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Abstract: As automation is a key driver to achieve efficiency in the ever growing IT landscape, many different deploy-
ment automation technologies arose. These technologies to deploy and manage applications have been widely
adopted in industry and research. In larger organizations, usually even multiple deployment technologies are
used in parallel. However, as most of these technologies offer limited or no management capabilities, man-
aging application systems deployed using different deployment technologies is cumbersome. Thus, holistic
management functionalities affecting multiple components of an application, e. g., update or back up all com-
ponents, is impossible. In this paper, we present an approach that enables the automated execution of holistic
management functionalities for running applications. To achieve this, we first retrieve instance information of
a running application and derive a standardized instance model of the application. Afterwards, the instance
model is enriched with additional management functionality. We hereby extend the existing Management Fea-
ture Enrichment and Workflow Generation approach to support running applications. To execute the enriched
management functionalities on the running application, standard-based workflows are generated.

1 INTRODUCTION

The automation of application deployments became
very important, especially in the widely adopted
area of cloud computing as manually deploying ap-
plications is error-prone, cumbersome, and time-
consuming (Oppenheimer, 2003). Today, many
deployment automation technologies are available,
e. g., Kubernetes, Puppet, and AWS CloudFormation.
Most deployment technologies use deployment mod-
els to deploy applications automatically (Bergmayr
et al., 2018). Hereby, deployment models usually de-
scribe applications declaratively in the form of their
structure, i. e., their components and their relations.
For example, a simple web-shop may connect to a
database and is provided by a web-server installed
on a virtual machine (VM). However, large organi-
zations usually employ multiple deployment automa-
tion technologies to manage their wide variety of ap-
plications. Hence, each application must be managed
using different technologies.

Although some technologies enable the manage-
ment of individual application components, e. g., scal-
ing the amount of web-servers, they rarely support
performing component overarching and more com-

plex management functionalities. Thus, holistic man-
agement of an application, i. e., management of all its
components that may be distributed over multiple en-
vironments, is a major challenge and mostly not sup-
ported (Harzenetter et al., 2019b). An example for
a holistic management functionality is the creation of
backups of all stateful components that are distributed
over multiple cloud providers or performing rolling
updates on all components. Thus, to enable holistic
management functionalities, operators must develop
custom automations for each application and em-
ployed runtime technologies. This requires deep tech-
nical knowledge, expertise in different kinds of tech-
nologies, and is very time-consuming. To tackle this,
we introduced an approach to automatically enrich
deployment models with holistic and custom manage-
ment functionalities which can be executed by gener-
ated workflows (Harzenetter et al., 2019b). For exam-
ple, if a deployment model is enriched with a backup
functionality, a workflow is generated that executes
the backup operations of all stateful components.

The Management Feature Enrichment and Work-
flow Generation approach (Harzenetter et al., 2019b)
is able to enrich applications before their deployment
with additional management functionality by process-
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ing its declarative deployment model and generating
executable management workflows. However, it is
not possible to enrich running applications with ad-
ditional management functionalities. Moreover, by
performing management functionalities on a running
application, the application’s state may change, e. g.,
by installing security updates. Since most deployment
technologies also monitor the applications they have
deployed, they may detect performed changes and re-
vert them. Hence, the main research questions (RQ)
we are resolving are:

RQ 1. How can running applications be en-
riched with additional, holistic management
functionalities that are not supported by the used
deployment technology?

We are addressing RQ 1 by splitting it into the follow-
ing questions tackling the two main challenges:

RQ 1.1. How can a normalized, technology-
independent, and typed instance model of a run-
ning application be retrieved automatically from
a specific used deployment technology?

RQ 1.2. How can the interference of the under-
lying deployment technology be avoided?

To resolve RQ 1.1, we introduce new concepts to
(i) retrieve instance information about the compo-
nents of a running application from its underlying
deployment technology, and to (ii) derive a normal-
ized instance model of the application by interpret-
ing the retrieved component information and mapping
them to normalized component types. Hence, by an-
alyzing the generated instance model, we are able to
tackle RQ 1.2 by (iii) extending the existing Manage-
ment Feature Enrichment and Workflow Generation
approach to support the enrichment of management
functionality such that it also considers the underlying
deployment technology the application was originally
deployed with. As a result, management workflows
can be generated for each management functionality
that can be executed on the running application, en-
abling the management of all deployed applications
in a company from a single dashboard.

However, the instance information provided by
the deployment technologies is often insufficient to
derive and perform arbitrary management function-
alities for an application. For example, component-
specific properties, such as the web application con-
text, cannot always be identified based on the de-
ployment technology-specific instance information.
Therefore, we are additionally tackling RQ 2:

RQ 2. How can a technology-independent in-
stance model of a running application be refined
to represent details about the application?

