concrete and feasi-
ble solutions. Our goal is to resolve real-world prob-
lems in an example scenario from the engineering do-
main, in particular when client and server have a se-
mantic mismatch (e.g., different units). State-of-the-
art solutions do not solve such mismatches and de-
velopers try to tackle this via unstructured, human-
readable data such as comments or documentations.
Existing syntax validations at service interfaces must
be extended with machine-readable semantic ones to
make communication more predictable.

We propose Lightweight Integration of Seman-
tic Web Services for Units (LISSU) as a backwards-
compatible extension to RPC frameworks that, in ad-
dition to syntactic details like datatypes, allows con-
figuration of semantic information including units.
Our extended validation workflow detects unit mis-
matches between client and server and even corrects
these via automatic conversions if possible. This pro-
vides an interoperable and consistently predictable
communication among all components, which we
prove in a real-world demonstrator setup with ma-
chine components of a laser system.

The remainder of our paper is structured as fol-
lows. The next section gives a motivating example
and defines our goals. Section 3 investigates related
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work with a special focus on ontologies and SWS.
Section 4 presents our approach and Section 5 shows
a real-world implementation. We conduct an evalua-
tion based on this setup in Section 6 via a demonstra-
tor and finally conclude in Section 7 with a summary
of our work and possible future work in this field.

2 MOTIVATING EXAMPLE

This section motivates the extension of SOA with
semantic capabilities based on SWS by presenting
an example from USP laser system development and
showcasing concrete challenges that we tackle in this
work, particularly unit mismatches.

2.1 Semantic Mismatch (Units)

Within the research project ”Internet of Production”
(Pennekamp et al., 2019), Semantic Web experts and
laser experts collaboratively build a ultrashort pulse
(USP) laser system based on SOA. This includes to
assemble machine parts from different manufacturers
and subsequently achieve an interoperable communi-
cation between these. The very basic idea of USP
could be referred to as ”revers 3D printing”, which
incrementally removes material with high amplitude
laser pulses to form a final product. A USP laser
is divided into multiple components such as scan-
ner, movement system, and camera. Client applica-
tions (e.g., a central controller) call remote services
on these components to configure the laser and exe-
cute actions. The syntax of service calls is validated
with the help of Protocol Buffers (Protobuf), but se-
mantic mismatches are not detected and therefore ig-
nored.

A so-called scanner moves the laser to (x,y)
coordinates based on received float values for
position.x and position.y, but the interpretation
of the units is left to the respective implementation of
that service. Figure 1 illustrates a dangerous scenario
of a component change: The former scanner hardware
and its respective service interprets position values as
millimeter and thus moves the laser to an x-position of
2 millimeter. A new component and its respective new
service however could interpret the same data value
as 2 centimeter and thus move the laser wrongly or
even damage the product. Other examples from that
use-case are laser heating temperatures (e.g., Celsius
vs. Fahrenheit) or laser speeds (e.g., millimeter per
seconds vs. kilometer per hour).

The details of that real-world motivating exam-
ple are the following. The currently existing project
uses gRPC (Google, 2016) for the communication

Client

Scanner
Service (old)

Scanner
Service (new)

USP 

Position = 2

Move 2 mm Move 2 cm

Figure 1: Unit mismatch we observed during a component
swap at a USP laser system. The new server implementation
internally uses different units and hence moves the laser for
2 centimeters instead of 2 millimeters.

in the network. This allows the serialization of data
with Protobuf, a Data Description Language made by
Google (Google, 2015b). Additionally, the system
uses Bazel (Google, 2015a) as the utilized build tool
to manage dependencies, build the source files and ex-
ecute the code. The Protobuf files contain syntactical
descriptions for all the relevant service and messages
for the client server communication by strictly defin-
ing input and output parameters of service calls and
the data types of these parameters in so called mes-
sage definitions. In the process of utilizing gRPC,
these files will then be compiled into new files in the
desired programming language like Python or Java for
the corresponding application, allowing the client and
server to access the definitions made in Protobuf files.
There is currently no way to properly include seman-
tics like units into these definitions.

