
Asynchronous Data Provenance for Research Data
in a Distributed System

Benedikt Heinrichs a and Marius Politze b

IT Center, RWTH Aachen University, Seffenter Weg 23, Aachen, Germany

Keywords: Research Data Management, Data Provenance, Distributed Systems.

Abstract: Many provenance systems assume that the data flow is being directly orchestrated by them or logs are present
which describe it. This works well until these assumptions do not hold anymore. The Coscine platform is
a way for researchers to connect to different storage providers and annotate their stored data with discipline-
specific metadata. These storage providers, however, do not inform the platform of externally induced changes
for example by the user. Therefore, this paper focuses on the need of data provenance that is not directly pro-
duced and has to be deduced after the fact. An approach is proposed for dealing with and creating such
asynchronous data provenance which makes use of change indicators that deduce if a data entity has been
modified. A representation on how to describe such an asynchronous data provenance in the Resource De-
scription Framework (RDF) is discussed. Finally, a prototypical implementation of the approach in the Coscine
use-case is described and the future steps for the approach and prototype are detailed.

1 INTRODUCTION

The FAIR Guiding Principles have evolved to form a
guideline for research data management (RDM). Ac-
cordingly, data should be findable, accessible, inter-
operable and re-usable as described by (Wilkinson
et al., 2016). In turn RDM plays an increasingly
important role in today’s university landscape. The
idea is to incorporate those principles in every as-
pect of research where data is being produced and in-
corporate them into the scientific workflow. While
a lot of work has been done to improve the scien-
tific workflow, the different research domains diverge
a lot in their approaches. This diversion starts with
the choice of a storage provider which with the emer-
gence of cloud storage and technologies like object
storage ranges over far more options than just clas-
sic solutions like normal file systems. Platforms like
Coscine, described by (Politze et al., 2020) and for-
merly called “CoScInE”, or Open Science Frame-
work, described by (Foster and Deardorff, 2017), try
to deal with these issues and integrate solutions like
WaterButler1 to make research data accessible across

a https://orcid.org/0000-0003-3309-5985
b https://orcid.org/0000-0003-3175-0659
1Codebase by Center for Open Science:

https://github.com/CenterForOpenScience/waterbutler/

domains and storage providers in one single place.
The further use and capability of creating metadata
makes the research data more in line with the FAIR
Guiding Principles. The main issue however with
such an approach is that due to the distributed na-
ture of the system, it is difficult to represent the path
the research data took and with that, the data prove-
nance. Classic more centralized workflow provenance
systems like Taverna, Pegasus, Triana, Askalon, Ke-
pler, GWES, and Karajan described by (Talia et al.,
2013) usually either track the movement of data since
this movement is directly orchestrated by them (ea-
ger) or they can rely on the provenance already be-
ing logged (lazy) as described by (Cruz et al., 2009).
This work presents a different approach to encounter
the fact that researchers can change research data on a
storage provider without the integration platform re-
ceiving any notice, breaking the whole provenance
model. For this reason, this paper will focus on the
generation of data provenance for research data that
has been changed by an external impact with no in-
formation being recorded or event being sent, here
called asynchronous data provenance. In this con-
text the classic approaches are in contrast described
as synchronous data provenance methods since there
is a clear way to track the movement of data and di-
rectly describe its provenance.

Heinrichs, B. and Politze, M.
Asynchronous Data Provenance for Research Data in a Distributed System.
DOI: 10.5220/0010478003610367
In Proceedings of the 23rd International Conference on Enterprise Information Systems (ICEIS 2021) - Volume 2, pages 361-367
ISBN: 978-989-758-509-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

361



2 CURRENT STATE AND
RESEARCH GOAL

Since data provenance is necessary for reproducing
the path data traversed, it is a quite popular field and a
lot of research has done in the area. This section will
therefore focus on the most important aspects of data
provenance in regard to the topic of the paper. An
overview on provenance in general will be given and
furthermore it will be looked at how different prove-
nance systems are implemented, how provenance cur-
rently works in distributed systems and how prove-
nance is represented. After this current state, the dis-
covered challenges for this paper are formulated.