To address RQ 2, we are adapting and extending
our previous work (Binz et al., 2013) to automati-
cally refine identified component types and retrieve
component-specific runtime properties to create a de-
tailed instance model of a running application.

Hereafter, Sect. 2 provides background followed
by the presentation of our approach in Sect. 3. Sect. 4
outlines the prototype and presents a case study, while
Sect. 5 discusses the approach. Finally, Sect. 6 dis-
cusses related work and Sect. 7 concludes the paper.

2 FUNDAMENTALS, PREVIOUS
WORK, AND PROBLEM
STATEMENT

This section introduces fundamental terms, describes
existing work, and discusses its current limitations.

2.1 Deployment Automation

The automation of application deployments is of vital
importance, as manual deployments are cumbersome
and error-prone (Oppenheimer, 2003). To describe
an application deployment, deployment models which
can be classified into imperative and declarative mod-
els (Endres et al., 2017) are typically used (Bergmayr
et al., 2018). Imperative deployment models de-
fine the exact order of operations that must be exe-
cuted to deploy an application, e. g., in the form of
a script or workflow. In contrast, declarative deploy-
ment models describe the structure of an application
by modeling its components, their relations, and their
configuration—in general as directed and weighted
graphs (Wurster et al., 2019). Thus, a deployment
technology must interpret the declarative model and
derive the necessary steps to deploy the application
including all modelled components and relations.

A standardized language that combines declar-
ative and imperative models is the Topology and
Orchestration Specification for Cloud Applications
(TOSCA) (OASIS, 2013, 2020). TOSCA is an ac-
tively maintained standard by OASIS and provides
a vendor- and technology agnostic metamodel to de-
ploy and manage applications. In TOSCA, the de-
ployment of an application can be modeled (i) declar-
atively in the form of Topology Templates, and (ii) as
imperative Plans, i. e., executable workflow models,
that are defined by languages such as BPEL (OASIS,
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Figure 1: The Management Feature Enrichment and Workflow Generation approach (Harzenetter et al., 2019b).

2007). Since imperative models can be derived from
declarative ones automatically (Breitenbücher et al.,
2014), we focus on declarative models. To model ap-
plications in TOSCA, they are declaratively defined
in Topology Templates which are directed graphs in
which nodes are represented by Node Templates and
edges are Relationship Templates. TOSCA defines a
typing system which makes it ontologically extensi-
ble (Bergmayr et al., 2018) in the form of Node Types
and Relationship Types. These types define a certain
semantic by using Properties, Interfaces, and their
corresponding Operations. For example, consider the
application shown on the left of Fig. 1: Here, an “Or-
der App” of type Java Web App is running on a Tom-
cat web server that is installed on a Ubuntu VM run-
ning on AWS. Additionally, to store its data, the Or-
der App connects to a database of type MySQL-DB
which is managed by a database management system
(DBMS) of type MySQL DBMS. The DBMS is also
installed on a Ubuntu VM which is, however, running
in an OpenStack infrastructure. To express that, e. g.,
the web server is installed on the VM, the two node
templates are connected by a relationship template
which is an instance of the relation type Hosted-On.
Further, the Tomcat node type, for example, defines
a Port property to configure the port the web server
instance should be listening to. Lastly, the whole
application is packaged in a Cloud Service Archive
(CSAR) that contains all necessary elements like node
and relationship types, as well as executables, such as
install scripts, to deploy the modeled application.

2.2 Management Feature Enrichment
and Workflow Generation Method

To enrich applications with additional management
functionality, we previously introduced the Manage-
ment Feature Enrichment and Workflow Generation
(MFEW) method (Harzenetter et al., 2019b).

2.2.1 Overview of the Management Feature
Enrichment and Workflow Generation

The Management Feature Enrichment and Workflow
Generation method is illustrated in Fig. 1. In the first
step, a declaratively modeled application is passed to
the Management Feature Enricher component which
analyzes the application’s components based on their
types. It hereby searches through a repository con-
taining additional management functionalities that are
realized in the form of Feature Node Types that de-
fine specialized management operations. For exam-
ple, one feature node type may provide an operation to
backup a MySQL database, while another may offer
operations to test the availability and accessibility of
Ubuntu VMs. Thus, if a user wants to have additional
backup and test functionalities, all node types in the
given application are enriched with the correspond-
ing operations, if they are available in the repository,
by generating so-called Enriched Node Types that re-
place the current types in the topology template.

In the second step, management workflows, i. e.,
TOSCA management plans, are automatically derived
by a Management Workflow Generator: For each en-
riched management functionality, there is a dedicated
workflow generation plugin that generates a workflow
that executes the corresponding operations on an ap-
plication. Thus, a Test workflow and a Backup work-
flow are generated for the application shown in Fig. 1.