Developers in this research project have cho-
sen comments and variable names in their Proto-
buf files as temporary solutions so that the units be-
come visible to the reader. However, this approach
is error-prone and also not machine-readable. The
above-mentioned motivating examples demonstrates
the need to avoid semantic mismatches by properly
defining and validating units at service interfaces.
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2.2 Requirements and Goals

The ultimate goal of this work is to overcome se-
mantic mismatches in SOA frameworks by integrat-
ing Semantic Web components into these. In partic-
ular, we aim to extend the existing syntax-only val-
idation to also cover semantics and units in partic-
ular. Developers must be able to configure this in-
formation for both clients and servers to make ser-
vice calls more predictable. These need to automat-
ically validate the given semantic information before
initiating the actual communication. This additional
verification must be backwards-compatible, because
SOA frameworks are usually distributed systems, and
one developer can only modify some of the services.
All interactions with the novel solution must be eas-
ily accessible for domain experts, which are typically
non-experts in the Semantic Web. The manual effort
should be minimized by automating as much as pos-
sible, e.g., validation or correction of used units. Fol-
lowing the Semantic Web best practices, we should
reuse as much as possible, for example units from
well-known ontologies. The proposed solution should
be field-proven and easily adoptable to new use-cases.

3 RELATED WORK

This section investigates relevant ontologies and se-
mantic enrichment including Semantic Web services.

3.1 Relevant Ontologies

A basic representation of units of measurement is al-
ready a big step forward. We argue that this is an opti-
mal trade-off between semantic value and complexity
overhead, and analyze relevant ontologies on sensors,
units, and measures. Our analysis reuses existing con-
cepts when possible like proposed in (Gyrard et al.,
2015). We aim for ontology terms that we can reuse
in a modular approach without unwanted side effects
as described in (Lipp et al., 2020). Table 1 presents
the metrics we applied and the final ranks for all on-
tologies we analyzed. The metrics are the following.
Relevance determines how well the ontology scope
matches our work, and coverage rates the applicabil-
ity of the ontology’s concepts to our needs. The met-
ric evaluates available programmatic extensions such
as unit conversions. Flexibility rates how well one can
tailor the concepts from the ontology to specific ap-
plications, e.g., being able to build custom units with
prefixes like ”milli”. Note that this rating is specific
to our requirements and should not be interpreted as a
universal ontology rating.

3.1.1 Sensor Ontologies

The article (Schlenoff et al., 2013) reviews existing
sensor data ontologies to decide if they can be reused
for a manufacturing perception sensor ontology. The
outcome of their work is a review and also an ontol-
ogy. Relevant ontologies mentioned are the Sensor
Data Ontology (SDO) (Eid et al., 2007), which uses
SUMO (Niles and Pease, 2001) as upper ontology,
the OntoSensor ontology (Russomanno et al., 2005)
and especially the Semantic Sensor Network (SSN)
ontology (Compton et al., 2012). The SSN ontology
appears promising for our work and has multiple fea-
tures: Data discovery and linking, device discovery
and selection, provenance and diagnosis, and device
operation, tasking, and programming (Compton et al.,
2012). It allows to focus on sensors, observed data,
system, or feature and property. The SSN ontology
describes sensor networks well but needs to be com-
bined with other ontologies for describing units, like
the ontology Library for Quantity Kinds and Units
(de Koning, 2005).

3.1.2 Unit Ontologies

The Ontology of Units of Measure (OM) (Rijgersberg
et al., 2011; Rijgersberg et al., 2013) allows descrip-
tions of units with all their details and relations to
each other and was developed during the development
of the Ontology of Quantitative Research (Rijgers-
berg et al., 2009). It is based on existing standards
for units of measure such as (Taylor, 1995) and con-
tains units of measure, prefixes, quantities, measure-
ment scales, measures, system of units, and dimen-
sions. Any quantities are defined by a measurement
scale, which is a mapping from categories and points
to quantities. Units can then be further scaled with
prefixes, making it easier to represent particular val-
ues for a base unit. The unit millimetre for example
is defined as a prefixed unit with the unit metre and
the prefix milli. Quantities and units have dimensions
and systems of units for their organization. A system
of units defines a set of base dimensions, which can
then be used to express every other possible dimen-

Table 1: Evaluation of relevant ontologies based on our re-
quirements from Section 2.2 with OM and QUDT ranked
highest. Note that the rating (- / o / +) is specific for our
requirements and is not a universal ranking.