2.1 Provenance

Provenance is defined by the researchers in (Herschel
et al., 2017) as “any information describing the pro-
duction process of an end product”. In their sur-
vey they define different levels of provenance in a
hierarchy. At the top of the hierarchy, data prove-
nance is placed as it looks into the processing of in-
dividual data items at the highest resolution. The re-
searchers in (Davidson et al., 2007) and (Davidson
and Freire, 2008) furthermore define that provenance
can be prospective, e.g. capturing the specification of
a workflow, or retrospective, e.g. capturing the exe-
cuted steps of a workflow. The problem presented in
this paper however does not really fit into either of
the areas, since here the need for creating provenance
after the fact is expressed. Therefore, previous so-
lutions for recording provenance are here defined as
synchronous provenance while the one being looked
into this paper is defined as asynchronous provenance.

2.2 Current State on Provenance
Systems

In the review conducted by (Pérez et al., 2018) rel-
evant provenance systems were evaluated and their
common characteristics described. The approaches
to tracing data capture are defined as eager and lazy.
These existing approaches are however still scoped
in a very centralized manner, expecting either a way
to directly compute provenance from a workflow or
having some kind of logging present to compute
the provenance from. Regarding implementing data
provenance in systems which do not offer full data
provenance yet, examples like the researchers in (In-
terlandi et al., 2018) including data provenance in
Apache Spark show promise. Such solutions are how-
ever too specialized and too centralized to use for

asynchronous data provenance in a distributed sys-
tem.

2.3 Current State on Provenance in
Distributed Systems

The work described by (Mufti and Elkhodr, 2018)
gives an overview on data provenance in the internet
of things (IoT), which is distributed innately. It out-
lines the usefulness and challenges in the area. Fur-
thermore, the researchers in (Hu et al., 2020) look
into data provenance in the IoT as well and review
existing methods based on general and security re-
quirements. Concrete implementations like the one
described in (Smith et al., 2018) and (E. Stephan et al.,
2017) show that still some kind of integration in a sys-
tem is necessary or provenance information needs to
be logged to describe the data provenance. Finally,
(Ametepe et al., 2018) gives an overview on the cur-
rent trends, methods and techniques for provenance in
a distributed environment.

2.4 Representing Provenance

For representing provenance, some standards exist.
In this paper, the focus will be on representing the
provenance as linked data in the Resource Descrip-
tion Framework (RDF), described by (Cyganiak et al.,
2014). The way for representing provenance in this
scope is the W3C standard PROV-O, described by
(Belhajjame et al., 2012), which is an ontology that
provides classes, properties and restrictions to rep-
resent provenance information in RDF. Furthermore,
when looking at a data entity a way has to be declared
to uniquely reference it. One method to do that is us-
ing a persistent identifier (PID) like ePIC, described
by (Schwardmann, 2015), since common ways like
normal URLs might suffer from problems called “link
rot” at some point and identifiers like GUIDs cannot
be resolved so easily. PIDs can be efficiently used to
connect distributed systems as discussed by (Schmitz
and Politze, 2018).

2.5 Challenges

From the current state-of-the-art the following chal-
lenges in regard towards dealing with asynchronous
data provenance were identified:

• There is a gap for dealing with and producing
provenance of data where the change does not
produce an event or a log entry

• A way has to be found to describe such asyn-
chronous data provenance items

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

362



3 APPROACH

Following the current state-of-the-art and discussed
challenges, the proposed approach to deal with them
is presented. First the state of the use-case is de-
scribed. Some requirements collected from there on
what amounts to a changed data entity will be dis-
cussed further. Derived from that, the structure of the
use-case will be adapted to support asynchronous data
provenance. Using all these findings, finally the rep-
resentation proposal of the asynchronous data prove-
nance will be shown.