2.2.2 Limitations of the Current Method

The current MFEW method is based on declarative
deployment models (Harzenetter et al., 2019b). Thus,
it only works for not-deployed applications. In order
to apply the idea of subsequently adding management
functionality also to running applications, we trans-
fer the general idea of our previous work to instance
models in this paper. Since instance models of run-
ning applications can also be represented as directed
and weighted graphs (Binz et al., 2012; Wurster et al.,
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2019), the MFEW approach provides the basic foun-
dation. However, two major extensions and adapta-
tions are required: (i) Instance models must be re-
trieved and normalized to correctly identify the node
types of the components to enable the enrichment of
management functionalities (cf. RQ 1.1). Therefore,
a concept is needed that is capable of transforming de-
ployment technology-specific instance models to nor-
malized, i. e., technology-agnostic, instance models.
(ii) To enrich instance models with additional man-
agement functionalities, the identification of avail-
able management functionalities requires a new con-
cept: If an operation is changing the application’s
state, the underlying deployment technology may re-
vert the performed changes and restore the previous
state. Hence, the available functionalities must be
selected carefully and the implementations must no-
tify the deployment technology to avoid its interfer-
ence. Therefore, we are distinguishing between two
different kinds of management functionalities, state-
changing and state-preserving management function-
alities. State-changing functionalities change the ap-
plications state, e. g., changing the configuration of
components or adding and removing components;
state-preserving functionalities only interact with the
components. For example, installing updates is a
state-changing management functionality, while re-
trieving a backups is a state-preserving functionality.

2.3 Crawling Instance Models

In previous work, we presented an iterative approach
to automatically derive instance models of enterprise
applications (Binz et al., 2013). To achieve this, we
introduced a plugin-based crawler that is able to iden-
tify the components and their corresponding types of
an application. These technology-specific plugins are
able to perform all kinds of operations in order to de-
rive and refine an instance model of a given applica-
tion (Binz et al., 2013). For example, a plugin may
send HTTP requests to determine a specific type of
web server based on the response’s headers, while an-
other plugin may be able to log in to a VM via SSH
to identify files or processes that indicate a specific
running component. However, as we did not consider
the underlying deployment technology, the generated
models cannot be used to manage the applications as
management functionalities may change the state of
the application, e. g., by installing security updates.
Hence, the deployment technology may interfere and
revert the performed changes. Thus, we cannot use
the crawling approach as we have to consider the de-
pendencies to the deployment technology when per-
forming state-changing management functionalities.

3 MANAGING RUNNING
APPLICATIONS BY
GENERATING WORKFLOWS

To enable the enrichment of management functional-
ities for running applications, a model of the applica-
tion is required. This model must be retrieved from
the running application and normalized to describe
the components of the application in a technology-
independent way. An overview of the proposed ap-
proach is illustrated in Fig. 2: The first, new step
retrieves the deployment technology-specific instance
information about the running application that should
be manageable. Thus, plugins of the Instance Infor-
mation Retriever component (1) access the APIs of
the deployment technologies used to deploy the appli-
cation. Second, the new Instance Model Normalizer
component (2) interprets the gathered technology-
specific information and derives a normalized in-
stance model of the application. In this step, the infor-
mation about the deployed components are mapped to
known and normalized node types extending the nor-
mative TOSCA node types (OASIS, 2020) by con-
crete technologies such as Ubuntu, MySQL, or Tom-
cat. However, since the deployment technologies do
not always hold all necessary information, the nor-
malized instance model must be completed by a ded-
icated Instance Model Completer component (3) in
the third step. For example, Kubernetes only knows
containers and their configuration that can be passed
from the outside but does not have information about
the components inside, while Puppet usually knows
all installed and configured components but may not
hold all required properties about them. Fourth, in
the extended Management Feature Enricher compo-
nent (4), available management functionality is added
to the normalized instance model. As described in
Sect. 2.2.2, the identification of available manage-
ment functionalities must consider the underlying de-
ployment technology. Finally, the enriched instance
model is interpreted by the Management Workflow
Generator component (5) to derive workflows for
each enriched management functionality that can be
executed on a suitable Workflow Engine (6).

3.1 Instance Information Retriever

In the first step, the new Instance Information Re-
triever component retrieves the technology-specific
instance models from deployment technologies using
specialized plugins as depicted in Fig. 2. When us-
ing existing approaches, e. g., crawling (Binz et al.,
2013) and network scanning (Holm et al., 2014), to
retrieve instance information about running applica-
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tions, a major drawback arises if the generated mod-
els are used to manage the applications: The models
do not contain any information about the deployment
technologies used to deploy the applications. Thus, if
a management functionality is changing the state of
the application, e. g., installing security updates, most
deployment technology recognize the changes and try
to revert them to the previous state. To avoid this, we
retrieve the information about running applications
from the API of the respective deployment technology
using plugins and add the information as annotations
to the derived model. Hence, state-changing manage-
ment functionalities are able to notify the deployment
technology about state changes using the annotated
information and, thus, can avoid their interference.