Ontology Relevance Coverage Features Flexibility
SDO - o - -

OntoSensor - o - -
SSN o + + o
OM + + + o

QUDT + + + +
UCUM + o + o
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sion as a combination of certain base units, like the
International System of Units (Thompson and Taylor,
2008). All other dimensions can then be computed
from these base units.

The Quantities, Units, Dimensions, and Types On-
tology (QUDT) (QUDT, 2014) follows a similar ap-
proach and modularly builds on multiple ontologies.
It covers fewer quantity kinds and units per applica-
tion area than OM, but it allows more flexible conver-
sion multipliers and offsets.

The Unified Code for Units of Measure (UCUM)
was published in (Eid et al., 2007; Schadow and
McDonald, 2009) covers practically all units used
in science and engineering, while every unit has a
unique identifier. It is possible to validate and convert
datatypes via the UCUM web service https://ucum.
nlm.nih.gov/ucum-service.html#conversion. UCUM
unit codes are referenced in the above-mentioned
QUDT ontology and supports these unit conversions.
UCUM however specifies units and scales less com-
prehensive compared to OM.

We conclude that many ontologies for units in sci-
entific applications exist. Following the rating de-
picted in Table 1, QUDT and OM are both promis-
ing for work due to their completeness and relevance.
QUDT provides a mature SPARQL Protocol and RDF
Query Language (SPARQL) integration and provides
flexibility by linking to OM and UCUM via additional
identifiers within the ontology. OM provides a more
comprehensive structure and has potential to flexibly
adopt to future requirement changes, while the SSN
ontology primarily supports sensors and service calls
instead of units.

3.2 Communication and Service
Description

SWS (McIlraith et al., 2001), their organized peer-
to-peer extensions (Schlosser et al., 2002), and simi-
lar approaches semantically enrich web services and
provide machine-readable markups. Needed descrip-
tions can be written in the Web Service Description
Language, which in (Kopeckỳ et al., 2007) was ex-
tended with Semantic Annotations. These annota-
tions refer to ontologies and support lifting and low-
ering mappings between XML messages. A complex
feature set including information, functional, behav-
ioral, and non-functional semantics however compli-
cates lightweight application, which we in fact aim
for. Our approach is even more lightweight than the
lightweight Semantic Web Service descriptions pro-
posed in (Fensel et al., 2011) and (Roman et al.,
2015), which are also available as W3C submission
(Fensel et al., 2010), as they still include functional,

non-functional and behavioral semantics. (Bennara,
2019) introduces a so-called descriptor that adds op-
eration, link, non-functional and service descriptions
to RESTful services via an ontology-based approach.

RPCs allow remotely calling services and passing
parameters (Birrell and Nelson, 1984). Note that this
concept was introduced nearly four decades ago but
has become an active research topic again recently.
Google offers gRPC (Google, 2016), an open-source
high performance RPC framework that has gained a
lot of popularity. Benefits include high scalability,
low latency distributed systems, and developed pro-
gramming languages support. It is recommended to
use Protobuf to describe the syntax of services’ ex-
pected inputs and outputs (Google, 2015b).

One concrete example is an extension of a closed-
source platform for deployment, integration, and or-
chestration digital services with semantic unit infor-
mation (Martı́n-Recuerda et al., 2020). Proposed fea-
tures include data contextualization by enriching data
with (semantic) information facilitating the under-
standing of the data and its context.

We summarize that the SWS was a very active re-
search area between 2001 and around 2008 but lost
some of its drive. We argue that this is mainly due to
very ambitious goals that could not yet be applied in
practice. Later developments based on RPC solved
crucial basic problems and therefore the chance to
properly combine these research fields is now.