3.1 Current State of the Use-case

The open-source platform called Coscine2 was de-
scribed by (Politze et al., 2020) and (Bensberg, 2020).
It supports researchers that want to adhere to the FAIR
Guiding Principles by allowing them to access their
research data across multiple domains and distributed
storage providers. This is further enhanced by giv-
ing the researchers the opportunity and guiding them
to annotate their research data with so-called meta-
data which is used as a description of the research
data and represented in RDF. Such a solution, how-
ever, comes with the issue that research data can be
changed externally at any point without the platform
being able to take notice on the change and updat-
ing the provenance information. Furthermore, coordi-
nated approaches towards versioning of research data
or at least their metadata are currently missing and
data and metadata movement in between otherwise
unconnected storage providers is not tracked. These
properties and things to improve upon make Coscine
a natural fit for a use-case to implement and apply
asynchronous data provenance.
The platform currently stores the metadata for all data
entities in an RDF-based knowledge graph uniquely
identifying every data entity with a persistent iden-
tifier (PID) and overwrites the metadata on every
change. The graph name, furthermore, follows the
PID syntax, so that the described data entity can be
resolved and accessed with a simple URL. To realize
this, in the graph name the specific storage provider
and the location of the particular data entity is de-
scribed. Therefore, the structure is defined as:
https://hdl.handle.net/{prefix}/
{storage-provider}@path={path}.

2Codebase: https://git.rwth-aachen.de/coscine

3.2 Determining the Occurrence of
Change

For asynchronous data provenance, a way has to
be established for determining the occurrence of a
change to accurately describe it. For this, in the fol-
lowing the existing types of changes and the indica-
tors that can recognize a change will be defined.

3.2.1 Definition of Change Types

Following the discussion, it has to be defined what a
change is and what different types of changes exist.
The current state-of-the-art focuses a lot on changes
which are triggered by the addition or update of a data
entity or metadata set and this being directly recog-
nized or logged. Such a kind of change is therefore
described as synchronous because it is clear where,
when and from whom this change is coming from.
For changes where the where, when and from whom
are not entirely clear, however, a new definition must
be defined. These changes are dependent on external
factors like the external addition or update of a data
entity or metadata set which are not captured by the
integrating platform that wants to describe it. To track
them, the previous state has to be compared with the
current one at some undefined point after the original
change has taken place which is why these changes
are defined as asynchronous.

3.2.2 Definition of Change Indicators

For determining the asynchronous data provenance,
methods have to be defined which can describe the
occurrence of a change. The following list details the
available methods from the current use-case.
Modified Timestamp. In general storage providers
keep track of the timestamp when a data entity has
been modified. This however does not mean that the
content really has changed, just that an operation on
the data entity has been performed.
Hash. A storage provider can provide a hash of the
data entity with an algorithm like SHA-1 which gives
a good indicator and identifier of the current version
of the data entity and if it has changed. Since a hash
is easy to compute and store, this makes this method
a fast indicator of change.
Version. Some storage providers can be trusted to
give accurate information about the version a data en-
tity holds and this is therefore a clear indicator to rep-
resent that a data entity has changed.
Descriptive Metadata. Using the works of (Hein-
richs and Politze, 2020) descriptive metadata that de-
scribes the content of a data entity can be used to

Asynchronous Data Provenance for Research Data in a Distributed System

363



make sure if a data entity has really changed and
more importantly show what has changed. This has
some implications on the definition of change since
e.g. adding a space to a text file would not be rec-
ognized as a change because the interpreted content
stays the same. Such a method would, therefore, be
more focused on content-based (e.g. a changed fact)
or structure-based (e.g. different line-count) changes
and not the raw changes that previous indicators are
built on.