Depending on the deployment technology, the in-
formation about the components of an application that
can be accessed varies in its expressiveness. For ex-
ample, while it is possible to retrieve information
about concrete software components that are installed
on a specific machine from Chef or Puppet, Terraform
and Kubernetes do not hold such information as they
focus on managing cloud resources, computing in-
frastructure, and containers. Therefore, the granu-
larity level of the instance data retrieved from the
deployment technologies differs from infrastructure
components, i. e., compute instances, such as VMs,
to actual software components, such as applications
and middleware, hosted on these compute instances.

3.2 Instance Model Normalizer

Based on the data retrieved in step one, a normalized
model of the application is derived in the second step
using the new Instance Model Normalizer. As this
data is highly specific to the deployment technology
it has been retrieved from, custom logic that is able to
interpret the technology-specific data is required for
further processing. Hence, plugins for the respective
deployment technologies must be able to understand
the retrieved instance data and generate normalized
instance models. Moreover, the generated instance
models must also contain all necessary information
about the underlying deployment technology. For ex-
ample, how it can be accessed, as well as technology-
specific IDs that identify the components inside the
deployment technology-specific instance model.

Since TOSCA defines a vendor and technology
agnostic, as well as ontologically extensible meta
model (Bergmayr et al., 2018), we use it to describe
application instances. Thus, the technology-specific
components are represented as node templates which
must be mapped to node types defining their seman-
tics. For example, if an instance of a Ubuntu oper-
ating system (OS) is found to be running as a VM,
it can be mapped to a node template that is an in-
stance of the normalized Ubuntu node type. These
normalized node types can be defined in a repository
to specify the semantics of components in a standard-
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ized and normalized manner. Additionally, the nor-
malized node types may define abstract definitions to
describe the overall semantics and explicit versions.
For example, a Ubuntu node type defines that the
VM is running a Ubuntu OS, while a Ubuntu 20.04
node type refines this information with a specific ver-
sion. However, there are cases in which the deploy-
ment technology-specific information is not sufficient
enough to identify a component’s type. In this case,
the generic TOSCA Normative Node Types (OASIS,
2020) are used to represent the identified compo-
nents. For example, TOSCA defines a generic Soft-
ware Component node type which can be used to rep-
resent any kind of software component. Similarly, the
generic Compute node type is available to represent
computing resources such as VMs or containers if a
more concrete node type cannot be identified.

Additionally, the instance model normalizer must
map component specific properties from deployment
technology-specific information to the normalized
representation in TOSCA. Thus, as node types de-
fine the available properties their node templates have,
four kinds of mappings between instance properties
and properties of the node type, can be differentiated:
(i) A property is named equally. In most cases, the
mapping is straightforward. However, the contents
may be semantically different and a more complex
mapping may be required (cf. case iii). (ii) The name
of a property is different but they are describing the
same element. For example, a property of a VM in the
retrieved instance information is named “IP-address”,
while the Compute node type defines it as “public-
address”. Hence, the mapping is usually straightfor-
ward. (iii) A property consists of two or more proper-
ties in one model, while it is combined into one in the
other model. This may be the case, if a web compo-
nent has only a property called “url” while the corre-
sponding node type defines separate properties for the
“hostname”, “port”, and “context-path”. Thus, a more
complex property mapping is required. (iv) Lastly,
there may be properties which cannot be mapped. For
example, if a property cannot be mapped to a property
of a node type, it can be saved in the model as addi-
tional metadata to enable manual refinement of the
component, e. g., to a custom node type that could not
be identified automatically. In contrast, if a property
is not available in the retrieved instance data, it cannot
be filled and, thus, will remain empty.

3.3 Instance Model Completer

In the third, new Instance Model Completer com-
ponent, the normalized instance model is refined
with detailed information about component types and
property values. Since the instance information that

are accessible from the deployment technologies may
not produce a complete model of an application, we
introduce the Instance Model Completer as a third
step. The instance model completer is based on
our previously introduced plugin-based crawler (Binz
et al., 2013). Hereby, plugins identify components
of an application, retrieve their configuration, or re-
fine their types. Then, these component-specific in-
formation are used to improve the derived instance
model. For example, a Tomcat plugin is able to iden-
tify whether a Tomcat web server is running on a VM
or container, refine an already identified Tomcat com-
ponent to a specific version, and identify the port it is
listening to. Additionally, plugins may also be able
to refine the properties or types of multiple compo-
nents. For example, as a Tomcat web server provides
access to applications via the internet, it may be able
to identify the context in which a particular web ap-
plication is accessible. Thus, we extended our con-
cepts by a sub-graph mechanism to identify plugins
that are able to refine the instance model and enrich
it with more details. Thus, to refine node types and
fill their properties with additional runtime informa-
tion, the plugins may specify multiple detectors that
define graph elements they can refine. For example,
the Tomcat plugin may be able to refine the normative
WebServer (OASIS, 2020) node type to a concrete
Tomcat 9 node type if it can identify specific files or
processes running an the corresponding VM. To tell
the instance model normalizer, that the Tomcat plugin
may be able refine a node template of type WebServer
to a Tomcat web server, the plugin’s detector contains
a node template of type WebServer. Additionally, to
also define that the plugin is able to find context paths
of applications running on a Tomcat web server, it
also defines a detector with two node templates: A
Tomcat web server that hosts a node template of type
WebApplication. Thus, to complete a whole applica-
tion, the instance model completer applies all plugins
that have matching detectors, i. e., their detectors are
sub-graphs of the instance model, until there are no
more plugins that can refine the instance model.