4 CONCEPT

This section presents our concept to integrate ontol-
ogy terms into a microservice-based SOA system to
handle unit mismatches. That includes an extended
architecture for SOA, novel semantic configurations,
and an extended communication workflow. Our ap-
proach is backwards-compatible and enables a mod-
ular system in which programmatic features and se-
mantic descriptions (e.g., units) can be implemented
in parallel.

Figure 2 depicts a current state-of-the-art setup
building on gPRC on the left, which acts as communi-
cation technology and interface definition, e.g., stored
in Protobuf files. In the baseline setup on the left, a
client contacts a server with a service call, which trig-
gers the server to validate the call’s syntax and finally
execute the service if its checks were successful. We
overcome the lack of semantic validations presented
in the previous sections by extending the SOA frame-
work, as shown on the right side of Figure 2. We
add semantic units to both client and server, which
link to ontologies and use ontology URIs to spec-
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Calls service
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gRPC + Protobuf
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gRPC + Protobuf +
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Semantic
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Figure 2: The prior communication on the left only includes a syntactic validation via Protobuf only. Our contribution on the
right adds novel semantic components to both client and server, and upgrades the validation.

ify units in their configurations. Our extended pre-
communication validation also includes a semantic
check, which compares the ontology URIs from both
communication partners, and only allow service exe-
cution if they match. The following sections present
further details on the architecture and workflow.

4.1 Adding Lightweight Semantic
Components to SOA Frameworks

This section explains more details on the components
depicted in Figure 2, namely the semantic unit config-
uration, ontology references, and novel semantic val-
idations. Section 4.2 then gives even more details on
the semantic validation workflow.

As we plan to validate semantic information such
as units between client and server, we add definitions
to them, which map each entry of their interface def-
initions (e.g., gRPC) to respective units in form of
ontology terms (URIs). The semantic units can later
compare these URIs and only initiate communication
if they match. Note that different other cases such as
mismatches or partial matches exist. Our approach in
this work uses publicly accessible URIs as ontology
links, but one could easily adapt this design to custom
local unit references, too.

Semantic check
service

Return
report

Start 
communication

Load server config

Unit conversion
Service

Unit conversion

1.3

1.2

2

3

Request 
validation

1.1

Server

Client

Figure 3: A client contacts up to two semantic services to
make the subsequent communication more predictable.

We implement an additional step in the workflow of
the SOA communication, which is illustrated in Fig-

ure 3. A client initiating a service call first undergoes
a semantic check, which compares the client’s seman-
tic specifications with the server’s one. The client
(1.1) requests validation at the semantic check ser-
vice by transmitting its semantic configuration. That
service (1.2) polls the respective configuration from
the server, matches these and (1.3) returns a valida-
tion report to the client. The client subsequently in-
terprets this report, for details please see the next sec-
tion. If the report includes issues, the client needs to
fix these or abort communication. It can, for instance,
(2) contact a unit conversion service to correct unit
mismatches. Finally, (3) the client starts the actual
communication with the server.

4.2 Semantic Validation Workflow in
Detail

A client receives a validation report from the semantic
check service while preparing communication. De-
pending on that report, one or more of the following
actions can be required at the client, as illustrated in
Figure 4.
• Client Configuration Incomplete: The provided

configuration is missing properties required from
the server. The client has to correct it by adding
missing definitions, usually manually.

• Unit Dimension Mismatch: Correct the dimen-
sions and units used, and try again. Hard mis-
match, e.g., speed in m/s used but temperature in
Celsius expected. Usually fix manually.

• Unit Mismatch: Used the correct dimension but
the wrong unit, e.g., m/s instead of km/h. Use our
proposed unit conversion service to automatically
convert units.

• All Semantics Match: Start the communication.
This workflow detects all relevant possible issues
w.r.t. semantic mismatches. While fatal issues such as
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Figure 4: Proposed semantic validation workflow, which detects and recovers from semantic mismatches to finally establish
a predictable communication.

incomplete configurations or dimension mismatches
usually need to be solved manually, we can automat-
ically resolve unit mismatches within the correct di-
mensions.