Byte-by-Byte Comparison. For completion, a byte-
by-byte comparison could definitely discover if a
change has happened. However, storing and compar-
ing many versions of data entities is a very storage and
time intensive task and therefore not very favored, es-
pecially since previous indicators are much less com-
plex and achieve similar results.

Content-based Domain-dependent Comparison.
If a method exists which can produce content-based
information from a data entity, this information can
be used to figure out differences between two data
entities. This however has some limitations because it
is very domain-dependent and there is no generalized
way to represent that information. The descriptive
metadata indicator furthermore is a more defined
variation of this and looks therefore superior.

3.3 Creating a Structure which
Supports Asynchronous Data
Provenance

Following on the definition of the use-case and the
definition of change and indicators, a new structure
is proposed that supports asynchronous data prove-
nance. First, the versions which have to be kept track
of for the data entities and metadata will be defined.
Utilizing this information, the new structure is then
presented. Furthermore, the integration in the life-
cycle of data and their metadata is described.

3.3.1 Definition of Versions

Since data entities and metadata can and should be
versioned, a definition on what kind of separate ver-
sions in this context exist has to be created. In the
Coscine use-case, one thing which would be neces-
sary for a complete implementation of asynchronous
data provenance is to store every kind of version in
a so-called metadata store to ensure a correct linking
between them. The following lists the version types
and describes the requirements to ensure this correct
linking.

Metadata Version. When a metadata set is created
or updated, it has to receive a version. It is further-
more important to link the current version of the meta-
data set to the previous one.

Data Entity Version. When a change has been de-
tected on a data entity, the data entity should receive
a new version which is either generated or received
from the storage provider. This version change should
trigger an update of the metadata set and the new ver-
sion of the data entity is stored alongside it.

3.3.2 New Graph Structure

Following the previous definitions, the new graph
structure is now presented which should incorporate
asynchronous data provenance. The previous struc-
ture was adapted in this new concept and improved
upon for an easier adoption. The main structure
revolves around an overarching graph which con-
tains the provenance information, links to every ver-
sioned graph, contains the versions of the data entity
and contains optionally additional metadata for the
change indicators which have been used. Each ver-
sioned graph contains then the metadata for a data en-
tity. The different graphs are a necessity since other-
wise the difference between the versions of metadata
sets cannot be determined. The distinction is made by
an additional parameter in the graph name which de-
fines the metadata version. Such an approach differ-
entiates itself from current version implementations,
e.g. done in Zenodo and discussed by (European
Organization For Nuclear Research and OpenAIRE,
2013), to keep compatibility with the current graph
name and shift the resolving responsibility more to
the platform receiving these attributes. Furthermore,
for the descriptive metadata a concept is presented
which shows how to represent this kind of metadata
in the new graph structure. The distinction here is an
additional parameter which specifies that the current
graph contains extracted descriptive metadata. The
graph names for the new concept are shown in the
following.

• Overarching Graph:
https://hdl.handle.net/{prefix}/
{storage-provider}@path={path}

• Versioned Graph:
https://hdl.handle.net/{prefix}/
{storage-provider}@path={path}
&version={version}

• Descriptive Metadata Graph:
https://hdl.handle.net/{prefix}/
{storage-provider}@path={path}
&version={version}&extracted

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

364



3.3.3 Integration in the Data Life-cycle

With the new graph structure, it has to be shown that it
fits into the life-cycle of data. The steps being looked
into are the creation, update and deletion of data and
its metadata. Their inclusion and usage is detailed in
the following.

Creation. The creation of a data entity enforces the
manual or automatic creation of a metadata set. Fur-
thermore, the creation of a metadata set should point
to a created data entity. In both cases, the versioned
graph for the metadata set is set to “1”. The parent
graph receives an entry for the new versioned graph
and the version for the data entity which is either “1”
if not provided or the by the storage provider supplied
version.

Update. When a data entity or a metadata set has
been updated and a change has been detected, a new
versioned graph gets created. This graph increases
the last metadata version by “1” and stores the current
metadata with it. The parent graph receives an entry
for the new versioned graph, links the new one to the
old one, stores the version of the data entity and stores
the information about the used change indicator.