3.4 Management Feature Enricher

After a normalized and completed instance model of
the application is generated, it is enriched with addi-
tional management functionalities using the adapted
Management Feature Enricher in the fourth step. The
enrichment of instance models with additional man-
agement functionality is hereby based on the MFEW
method as described in Sect. 2.2. In general, we
can distinguish two kinds of management function-
alities: State-changing and state-preserving manage-
ment functionality. While state-changing functional-
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ity alters the application’s components or their con-
figuration, e. g., renewing licenses or updating com-
ponents, state-preserving functionality only interacts
with the components, e. g., to retrieve their data.
Therefore, the derived instance model of an appli-
cation can always be enriched with state-preserving
functionalities. In contrast, to execute state-changing
functionalities on a running application, the under-
lying deployment technology must be taken into ac-
count, as state changes may be detected by the de-
ployment technology which may restore the previous
state. To avoid this, the instance model must be anno-
tated with the deployment technology it was retrieved
from. Using this information, state-changing func-
tionality can be filtered by implementations that sup-
port the propagation of state changes to the respective
deployment technology’s API to avoid its interfer-
ence. Therefore, feature node types that provide state-
changing operations, must also be annotated with the
deployment technologies they support. We extended
the Management Feature Enricher to support filtering
of functionalities based on the annotation of the used
deployment technology. As a result, the enriched in-
stance model contains only management functionali-
ties that either support the deployment technology, or
do not change the application’s state.

3.5 Management Workflow Generator

In the fifth step, the reused Management Work-
flow Generator component automatically derives ex-
ecutable management workflows. After the instance
model has been enriched with management func-
tionalities, i. e., its node types have been replaced
with generated enriched node types that provide the
selected management functionalities, workflows are
generated for each management functionality. For ex-
ample, if a user selected the backup and test func-
tionalities, two workflows are generated: One execut-
ing all tests of all components that have test opera-
tions, the second creates backups of the stateful com-
ponents that provide a backup operation. The gener-
ation of these workflows is handled by plugins that
implement logic to execute the respective operations
of each component in the correct order.

Finally, the generated workflows can be executed
on a compatible Workflow Engine. To invoke the
workflows’ execution, the application is accessible in
a dashboard enabling users to manage the applica-
tions. Depending on the management operation, the
workflow may require additional input. For example,
to perform operations on a VM, a username and pass-
word or private key are required in order to connect to
the VM and execute script-based operations.

4 PROTOTYPICAL VALIDATION

To prove the feasibility of the presented approach,
a prototypical open-source implementation based on
the OpenTOSCA ecosystem (Breitenbücher et al.,
2016; OpenTOSCA, 2020) and the new Instance
Model Retrieval Framework (Mathony, 2020) is pro-
vided. OpenTOSCA consists of three components:
(i) Winery, a web-based modeling environment for
TOSCA applications, (ii) the OpenTOSCA Run-
time Container to deploy TOSCA applications, and
(iii) Vinothek, a UI to manage running applications.

4.1 Ecosystem Overview & Extensions

The extensions to the OpenTOSCA Ecosystem and
the new Instance Model Retrieval Framework are
analogous to the extensions illustrated in Fig. 2.
The new Instance Retrieval Framework implements
both, the information retrieval and the transforma-
tion of the information to a normalized, TOSCA-
based instance model. Thus, we designed a plugin-
based component inside the Instance Model Retrieval
Framework to enable its extensibility for new deploy-
ment technologies. To prove the concepts, we im-
plemented plugins for AWS CloudFormation, Open-
Stack Heat, Puppet, and Kubernetes. These plugins
implement technology-specific logic to retrieve infor-
mation about running applications, i. e., their compo-
nents, properties, and configurations, by sending re-
quests to the respective deployment technology’s API.