5 REALIZATION

In this section, we demonstrate our realization of the
concept proposed above. This includes justifying a
selection of concrete tools based on our requirements.
We then present in detail the implementation of the
two new components: First, the semantic validation
service including a method to specify semantics at
both client and server. Second, a unit conversion
service that allows automatic correction for unit mis-
matches that only reside in the same dimension. Fi-
nally, we suggest a user interaction and workflow with
the new system.

5.1 Tool Selection based on
Requirements

As discussed in previous sections, there are multiple
ontologies, data description formats, and additional
software available. For our realization, we choose the
following tools. We use Protocol Buffer and gRPC
to model the interface of services syntactically, and
introduce semantic descriptions (e.g., for units) via
additional JSON files stored at the client and server.
The reason for additionally using JSON was mostly
because of higher expressiveness and increased hu-
man readability, plus easy integration into many pro-
gramming languages. We integrate Bazel to automate
building and testing of these descriptions.

We select QUDT as the main ontology for the se-
mantic representation of the units of measure, while
keeping the support for OM. We do not require SSN
or any of the other ontologies in our current use-case,
since QUDT and OM already cover all necessary con-
cepts. However, the semantic descriptions do link to

{
"scannerservice": {

"Position": {
"x": "qudt:MilliM",
"y": "qudt:MilliM"

},
"Time": {

"timestamp": "wiki:Q14654"
}

}
}

Listing 1: Sample of a server configuration that adds
semantic information via ontology URIs to Wikidata and
QUDT, which we shortened to improve readability.

additional ontologies for certain types of data, for ex-
ample the representation of a UNIX timestamp. We
chose QUDT, because it satisfies all relevant units of
measure we need and offers a good support for unit
conversions via SPARQL queries. This can be done
by using the Python library rdflib (Krech, 2002) or via
other programming languages like Java or Go.

5.2 Extending a Real-world System
with a Service for Semantics

This section introduces implementation details about
the semantic check. The main idea is it to write client
applications with the semantic check in mind. The
client establishes a connection to the semantic server
before it connects to the server it actually plans to
communicate with. The semantic check receives the
client’s configuration together with the service call
and then loads the server configuration file from the
respective server. All the above-mentioned service
calls and message types are defined through proto
files while the client and server configuration can be
found in JSON files.

The configuration of client and server have both
the same unique format consisting of different levels.
These levels can be seen in Listing 1. The first level is
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the name of the proto file which is being considered,
an example for this would be scannerservice. The
next level within the scanner service is then the name
of the message. So far everything is structured like
the corresponding proto file. The next and final level
covers the variables within a message type with the
variable values being URIs linking to the according
ontology and describing the unit of measure belong-
ing to that specific variable. In case of OM this would
be the URI om:millimetre. In case of QUDT however,
we use qudt:MilliM, since this is the unique identifier
within the Resource Description Framework (RDF)
graph of QUDT and hence can be used for SPARQL
queries to access more details about that specific unit.

We validate all relevant fields in the configuration
files of the server and the client against each other
and build our response to the client accordingly. We
include a new proto file into the system specifically
for all the semantic capabilities implemented, includ-
ing the semantic check and the later explained unit
conversion. The semantic check is a gRPC call and
requires the contents of the config file as a string as
input and then returns a response message consisting
of multiple parts. A server response with the results of
the check in form of a Boolean, a detailed description
of what exactly went wrong in form of a string and ad-
ditional lists, containing the previously assigned units
and the actually desired units by the server.

5.3 Implementing a Unit Conversion
Service

If the response of the semantic check includes a non-
empty conversion list, the client proceeds by calling
the unit conversion service.

We implement the conversion service with QUDT
units by querying the ontology to extract various
properties of the units which were stored in the con-
figuration files. While libraries offering unit con-
version functionalities for OM are only available for
Java and Python, we can query data directly from
QUDT via SPARQL with many more programming
languages, giving us even more flexibility.