Deletion. A deletion of a data entity is seen as a spe-
cial type of update since the metadata set is never
deleted, it is only invalidated. The metadata set itself
can only be emptied according to the requirements on
it, however it can never be deleted. The invalidation
is marked in the parent graph.

3.4 Representing Asynchronous Data
Provenance

Since the questions where and at which step have been
answered, the how question is still open. Therefore, in
the following the concrete proposal for representing
the asynchronous data provenance will be presented.

As PROV-O is a W3C standard for describing
provenance, it was chosen for this approach since the
provided terms are detailed enough for this use-case.
It is to note that when the term “entity” is being used,
in this case a “data entity” is meant and thought of
as represented in the previously defined overarching
graph and directly linked to the respective versioned
graph.

Figure 1 shows the PROV-O representation of an
entity being generated at a certain point. This rep-
resentation is particularly useful in the case of asyn-
chronous data provenance since it can be the case that
a new data entity will just be found at an uncertain
point with no agent which can be attributed to this
data entity. Such a representation therefore can be

Figure 1: Generating an entity with an activity as defined
and visualized by (Belhajjame et al., 2012).

used in this use-case with a data entity as a PROV-O
entity and receiving an asynchronous generation ac-
tivity with the “xsd:dateTime” data type, representing
the time it was discovered.

Figure 2: Attributing an entity to an agent as defined and
visualized by (Belhajjame et al., 2012).

Following on figure 1, utilizing the concept pre-
sented in figure 2 moreover produces an entity that
has a generation activity and an agent which is re-
sponsible for this entity. This agent can further-
more be responsible for the generation activity if it
is linked to the generation activity with the predicate
“prov:wasAssociatedWith”. This type of attribution
to an agent is useful in this context since a data entity
can be generated by a platform itself and therefore it is
important to distinguish the asynchronous generation
activity from the synchronous one. The asynchronous
generation activity can however also be associated
with an agent since PROV-O provides the capability
of describing an “Agent” as a “SoftwareAgent”, it just
has to be kept in mind that the agent should differen-
tiate from the synchronous data provenance agents so
that the difference can still be seen.

Figure 3: Deriving an entity from another entity as defined
and visualized by (Belhajjame et al., 2012).

After an entity can be described, figure 3 focuses

Asynchronous Data Provenance for Research Data in a Distributed System

365



on the derivation of an entity from another. This
is important in the context of updating a data en-
tity and metadata set for describing the path that
entity traversed. It furthermore plays a role in
data entities which move across different storage
providers. Such an update description is either trig-
gered synchronously or asynchronously by looking at
the change indicators and determining that a change
has occurred. Both cases result in a new entity de-
scription and the linking to the old one shown in fig-
ure 3.

Figure 4: Invalidating an entity with an activity as defined
and visualized by (Belhajjame et al., 2012).

Finally, the end of the path a data entity took has to
be described. If for some reason, the data entity has
been deleted, the representation in 4 can provide a so-
lution for that. The deletion of a data entity therefore
does not mean that the provenance metadata and ev-
erything related to it will be removed, it just means
that the data entity will be marked as invalidated.

4 PRELIMINARY RESULTS

The discussed approach for dealing with asyn-
chronous data provenance has been prototypically im-
plemented for the Coscine use-case. The result is an
application that on execution goes over all data en-
tities that are set to be analyzed. When a new data
entity has been detected or the defined change indi-
cators (in this case “Hash” and “Descriptive meta-
data” as defined in 3.2.2) have been triggered, the
new entity is represented as discussed in section 3.4.
The change indicators are represented by the predi-
cate “foaf:sha1” for the “Hash” change indicator and
the entity is marked as “a foaf:Document” as defined
by (Brickley and Miller, 2014). Furthermore, follow-
ing the work from (Heinrichs and Politze, 2020) the
descriptive metadata is extracted and stored as dis-
cussed in section 3.3.2. The version of the data en-
tity is stored using the predicate of “schema:version”
by declaring the entity as “a schema:CreativeWork”
as discussed by (Guha et al., 2016). The application

is scheduled to run daily, however can be triggered at
any point manually, if a change in data entities is ex-
pected. For representing the synchronous data prove-
nance, event listeners are used to track the creation,
update and deletion of a data entity and a metadata
set and the representation is made according to the
definitions in section 3.4.