To derive a normalized instance model, the plug-
ins identify the semantics of technology-specific com-
ponents by mapping them to normalized node types
defined in a node types repository. Thereby, provider-
specific properties are mapped to the properties de-
fined by the node types. As a result, a technology-
agnostic model of the running application is gener-
ated which is then imported into the TOSCA mod-
eling tool Winery. Winery not only provides mod-
eling features but also implements the new Instance
Model Completer as well as the Management Feature
Enricher components. Thus, after importing the gen-
erated instance model, first the new Instance Model
Completer component is executed to refine the node
types and fill missing property values. Then the up-
dated Management Feature Enricher can be invoked
to identify available management functionalities that
can be selected by the user depending on the desired
functionalities for the current application. Moreover,
to support the enrichment of state-changing manage-
ment functionalities, the Management Feature En-
richer component has been extended to filter avail-
able management operations based on the supported
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Figure 3: Evolution of the application instance models.

deployment technologies. Thus, feature node types
must define the set of deployment technologies their
management operation implementations support. For
example, if a feature node type supports updating
VMs managed by Puppet or Chef, the feature node
type must be annotated with Puppet and Chef to indi-
cate that these technologies are supported.

Finally, the manageable instance model is passed
to the OpenTOSCA runtime which generates exe-
cutable BPEL workflows (OASIS, 2007) for each
management operation. Then, the application is reg-
istered as a running instance which enables users to
manage the imported application instance using the
Vinothek. Thus, the Vinothek is a single dashboard
that can be used to manage all applications registered
as running applications in the OpenTOSCA runtime.

4.2 Case Study

To proof the feasibility of our approach, we deployed
the application shown in Fig. 1 using Puppet and em-
ployed our prototype to retrieve its instance informa-
tion. In general, Puppet is an agent-based deployment
and configuration management technology (Puppet
Labs, 2020). The agents are managed by a so-called
Primary Server that specifies which software must be
installed in which configuration on which node. A
node is hereby a VM instance on which a Puppet
Agent is installed performing installation and configu-
ration tasks. The Puppet nodes are uniquely identified
by certnames. For example, the certname of the VM
hosting the Order App is called “Frontend”, while the
VM hosting the database is called “DB-VM”.

To retrieve an application’s instance information,
our Puppet instance retrieval plugin assumes that all
nodes managed by one primary server are part of one

application, a limitation of the current implementa-
tion we want to tackle in future work. Thus, the In-
stance Information Retriever component requires the
IP-address and a password or private key of the VM
running the primary server. Afterwards, by querying
the list of all certnames registered at the Puppet pri-
mary server, all facts, e. g., IP-addresses and OS prop-
erties, about the nodes can be retrieved. Addition-
ally, as the Puppet agents generate reports about the
performed operations, e. g., which components have
been installed and configured, they can be used to de-
rive a normalized instance model of the application.
Hence, facts and reports build the puppet-specific in-
stance model of an application (cf. step 1 in Fig. 3)
that can be accessed via Puppet’s API.

In the next step, the facts and reports are passed
to the Instance Model Normalizer alongside plugin-
specific information. In the Puppet case, these plugin-
specific information are, among others, the IP-address
and password of the primary server which are anno-
tated to the instance model as shown in Fig. 3. After-
wards, all facts about Puppet nodes are investigated to
identify the OS, including its release version the VM
is running, as well as its properties, such as the IP
address. In addition, the facts may also contain data
about the hypervisor that is running the VM. How-
ever, as depicted in step 2 of Fig. 3, it is not always
possible to correctly identify a hypervisor. In this
case, the hypervisor information from the facts about
the VM running on AWS are too generic to identify it
as AWS, while OpenStack is directly named. Based
on the reports generated by the Puppet nodes, the plu-
gin is able to derive the node types describing the in-
stalled components. However, the reports do not al-
ways contain properties about which component ver-
sion has been installed or how a component has been
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configured. Therefore, the normalized instance model
in Fig. 3 does not contain values for all properties.

After the normalized instance model was derived,
it must be completed to describe all required prop-
erties as well as to identify the components’ ver-
sions: The normalized instance model is passed to
the Instance Model Completer component that it-
eratively refines the instance model to complete it.
Technology-specific plugins determine whether they
are able to refine the instance model based on a sub-
graph detector (cf. Sect. 3.3). However, to execute a
technology-specific plugin, it may require additional
input, e. g., a private key to access a VM via SSH.
These inputs can be given to the plugin by the user if
it is not already available in the instance model. As a
result, a completed instance model contains all prop-
erties and, in this case, even horizontal relations (cf.
Fig. 3) can be identified and added to the model.

The completed instance model can be enriched
with management functionalities using the adapted
Instance Model Enricher component. Hereby, the
available management functionalities are first divided
into state-changing and state-preserving functionali-
ties. In contrast to state-changing functionality, state-
preserving functionality can always be enriched to
an instance model. State-changing functionality can
only be enriched, if an implementation is available
that supports notifying the underlying deployment
technology. Hence, a user may have different options
to choose from while enriching different applications
with management functionalities. In this case, the
MySQL Database can be enriched with backup and
testing functionality, the Tomcat web server can be
tested, while the Ubuntu VMs can be tested and up-
dated automatically (cf. step 4 of Fig. 3).