While the semantic check service only links to the
utilized ontologies, the new unit conversion service
extensively uses QUDTs structure. We know from the
related work section that QUDT uses multiple con-
cepts for the information it provides. For the unit con-
version, the conversionMultiplier as well as the con-
versionOffset form the most important properties. A
unit can only be converted from a specific source unit
to a destination unit, if the dimensions are the same.
SI base units are used for the dimensions, like in OM.
Especially the dimension property is valuable, by pro-

viding a mean to determine the base unit or to deter-
mine if we are dealing with a measure or scale. This
ensures that conversions are both syntactically and se-
mantically correct and avoids, for example, conver-
sions from pounds (force) to kilograms (mass).

The unit conversion service takes as its input the
lists that were returned with the semantic checks out-
put. This includes for each list entry its identifiers,
the source to convert from, and the destination to con-
vert to. Additionally, the client sends its initial values
for these variables. The query extracts the multiplier
and offset of the previously assigned unit to its cor-
responding base, converts the value to the base unit
and then converts the value from the base unit to the
unit desired by the server. The conversion service fi-
nally returns the same input it got previously back to
the client but this time with the converted values. The
client can then proceed to a new semantic check or
start the communication with the server.

5.4 User Interaction and Workflow

Adding these new services adds a certain workflow
to the system, when designing and implementing new
applications. First, the system needs a server config-
uration for each server that is running available and
on top of that every client that is being added to the
system needs its own client configuration file. When-
ever someone implements a new client, they also need
to fill out their configuration file and have a section
in their code where they load their own configura-
tion and call the semantic check service with it. The
normal client functionality is then be executed after-
wards if no mismatches occurred. If there were errors
however, the client aborts communication and the de-
veloper needs to adjust the configuration file and ac-
cording values based on the displayed error message.
Since our error messages show precise details, it is
easy to track down the error and correct it accord-
ingly. This process can be repeated until there are no
errors or mismatches left. Since all errors are shown
immediately all mismatches can be removed in one
iteration.

6 DEMONSTRATOR SETUP

This section evaluates the differences to the previ-
ous state of the system after including the semantic
components, the practical usability of the extended
architecture, and its performance in form of a tech-
nical evaluation of the tools we used. The benefits
will be explained on demo scenarios, showing the sys-
tems behavior before and after including the semantic

LISSU: Integrating Semantic Web Concepts into SOA Frameworks

861



Table 2: Real-world variables with their corresponding
units in ontologies.

variable name type unit of measure
preheatingTemp double qudt:DEG C
laserSpeed float qudt:MilliM-PER-SEC
position.x/y float qudt:MilliM
shotTime int64 wiki:Q14654

components. We finish this section with a conclusion
regarding the benefits of semantically enriching such
systems in general.

6.1 Implementation Evaluation

Above we specified multiple requirements for the ex-
tended state of the USP system. The semantic de-
scription of the utilized data was taken care of by
using ontologies like QUDT and linking to them in
the configuration files. QUDT and OM sufficiently
cover the support for units of measure. The only ex-
ception here are abstract values, for example the time
values utilizing the UNIX stamp instead of regular
time measurement. Hence, the first two points are al-
ready covered by the inclusion of the configuration
files. The unit conversion is taken care of by adding
the unit conversion service utilizing SPARQL queries
on QUDT to the USP system. The new unit conver-
sion service allows the conversion of units as long as
source and destination are both in the same dimen-
sion. Table 2 shows the information that can be found
for every variable after the inclusion of the semantic
capabilities. The unit of the position values being mil-
limeter can now be seen within the system.

In addition to these points, the human understand-
ing of the system is also increased. Someone with
access to the code will be able to much easier under-
stand certain variables just by inspecting their defini-
tion, since everything is linked to a semantic descrip-
tion within an ontology. While this could have been
covered in comments already, an ontology provides
much more in-depth knowledge about certain con-
cepts and even descriptive comments within the ontol-
ogy and additional links to other concepts or even full
ontologies. To conclude we can state that the above-
mentioned requirements are fully satisfied by our im-
plementation.