5 CONCLUSION

This paper described the need for a way to capture
data provenance in an environment that does not log
or produce any data provenance related information
since changes are caused by external events like user
interactions in a distributed system. The data prove-
nance being established and needed was defined as
asynchronous data provenance and a concept was pro-
posed which can represent it. A clear need to de-
scribe the type of change for a data entity was estab-
lished and the indicators for a change were presented.
Furthermore, an approach was defined for describing
the provenance information in separate graphs and de-
scribing the interplay between them. With this, a con-
cept was created to describe the path a data entity has
traversed, even if the change is not directly triggered
or logged by the integrating platform.

5.1 Identified Research Gaps

Although a concept was presented which can deal
with asynchronous data provenance, some questions
are still open that need to be answered for completing
a full implementation and are presented in the follow-
ing.

• There are a lot of possible change indicators pro-
vided and some of them are used in the prototyp-
ical implementation, however a question still re-
mains. Are there any more change indicators out
there and which are the best choice for which sce-
nario?

• How can change indicators be evaluated?

• Can machine learning fuel a change indication al-
gorithm and even get a rough estimation on how
similar the old and new data entity is?

• How can the current graph structure be general-
ized to other persistent identifier and prefixes?

• What is a good time frame to try and establish
changes on external storage providers?

ICEIS 2021 - 23rd International Conference on Enterprise Information Systems

366



5.2 Future Work

Following on this work, the prototypical implemen-
tation will be enhanced, so that it not only supports
the requirements of the Coscine platform, but can be
used in general. With work looking into different
change indicators and implementing them, it will be
seen how well they perform and which produce the
best results in performance, accuracy and applicabil-
ity. Even new developed methods, which could focus
on machine learning and fueling a change indicator
based on a trained model, could be interesting in this
evaluation. Furthermore, the paper is focused on data
entities however an interesting area to look into is how
to reflect this research on collection of data entities
and collection of collections. Since a change indicator
is proposed, another area of future interest is to see if
the difference between data entities in two collections
could tell the similarity between them. Especially
by looking into the descriptive metadata as well, the
defining topics which are similar could be detected by
such a method and most importantly which topics are
not the same.

REFERENCES

Ametepe, W., Wang, C., Ocansey, S., Li, X., and Hussain,
F. (2018). Data provenance collection and security
in a distributed environment: a survey. International
Journal of Computers and Applications, pages 1–15.

Belhajjame, K., Cheney, J., Corsar, D., Garijo, D., Soiland-
Reyes, S., Zednik, S., and Zhao, J. (2012). Prov-o:
The prov ontology.

Bensberg, S. (2020). An efficient semantic search en-
gine for research data in an RDF-based knowledge
graph. Masterarbeit, RWTH Aachen University,
Aachen. Veröffentlicht auf dem Publikationsserver
der RWTH Aachen University; Masterarbeit, RWTH
Aachen University, 2020.

Brickley, D. and Miller, L. (2014). Foaf vocabulary specifi-
cation. http://xmlns.com/foaf/spec/.

Cruz, S., Campos, M., and Mattoso, M. (2009). Towards a
taxonomy of provenance in scientific workflow man-
agement systems. SERVICES 2009 - 5th 2009 World
Congress on Services.

Cyganiak, R., Lanthaler, M., and Wood, D. (2014). RDF
1.1 concepts and abstract syntax. W3C recommenda-
tion, W3C. http://www.w3.org/TR/2014/REC-rdf11-
concepts-20140225/.