In the last step, the completed and enriched in-
stance model is passed to the Management Work-
flow Generator that derives management workflows
for each enriched management functionality. Here, a
test workflow, a backup workflow, as well as a update
workflow are generated that all can be executed on the
running application and, thus, manage it.

5 DISCUSSION

As our main goal is to enrich running applications
with holistic management functionality, we focused
on the retrieval of instance information about the ap-
plication in question from its underlying deployment
technology. However, this poses three major chal-
lenges: (i) The access and expressiveness of an ap-
plication’s instance information provided by a de-
ployment technology differs significantly. For exam-

ple, while it is possible to retrieve software compo-
nents and their configurations from Chef and Puppet,
OpenStack Heat and AWS CloudFormation only al-
low to derive information about infrastructure com-
ponents. Moreover, to enable a specific management
of all components, the node types must be identified
as exact as possible. In some cases, specific nor-
malized types cannot be identified, and, thus, more
generic ones, such as Software Component (OASIS,
2020), are used. In these cases, the available manage-
ment operations that can be enriched to these com-
ponents are limited as generically providing all man-
agement operations is not always possible. How-
ever, the models can be refined by our Instance Model
Completer component, if corresponding plugins are
available which are able to refine the derived instance
model. (ii) The identification and normalization of
node types is difficult and requires immense techni-
cal expertise. Therefore, deployment technology ex-
perts need to maintain the plugins to ensure that they
are future-proof. (iii) Detecting horizontal relations
is difficult or, depending on the deployment technol-
ogy, even impossible to derive from the retrieved in-
stance information. Deriving horizontal relations re-
quires very detailed and component-specific knowl-
edge about the respective components which is not
maintained by all deployment technologies. However,
by executing technology-specific plugins, we are able
to identify horizontal relations with the limitation that
a corresponding plugin must be available. Addition-
ally, it is always possible to refine the instance model
manually to enhance its expressiveness.

The enrichment and management of container-
based deployment technologies, such as Kubernetes
or Docker Compose, posses an additional challenge
as containers are usually composed of multiple com-
ponents that cannot be seen from outside. However,
as containers can be accessed from the outside using
an interactive shell, similar to SSH sessions on virtual
machines, corresponding Instance Model Completer
plugins can provide access to the containers. Thus,
other plugins, such as the Tomcat plugin, can be used
to identify components hidden inside the containers.

To enable the enrichment and execution of state-
changing functionalities, the implementations must
be done in a deployment technology-specific way.
Otherwise, the deployment technology may interfere
and restore the previous state. Therefore, for each
state-changing management functionality, there must
be a corresponding implementation for each sup-
ported deployment technology. Hereby, the imple-
mentations must consider the underlying deployment
technologies when changing the applications’ states.
For example, to manage Kubernetes applications, Ku-
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bernetes’ Operators concept can be used to realize an
operation’s implementation, while Puppet or Chef ap-
plications, for instance, can be implemented using the
Puppet domain specific language (DSL) and the Chef
DSL respectively. Such management operation im-
plementations, however, can be arbitrarily complex as
developers need to use the deployment technologies’
APIs, which differ significantly in how to use them
and their maturity level. However, state-preserving
management operations can always be enriched as
they only interact with the applications and do not
change their state. Nevertheless, once implemented,
all operations can be enriched to applications running
instances of the corresponding node types. Thus, our
approach facilitates the reuse of management func-
tionalities in different running applications.

As state-changing functionalities require informa-
tion about the underlying deployment technology, the
instance model must include this information. How-
ever, there are multiple options to store these informa-
tion. For example, the deployment technology spe-
cific information to access the APIs can be annotated
to the application, as described in Sect. 4.2, or they
can be added as separate model entities. For exam-
ple, in the case of Puppet, the primary server could
be represented as an additional node template of type
Ubuntu 20.04. This node template would have re-
lations to each identified node template it manages
to indicate their relationship. However, we chose to
use the annotation method to avoid mixing instance
model information with management requirements.

Finally, the generated normalized model of the ap-
plication only represents the retrieved instance data.
In contrast to deployment models, the generated in-
stance model may not be deployable, as artifacts, re-
lationships, and even properties may be missing in the
model. However, the gathered information is suffi-
cient to enrich and execute management operations as
the case study demonstrates.