On the technical side of the implementation, how-
ever, there are consequences of our approach. A gen-
eral consequence of including semantics is first of all
the increase in data size that has to be dealt with and
slower processing time. Semantic data is included in
text form and contains more data than just telling the
system that a variable has a certain data type. A vari-
able temperature does not just have a value such as

45 and the assigned datatype anymore but instead a
link to an ontology in form of an URI, stored in mul-
tiple configuration files containing information about
all the important variables across the system. The dis-
tribution and management of these configuration files
however has still room for improvement as mentioned
in the previous sections and can still change in the fu-
ture. Even in the current form however, the difference
in execution time and used space is barely noticeable.
Querying the ontology takes up most of the additional
time and can be improved by adjusting the ontology
to just our needs in the future. One final aspect of
our technical evaluation is backwards compatibility.
Since the usage of the services for the semantic ca-
pabilities is not strictly required, one can still develop
applications without using any semantic services.

6.2 Demonstrating Semantic
Functionalities in Demo Scenarios

The advantages of the extended system with the se-
mantics can be emphasized if we directly compare
the previous state of the system with the new one by
creating and executing a client application with the
old standard and one with the new workflow of go-
ing through a semantic check followed by an auto-
matic unit conversion. For this reason, we create three
client applications for a demonstration of the system
capabilities. All three applications have the same goal
of accessing the scanner service in order to call the
JumpToPosition function, which orders the scanner to
move the laser beam to the specified location on the
scan field. For this purpose, the service takes a posi-
tion argument consisting of x and y variables as input
and returns the completion time when the execution
of the service is finished. The existing server now has
different understandings for the two components of
this communication. The first component is the posi-
tion argument with its two values having the units mil-
limetre, while the returned completion time is given in
UNIX stamp. While all three applications eventually
do exactly this, their behavior prior to the actual com-
munication differs indeed.
Scenarios 1 and 2: Only Syntax Defined. The first
and second demo applications immediately connect
to the scanner server and request the JumpToPosition
service. The syntactic side is taken care of because of
the strict definitions of the variables in the proto files
but for any kind of semantic information the client
must assume that the server uses the same specifica-
tions. In our demo scenario the client sends values
with the knowledge of them being in centimetre and
this then results in the server still interpreting it as a
millimetre value and hence, moving the laser beam by
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a smaller amount than the user wanted.
Scenario 3: Syntax + Matching Semantics. The
second application now uses our semantic compo-
nents. This means the developer of the client appli-
cation also provides a configuration file with their un-
derstanding of the variable semantic, which explic-
itly states their understanding of the positional argu-
ments being understood as centimetre on the client
side. Since now the first thing the client does is con-
necting to the semantic server and making a service
call for the semantic check service, the difference in
the semantic understanding will be spotted and the
client notified to fix this. However, since the problem
here is a positional argument, taking a length unit, we
identify this specific problem within the configuration
file as a problem that can be solved with the unit con-
version service and hence, proceed by calling it with
the position arguments as values to convert and then
proceed with the communication to the scanner with
the converted value. In this scenario we did not just
catch the error but instead also corrected it and pro-
ceeded with the execution of the initial goal without
any problems. In this ideal scenario the developer of
the client application does not need much knowledge
of the server-side semantics himself, instead they can
just program their client by following the workflow
proposed in the previous chapter.
Scenario 4: Syntax + Mismatching Semantics. The
third scenario is created by a client application us-
ing the semantic components but with an incomplete
client configuration file. Even in such a case the se-
mantic check provides its advantages by telling the
user what exactly is wrong with their configuration
and what is missing, while the first case would not
even realize the error and just proceed with the faulty
values and cause a more vital error during the exe-
cution on the hardware, resulting in an error in the
production.