Davidson, S., Cohen-Boulakia, S., Eyal, A., Ludäscher, B.,
McPhillips, T., Bowers, S., Anand, M., and Freire, J.
(2007). Provenance in scientific workflow systems.
IEEE Data Eng. Bull., 30:44–50.

Davidson, S. and Freire, J. (2008). Provenance and scien-
tific workflows: Challenges and opportunities. pages
1345–1350.

E. Stephan, B. Raju, T. Elsethagen, L. Pouchard, and C.
Gamboa (2017). A scientific data provenance har-
vester for distributed applications. In 2017 New York
Scientific Data Summit (NYSDS), pages 1–9.

European Organization For Nuclear Research and Ope-
nAIRE (2013). Zenodo.

Foster, E. D. and Deardorff, A. (2017). Open science frame-
work (osf). Journal of the Medical Library Associa-
tion : JMLA, 105(2):203–206.

Guha, R. V., Brickley, D., and Macbeth, S. (2016).
Schema.org: Evolution of structured data on the web.
Commun. ACM, 59(2):44–51.

Heinrichs, B. and Politze, M. (2020). Moving towards a
general metadata extraction solution for research data
with state-of-the-art methods.

Herschel, M., Diestelkämper, R., and Ben Lahmar, H.
(2017). A survey on provenance: What for? what
form? what from? The VLDB Journal, 26.

Hu, R., Yan, Z., Ding, W., and Yang, L. T. (2020). A
survey on data provenance in iot. World Wide Web,
23(2):1441–1463.

Interlandi, M., Ekmekji, A., Shah, K., Gulzar, M. A., Tetali,
S. D., Kim, M., Millstein, T., and Condie, T. (2018).
Adding data provenance support to apache spark. The
VLDB Journal, 27(5):595–615.

Mufti, Z. and Elkhodr, M. (2018). Data Provenance in the
Internet of Things: Views and Challenges.

Pérez, B., Rubio, J., and Sáenz-Adán, C. (2018). A system-
atic review of provenance systems. Knowledge and
Information Systems, 57(3):495–543.

Politze, M., Claus, F., Brenger, B. D., Yazdi, M. A., Hein-
richs, B., and Schwarz, A. (2020). How to manage
it resources in research projects? towards a collab-
orative scientific integration environment. European
journal of higher education IT, 1(2020/1):5.

Schmitz, D. and Politze, M. (2018). Forschungsdaten man-
agen – bausteine für eine dezentrale, forschungsnahe
unterstützung. o-bib. Das offene Bibliotheksjournal /
Herausgeber VDB, 5(3):76–91.

Schwardmann, U. (2015). epic persistent identifiers for ere-
search. In Presentation at the joint DataCite-ePIC
workshop Persistent Identifiers: Enabling Services for
Data Intensive Research, Paris, volume 21.

Smith, W., Moyer, T., and Munson, C. (2018). Curator:
Provenance management for modern distributed sys-
tems. In Proceedings of the 10th USENIX Confer-
ence on Theory and Practice of Provenance, TaPP’18,
page 5, USA. USENIX Association.

Talia, D., Thramboulidis, K., Lai, B. C., and Cao, J. (2013).
Workflow systems for science: Concepts and tools.
ISRN Software Engineering, 2013:404525.

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J. J.,
Appleton, G., Axton, M., Baak, A., Blomberg, N.,
Boiten, J.-W., da Silva Santos, L. B., Bourne, P. E.,
Bouwman, J., Brookes, A. J., Clark, T., Crosas, M.,
Dillo, I., Dumon, O., Edmunds, S., and Evelo, Chris
T. ... Mons, B. (2016). The fair guiding principles for
scientific data management and stewardship. Scientific
data, 3:160018.

Asynchronous Data Provenance for Research Data in a Distributed System

367