6 RELATED WORK

To retrieve information about running services and
whole applications, several approaches exist ranging
from service discovery (Brogi et al., 2017) and net-
work scanning (Holm et al., 2014) to identifying ex-
plicit software components as well as their proper-
ties and configurations (Binz et al., 2013; Farwick
et al., 2011; Machiraju et al., 2000; Menzel et al.,
2013). There are similar approaches available in the
models@runtime community which mostly require
an a priori model of the application (Bencomo et al.,
2019). Thus, Bencomo et al. (2019) consider runtime

model inference to be still an open research area.
To collect data for enterprise architecture (EA)

management and automated maintenance, Farwick
et al. (2011) introduce a semi-automated process to
retrieve the components of an application and to en-
hance the actuality of EA models. Similarly, Binz
et al. (2013) present a crawler to identify components
of an application in an iterative process. Hereby, they
employ a large set of plugins that are executed de-
pending on the retrieved information in the previous
iteration. The plugins are then able to identify new
components or to refine the type of already discov-
ered ones. Holm et al. (2014) use network scan-
ners to identify infrastructure and software compo-
nents. They use multiple authenticated and unauthen-
ticated scanners to derive the components of an appli-
cation and transform it into an ArchiMate model. Ex-
plorViz (Fittkau et al., 2015) is a tool to monitor and
visualize applications and their components. How-
ever, ExplorViz focuses on the visualization appli-
cations and their interactions by employing dynamic
analysis techniques. In contrast to our approach, they
all focus on the retrieval of component instances us-
ing custom software programs, such as crawlers, net-
work scanners, and dynamic analysis techniques. We
depend on instance information provided by the APIs
of the used deployment technologies as our goal is to
enrich applications with management functionalities
that may change their state. This, however, requires
the information about the deployment technology.

Machiraju et al. (2000) introduced a generic ap-
proach to discover application configurations. To gen-
erate models of running applications, they use prede-
fined application templates specifying, e. g., the dis-
covery technique that should be used, and the required
attributes that should be identified for the running in-
stance. Thus, an application template model must
be created beforehand, i. e., the components must al-
ready be known and only their configurations can be
retrieved automatically. Thus, the approach could
also be integrated into our approach to refine the re-
trieved instance model and complete it. However,
we chose to base our Instance Model Completer on
the concepts introduced by Binz et al. (2013) as the
plugin-based architecture facilitates its extension.

To enable the management of cloud applications,
several works exist, such as basic application provi-
sioning (Mietzner et al., 2009; Breitenbücher et al.,
2014; Eilam et al., 2011; Herden et al., 2010), chang-
ing application configurations (Brown and Keller,
2006), and state-changing management functionali-
ties such as the termination of applications while en-
suring that their internal data is saved and the whole
application can be restored, including its previous

CLOSER 2021 - 11th International Conference on Cloud Computing and Services Science

108



state (Harzenetter et al., 2019a), or the Context-Aware
Management Method which enables the migration of
applications from one cloud providers to another as
presented by Breitenbücher et al. (2013).

Other work focuses on generating management
workflows based on a desired state model that declar-
atively describes the state in which an application
has to be transferred: Breitenbücher (Breitenbücher
et al., 2013; Breitenbücher, 2016) introduced Man-
agement Planlets, which are workflow fragments that
can be orchestrated automatically by a Plan Gener-
ator to perform management functionalities for ap-
plications. A Planlet consists (i) of a detector frag-
ment that specifies which Management Annotations a
Planlet realizes on a certain graph of components and
relations and (ii) provides a workflow model that im-
plements this functionality. Hereby, a Management
Annotation specifies a management functionality to
be realized, e.g., that a backup has to be done for
a component. These Management Annotations are
used in the desired state model to describe the de-
sired functionalities, which is then executed by or-
chestrating planlets into a workflow model that can
be executed automatically. Eilam et al. (2011) intro-
duced automation signatures that define “patterns” to
specify operations that can be performed on a given
state model of an application. In contrast to these
approaches, we enrich instance models with opera-
tions that are then executed by a generated workflow.
Moreover, the mentioned approaches do neither cover
automated retrieval of instance models from underly-
ing deployment technologies nor their normalization
as proposed by our approach.

7 CONCLUSION AND FUTURE
WORK

In this paper, we showed how running applications
can be enriched with additional management opera-
tions and how they can be executed by automatically
generating management workflows. To achieve this,
our approach enables the generation of normalized
instance models of running applications in the form
of TOSCA topology templates. The retrieval of in-
stance information about an application from its de-
ployment technology poses multiple challenges and
may not produce a complete instance model. How-
ever, we showed that by reusing and integrating exist-
ing approaches into the proposed approach, a com-
plete instance model of an application can be gen-
erated automatically. Based on the derived instance
model, we are able to perform holistic management
functionalities, such as testing, updating, and backing

up the application’s components, by generating corre-
sponding executable management workflows.

In future work, we plan to implement more plu-
gins to (i) support more deployment technologies,
as well as to (ii) support the refinement of more
component-specific information inside the Instance
Model Completer. Additionally, we want to support
deriving instance models of applications that depend
on multiple deployment technologies.
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