Table 3 compares the different scenarios based on
the standards of the system. The first and second are
the previous state of the system where only the syn-
tax was taken care of, and still work in every scenario,
since our implementation does not change the Proto-
buf base of the system. However, we improve feed-
back by warning the user that only the syntax is vali-
dated, but there is no semantic information to validate.
The third represents configurations where the system
has to check for both syntactic and semantic compat-
ibility of client and server before initiating a commu-
nication. In the first case we cannot give any informa-
tion on this and start the communication with a risk of
errors caused by an misunderstanding of the system
semantics, while the second case manages to identify
these semantics as correct and initiate the communi-

Table 3: The scenarios compared to each other based on
different standards for the communication in the system.

Scenario Expected Baseline LISSU
1 (y / -) warn comm. warn
2 (n / -) block block block
3 (y / y) comm. comm. comm.
4 (y / n) block comm. block

cation. The third case does give us information by
identifying the semantics in the system as wrong and
blocking the communication. The system should only
initiate a client-server communication when they have
a mutual understanding of the system. The results are
here the same as in our approach, further proving the
advantages of our implementation.

The semantic component mainly plays a role dur-
ing two critical scenarios. The first one is when a
newly written client application is introduced into the
system. The developer of the application might have
insufficient knowledge of the system, resulting in a in-
complete configuration file or the usage of the wrong
units for the arguments within the code. The seman-
tic check would identify this and notify the developer.
The second and more common scenario is a changed
hardware component within the system. The compli-
cations of this were already explained with an exam-
ple in the introduction section of this work. If we
change the hardware of the scanner, we might have
to write a new server code using a different server
semantic, suiting the new hardware. A client code
specifically written for the old server with no seman-
tics included like our first demo application would fail
in such a scenario but the second and third application
would in the worst case at least catch the error and
notify the user that something is wrong and that the
client must update its definition in order to satisfy the
new system requirements coming with the new hard-
ware.

To conclude the evaluation, LISSU automatically
avoids and corrects unit mismatches, and therefore
leads to a more predictable communication in a SOA
framework. Its backwards-compatibility allows a
flexible integration even into large existing systems.
Unclear cases, where only syntax but no semantic is
defined, yield a warning but still operate. LISSU re-
ports semantic mismatches between client and server
to the calling client and prevents communication if
needed. Although LISSU is completely backwards-
compatible, we recommend applying it to all compo-
nents of a SOA system to improve overall communi-
cation predictability.
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7 CONCLUSION AND FUTURE
WORK

The goal of this work was to handle semantic mis-
matches between services in a SOA framework. We
focused on unit mismatches, as these can already lead
to critical results in practice. We proposed LISSU,
lightweight Semantic Web Services for units, which
allows developers specify semantics (e.g., units) for
their services via URI ontology references. In addi-
tion to existing syntactic validations, we added a se-
mantic validation that detects and corrects unit mis-
matches automatically. The correction can be done
via an automatic unit conversion service that we built
on top of the QUDT ontology in this work.

We demonstrate our approach in a real-world
use-case based on gRPC in the USP laser domain.
Core findings are that our approach is backwards-
compatible with existing gRPC and other SOA so-
lutions, but adds an additional validation layer based
on semantics. We thereby avoid semantic mismatches
including unit mismatches, and guarantee a more pre-
dictable communication in SOA setups.

There are possibilities to extend our implemen-
tation. First of all the distribution and management
of the configuration files could be improved. Using
external tools here would come with multiple bene-
fits including easier access to the configuration files
with possibly even a graphical user interface provid-
ing means to find and edit the various configuration
files in the system. Storing the configuration files in
databases would, however, require an adaption of the
implementation so far regarding loading and sending
data within the system. Another possibility is to in-
ject these configurations into microservice orchestra-
tion systems like Kubernetes or Openshift.

Not only the management of the configuration
files could be further improved, but also their genera-
tion. Instead of manually creating the semantic con-
figuration files, a configuration generator could guide
developers while creating these, and instantly validate
their structure and completeness. Further improve-
ments could use additional ontologies in the system,
or even introduce domain ontologies to also cover
other semantic mismatches besides units. So far we
only utilize unit conversion capabilities but current
solutions offer more features that could be utilized.

We conclude that LISSU provides a backwards-
compatible semantic extension for SOA frameworks
that is based on Semantic Web Services and leads to
a more predictable communication.
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